

GSJ: Volume 9, Issue 2, February 2021, Online: ISSN 2320-9186 www.globalscientificjournal.com

Improvement of Electricity Power Supply to Harbour Road, Port Harcourt

Prof. D. C. Idoniboyeobu, and Dr. S. L. Braide, George Idawarifaka

Department of Electrical, Faculty of Engineering, Rivers State University, Port Harcourt, Nigeria.

ABSTRACT

The research work is aimed at improving the electricity power supply with reliable power quality at the Harbour Road distribution network, Port Harcourt, consisting of twenty (20) distribution transformers. Having identified the problem associated in the network with overloading, outages in some of the feeders and gradual system collapse due to lower cross sectional area of conductor, due to these problems; the network was modeled in Electrical Transient Analyzer program (ETAP 16.00). With respect to these, load flow studies was performed using Newton Raphson techniques to know and ascertain the behavioural condition of the network. After the integration of capacitor bank into the network with the values of 8 KVAR and 10KVAR at bus 4 and bus 34 to take care of the Reactive power and the Active power in the system, significant improvement was made in the voltage profile ranging from bus 5 to bus 9 after the compensation.

KEY WORDS: E-tap application, Newton Raphson Load Flow, Voltage Equations, Reliability, Adequacy Security, electrical power system, capacitor bank placement, Load Flow, Voltage Profile, E-TAP.

I. INTRODUCTION

Electrical power system is a very important infrastructure because it delivers electricity to users either domestic or to commercial consumers. Its continuous and reliable performance is essential to nation building and citizen's way of life. The rate at which power system supply fails in this notion is becoming alarming and unimaginable that the masses are wanting a state of emergency with respect to electricity. Various actions taken to improve the system have not yielded the result expected. Failure of electrical power system have direct and indirect negative effect on the daily activities and the social economic well-being of users.

The problem of inadequate supply of power in this country (Nigeria) is what the society lived with for several years. Solution to problems and inadequate power supply in many areas has shown the abilities of ministers of power in recent years. Some steps that have been laid down in place to check the menace hence fails. The importance of electrical power reliability is demonstrated when electricity is disrupted and it reduces our comforts in various homes and productivity in general, e.g. industries. These have led to economic loss. Provision taken to stop an uninterrupted electricity supply for all customers has been a fundamental issues to designers in power operation, the security of power supplied is also a yardstick against which to measure the performance of electricity.

II. LITERATURE REVIEW

Electrical power system is very important in a developing nation. Substantial use of electrical power system had open onto serious vulnerability failure of electrical power supply. Reliable power supply thus gain focus, which regards very necessary and essential to power system operations and planning (Billinton, 1992).

Power system distribution serves as a reliable source between distribution system down to the consumers and to serve the society at large. The electrical distribution system normally starts at the medium voltage of three (3) phase 33KV/11KV which is been transmitted by electrical power equipment (transformers). The primary electrical distribution lines which are all live lines convey the medium voltage down to the distribution transformers placed at the customers environment which in turn step down the voltage to the required and approved standard voltage of 415V, 3 phase 4 wire less than 1KV through secondary distribution line utilization voltage, for house hold appliances at the customer premises usually terminated at the metre or customers final circuit. To be able to use electricity system when you need it, is an important factor in a developing nation.

Fig. 1: Single line diagram showing from generation power station to consumer

Fig. 2: Block diagram of reliability system subdivision (Bengaluru 2011)

Electrical System Reliability

Reliability denotes the state of being reliable and dependable amount of electrical energy for a given distribution network, if you were a plant engineer encompass the ability of the connected grid to supply the voltage you need, the power you need and also include whatever backup systems you had for, when the grid went down. (Donald Mcleod, 2018).

Security in Terms of Electrical System

This is the quality or statue of being able to retain certain level of solidness and allow the flow of electric current from generation, distribution down to consumer without being threatened or disturbed physically.

Adequacy in Power System

The quality of being sufficient or able to meet the electricity supply demand of consumers. These denote to sufficient and capacity of the equipment put in place or installed in the power system.

III. METHODOLOGY

Having identified the problem in the study case, this work will consider the application of Newton Raphson (NR load flow) and voltage equations for the analysis and investigation of the system overload and network violations. This can be achieved using capacitor bank.

Table 1:The location of transformers, rating and current reading in Harbour
Road 11KV Feeder.

S/No	Name Of Street/Location Of Transformer	Transformer Rating	_		
	11 ansionmen		R	Y	В
			(A)	(A)	(A)
1	IBETO	500KVA	415	360	450
2	CANTREESIDE VILLA AP	500KVA	198	118	208
3	AP	500KVA	265	352	414
4	STELLA MARIS I	500KVA	250	208	200
5	STELLA MARIS II	500KVA	410	384	512
6	STELLA MARIS II	500KVA	472	420	464

Source: Port Harcourt Electricity Distribution Company (PHEDC)

In calculating the transformer load and percentage load in Harbour Road 11KV feeder. The data in table 1 above are used in calculating the Transformer load, Percentage loading, Apparent, Active power, Reactive power and Complex power, as show below.

Current on transformer loading	
Current, I = $\frac{I_R + I_Y + I_B}{3}$	1
Apparent power $S_{VA} = \sqrt{3} x v x I$	2
Percentage loading, (%);	
% loading = $\frac{S_{VA}}{S_{MAx}} \times 100 \%$	3
S_{VA} = Operating KVA of the loads	
S_{MAX} = Rating of the transformer in (KVA)	
Active power, $P = \sqrt{3} V I \cos \theta$	4
Reactive power, $Q = \sqrt{3} VI \sin \theta$	5
Complex power, $S = P + Jq$	6

Case 1: Ibeto junction transformer (500KVA) Current, I = $\frac{I_R + I_Y + I_B}{3}$ I = $\frac{415 + 360 + 450}{3}$ = $\frac{1225}{3}$ = 408.33A GSJ: Volume 9, Issue 2, February 2021 ISSN 2320-9186

Applying equation 2 Apparent power, S_{VA} $S_{VA} = \sqrt{3} x v x I$ $S_{VA} = \sqrt{3} x \ 0.415 \ x \ 408.33A$ = 1.7320 x 0.415 x 408.33A $S_{VA} = 293.49 \, KVA$ Using equation 3, the percentage loading condition % loading = $\frac{S_{VA}}{S_{MNx}} x \ 100 \%$ % Loading = $\frac{293.49}{500} KVA \ x \ 100\%$ = 58.698%Applying equation 4 The Active power, (P) = $\sqrt{3} V I cos \theta$ Where $cos\theta = 0.8$ But the $\sqrt{3} VI = 293.49 \times 0.8$ P = 234.792 KWApplying equation 5 The reactive power, (O) = $\sqrt{3\nu 1} \sin\theta$ $\sqrt{3\nu I} = 293.49$ $sin\theta = 0.6$ Thus, Reactive power = 293.49×10^{-6} Reactive power, (Q) = 176.094KVA Applying equation 6 Complex power, (S) = P + JQ $S = 234.792KW + i176.094K_{VAR}$ Case 2: Stella Maris 1 transformer (500KVA) The current (I) = $\frac{198 + 118 + 208}{198 + 118 + 208}$ 3 I = 175AUsing question 2 becomes, $S_{VA} = \sqrt{3} x \ 0.415 \ Kv \ x \ 175A$

 $S_{VA} = 17320 \ge 0.415 \ge 175 \text{A}$ $S_{VA} = 125.79 \, KvA$ Applying equation 3 % loading = $\frac{125.79 \times 100\%}{500}$ = 25.2%Applying equation 4 Active power, $(P) = 125.79 \times 10.8$ P = 100.63 KwThe Reactive power 3.5 $Q = 125.79 \ge 0.6$ $Q = 75.47 K_{VAR}$ Applying equation 6 Complex power, S $S = 100.63 KW + j 75.47 K_{VAR}$ Case 3: Stella Maris II transformer (500KVA) Using equation 1 Current $I = \frac{265 + 372 + 414}{2}$ 3 I = 350AUsing equation 2 Apparent Power, S_{VA} $S_{VA} = \sqrt{3} x \ 0.415 K v \ x \ 350 A$

= 1.7320 x 0.415Kv x 350A $S_{VA} = 251.6KVA$ Using equation 3, the percentage loading condition % loading = $\frac{251.6K_{VA}}{500K_{VA}}$ x 100% = 50.3% Using equation 4, Active power, (P) Active power, (P) = 251.6 x 0.8 P = 201.28Kw Using equation 5, Reactive Power, (Q) Reactive power, (Q) = 251.6x0.6 Q = 150.96K_{VAR} Using equation 6, Complex Power, (S) Complex power, (S) S = 201.28Kw + j150.96K_{VAR}

Case 4: Sea shell Primary School Transformer (500KVA)

Using equation 1, Current $I = \frac{250 + 204 + 200}{200 + 200}$ 3 I = 218AUsing equation 2, Apparent Power, S_{VA} $S_{VA} = \sqrt{3} x \ 0.415 Kv \ x \ 218 A$ $S_{VA} = 1.7320 \ge 0.415 \text{Kv} \ge 218 \text{A}$ $S_{VA} = 156.69 \, KVA$ Using equation 3, the percentage loading condition $\therefore \% \ loanding = \frac{156.69 KVA}{500 KVA}$ 5. x 100% = 31.3%Using equation 4, Active Power, (P) Active power, $(P) = 156.69 \times 0.8$ P = 125.35 KWUsing equation 5, Reactive Power, (Q) Reactive power, $(Q) = 156.69 \times 0.6$ $Q = 94.01 K_{VAR}$ Using equation 6, Complex power, (S) Complex power, (S) = $S = 125.35KW + j 94.01K_{VAR}$

Case 5: Harbour Road Transformer (500KVA)

Applying equation 1 $I = \frac{410 + 384 + 512}{3}$ I = 435.33AUsing equation 2, Apparent Power S_{VA} $S_{VA} = \sqrt{3} \times 0.415 Kv \times 35.33A$ $= 1.732 \times 0.415 Kv \times 435.33A$ $S_{VA} = 312.91 KVA$ Using equation 3, the percentage loading condition $\therefore \% \ loading = \frac{312.91}{500} \times 100$ = 62.58 %Using equation 4, Active power, (P) Active power, (P) = 312.91 \times 0.8 P = 250.33 Kw

Using equation 5, Reactive power, (Q) Reactive power, (Q) = 312.91×0.6 Q = 187.76 KVARUsing equation 6, Complex power, (S) Complex power, (S) = S = $250.33 \text{Kw} \times \text{j} \ 188.76 \text{KVAR}$

Case 6: Milet Quarters transformer (500KVA)

Using equation 1, Current $I = \frac{472 + 420 + 464}{472 + 420 + 464}$ 3 I = 452AApplying equation 2 above $S_{VA} = \sqrt{3} x \ 0.415 Kv \ x \ 452 A$ $S_{VA} = 1.732 \ x \ 0.415 K v \ x \ 452 A$ $S_{VA} = 324.89 KVA$ Apply equation 3 above $\therefore \% \ loading = \frac{324.89KVA}{500KVA} \ x \ 100\%$ % loading = 64.98% Applying equation 3.4 above Active power, $(P) = 324.89 \times 0.8$ P = 259.91 Kw Applying equation 5 above Reactive power, $(Q) = 324.89 \times 0.6$ Q = 194. 93 KVAR Applying equation 3.6 above Complex power, (S) =S = 259.91 Kw x j 194.93KVAR

Presentation of Data Collected

- i. System capacity, $1 \times 15MVA$ at 33KV Bus bar
- ii. System capacity reactance of 15*MVA*
- iii. Present (maximum) load; 11MVA
- iv. Proposed power factor (Pf); 70%
- v. Proposed power factor (Pf); 96%
- vi. Received line voltage (V_L) ; 33*KV*
- vii. Sending end line voltage (V_S) ; 11*KV*
- viii. System frequency (f); $50H_Z$

Analytical Formulation and Data Processing

Processing of data collected and analytical formulation are presented as follows: Hence;

i. Determination of present
$$MVA$$
 demand MVA_1

Present *MVA* demand =
$$\frac{Present \ Load}{Present \ Power \ Factor} = MVA$$
 77
Present, *MVA* (demand) = $\frac{11MW}{0.70} = 15.7143$
 $\therefore MVA_1 = 15.7143$
Determination of proposed *MVA* demand (MVA)₂ or proposed power factor (*pf*)

ii. Determination of proposed *MVA demand*
$$(MVA)_2$$
 or proposed power factor (pf)
Proposed *MVA demand* = $\frac{present \ load \ (MW)}{Proposed \ power \ factor} = (MVA)_2$ 8
11

$$(MVA)_2 = \frac{11}{0.96}$$

: $(MVA)_2 = 11.4583$

iii. Determination of reactive power (*MVAR*), size required to compensate for voltage drop, closes etc given as;

MVAR = *Size of reactive power required*

Hence;

Using the first principle of power triangle, Pythagoras principle:

Power Triangle

i.e
$$(MVA)^2 = (MW)^2 + (MVAR)^2$$

 $(MVAR)_1 = \sqrt{(MVA)_1^2 - (MW)_1^2} for 70\% power factor$
where
 $(MVA)_1; = 15.714, (Mw)_1; 11$
Applying equation 10 gives
 $(MVAR)_1 = \sqrt{(15.714)_1^2 - (11)^2}$
 $(MVAR)_1 = \sqrt{246.92796 - 121}$
 $(MVAR)_1 = 11.22$
Similarly applying equation (10) for this proposed power factor of 96%
 $(MVAR)_2 = \sqrt{(MVA)_2^2 - (MW)}$
Where
 $(MVAR)_2 = \sqrt{(MVA)_2^2 - (MW)}$
Where
 $(MVAR)_2 = \sqrt{(11.4583) from equation (8)}$
 $(MW)_1 = (MW)_2 = 11$
 $(MVAR)_2 = \sqrt{(11.4583)_2^2 - (11)^2}$
 $MVAR_2 = \sqrt{131.2934028 - 121}$
 $MVAR_2 = \sqrt{10.29340278}$
 $MVAR_2 = 3.20$
 $\therefore MVAR_2 = 3.20$
Hence Reactive power (Sizing) becomes
 $MVAR = MVAR_2 - MVAR_1$
 $= 3.20 - 11.22 = -8.02$
 $= -8MVAR$

Hence, it is imperative to point out that the negative sign represent the lagging power factor Collected values from the substation Line Voltage (V_L) = 33KVCapacitor bank calculated = 8 KVAR Capacitor bank Line current (I_{LC})

$$I_{LC} = \frac{MVAR}{\sqrt{3} (V_L)} = \frac{8 \times 10^6}{\sqrt{3} \times 33 \times 10^3}$$

= 139.968A

Phase current of capacitor bank (I_{ph}) $I_{ph} = \frac{I_{LC}}{\sqrt{3}} = \frac{139.968}{\sqrt{3}} = 80.8A$ Thus the capacitive reactance is XC, $XC = \frac{V_L}{I_{ph}}$ Where XC is capacitive reactance $V_L = Line Voltage$ $I_{ph}^{L} = Phase \ current \ to \ capacitor \ bank$ Thus $XC = \frac{V_L}{I_{ph}} = \frac{33 \times 10^6}{80.8}$ $= 408.4 \Omega / ph$ v. Determination of capacitance for phase of the capacitor bank from $XC = \frac{1}{2\pi f x c}$ Where $f = frequency = 50 H_Z$ $\pi = 3.142$ constant for frequency related values Thus capacitance, $C = \frac{1}{2x \times 50 \times 408.4}$ $= 7.79407 \times 10^{-7} F$ $= 77.9407 \times 10^{-6}$ $= 78 \mu F$

IV. RESULTS AND DISCUSSION

Figure 4.1 shows the voltage magnitude and phase angle of the existing and improved study case, for bus1-10, there is slight improvement in the voltage profile.

Figure 4.2 shows voltage profile improvement in bus 5, 7 and 9 by the addition of capacitor bank placement (8KVAR) respectively at bus 4 and bus 34.

Figure 4.3 shows a graphical representation of voltage profile improvement to the study case under investigation. By the addition of capacitor bank (10KVAR) to the existing system under investigation. The voltage level improved significantly, this will enhance good power quality in the study zone Harbour Road.

Lai	JIC 2. /0	Voltage Magnitude V	LISUS DUS INUI	libei	
		% Voltage	voltage	%Voltage	voltage
	Buses	Magnitude(existing)	angle1	Magnitude(improved)	angle2
	bus-1	99.3	-0.1	100	0
	bus-2	99.3	-0.1	99.96	0
	bus-3	99.2	-0.1	99.393	-0.1
	bus-4	99.11	-0.1	99.402	-0.1
	bus-5	99.886	-0.1	100.339	-0.1
	bus-6	98.902	-0.1	99.407	-0.1
	bus-7	98.711	-0.1	99.45	-0.1
	bus-8	98.703	-0.1	97.666	0
	bus-9	99.392	-0.1	99.276	-0.1
	bus-10	95.914	0.1	99.166	-0.1

 Table 2:
 % Voltage Magnitude Versus Bus Number

Fig. 3: % Voltage Magnitude Versus Bus Number

Table: 3% Voltage magnitude versus voltage angle.

% Voltage		%Voltage Magnitude	
Magnitude(existing)	voltage angle1	(improved)	voltage angle2
99.3	-0.1	100	0
99.3	-0.1	99.96	0
99.2	-0.1	99.393	-0.1
99.11	-0.1	99.402	-0.1
99.886	-0.1	100.339	-0.1
98.902	-0.1	99.407	-0.1
98.711	-0.1	99.45	-0.1
98.703	-0.1	97.666	0
99.392	-0.1	99.276	-0.1
95.914	0.1	99.166	-0.1
	% Voltage Magnitude(existing) 99.3 99.3 99.1 99.886 98.902 98.711 98.703 99.392 99.314	% Voltage Magnitude(existing) voltage angle1 99.3 -0.1 99.3 -0.1 99.3 -0.1 99.2 -0.1 99.11 -0.1 99.886 -0.1 99.8902 -0.1 98.701 -0.1 98.711 -0.1 99.392 -0.1 99.392 -0.1 99.392 -0.1 99.392 -0.1	%Voltage %Voltage Magnitude(existing) voltage angle1 (improved) 99.3 -0.1 100 99.3 -0.1 99.96 99.3 -0.1 99.93 99.3 -0.1 99.93 99.4 -0.1 99.393 99.2 -0.1 99.393 99.11 -0.1 99.402 99.886 -0.1 100.339 98.902 -0.1 99.407 98.703 -0.1 99.45 98.703 -0.1 99.45 99.392 -0.1 99.276 99.392 -0.1 99.276 99.392 -0.1 99.276 99.392 -0.1 99.276 99.392 -0.1 99.276

Fig. 4: Voltage Magnitude (Existing) Versus Bus-Number.

	% Voltage		%Voltage	voltago
Buses	(existing)	voltage angle1	(improved)	angle2
bus-1	99.3	-0.1	100	0
bus-2	99.3	-0.1	99.96	0
bus-3	99.2	-0.1	99.393	-0.1
bus-4	99.11	-0.1	99.402	-0.1
bus-5	99.886	-0.1	100.339	-0.1
bus-6	98.902	-0.1	99.407	-0.1
bus-7	98.711	-0.1	99.45	-0.1
bus-8	98.703	-0.1	97.666	0
bus-9	99.392	-0.1	99.276	-0.1
bus-10	95.914	0.1	99.166	-0.1

Fig. 5: Existing Voltage Magnitude And Improved Voltage Magnitude Table 5: % Voltage Magnitude Versus Power (MW)

Bucoc	% Voltage			% Voltage	MW -	MVAR	
Duses	Magnitude(existing)1	MW existing	MVAR existing	Magnitude(existing)2	improved	existing2	
bus-1	99.3	0.009	0.006	99.3	0.009	0.006	
bus-2	99.3	-0.009	-0.006	99.3	-0.009	-0.006	
bus-3	99.2	0.009	0.006	99.2	0.009	0.006	
bus-4	99.11	-0.001	-0.001	99.11	-0.001	-0.006	
bus-5	99.886	0	0	99.886	0	-0.001	
bus-6	98.902	0	0	98.902	0	0	
bus-7	98.711	0	0	98.711	0	0	
bus-8	98.703	0	0	98.703	0	0	
bus-9	99.392	0	0	99.392	0	0	
bus-	95.914			95.914			
10	00.011	0	0	00.01	0	0	

To resize chart data range, drag lower right corner of range.

Fig. 6: Power, (MVAR) Versus MW

V. CONCLUSION AND RECOMMENDATION

Conclusion

After careful examination of the study case (Harbour Road 11Kv distribution network), the research work showed that the existing state of the electrical power network of Harbour Road 11Kv distribution network taking its supply of power from 33/11Kv Reclamation Injection Substation feeder has some system failures which includes: overloading of existing power distribution transformers, outages to distribution feeders, gradual system collapse and poor power quality.

Recommendation

Based on the analysis and findings, the following recommendations are pointed out to ensure optimal performance and reliability of the 11kv distribution. Replacement of undersized cables in the network.

- Fixing capacitor bank compensator where necessary in order to reduce voltage instability problems, electricity cost due to excessive losses.
- Periodic load flow analysis should be carried out by the Port Harcourt Electricity Distribution Company (PHEDC) to know the status of the network without over stressing the system (ETAP 16.00 version).

REFERENCES

Billinton A. Allan R. N. (1992). Reliability evaluation of engineering systems.

Donald Mcleod (Jan. 22, 2018). Power system reliability.

Ibeni, C. (2017). Load flow Analysis of Port Harcourt Electricity Network by Fast decoupled and Newton-Raphson Techniques.

Appendix 1

Bus Voltage

W		י ט ד							Untitle	ed Bus	[Compa	tibility Mc	ide] - Mic	rosoft Wo	rd								- [])	Х
	File	Home	Insert	Page Layout	References	Mailings	Review	View	Nitro Pro	8														۵	?
F	aste Cli	∦ Cut ≩ Copy ∛ Format Pa pboard	T inter	ímes New Rom⊹ ≠ BIZU + ab	12 - A A • x ₂ x ² A Font	▲ • • • • • • • • • • • • • • • • • • •	}	j≣ • 'ī: ≣ 🔳 🔳 Para	• ≇ ≇ ‡≣• , agraph	2↓ 3 ₩	¶ Aa	aBbCcDd I Normal	AaBbCc	Dd Aa	Bb(/	AaBbCc Heading 2 Style	S AaB Title	b(/	AaBbCcD Subtitle) AaBl Subtle	bCcDd e Emp	Change Styles *	A Find - the Replace C Select Editing	ve v	
					Filename	E GEORGE										Config.:	Normal			Т					ß
											<u>Bus In</u>	put Data													
														Lo	oad				_						=
						Bu	5		Initial V	oltage	Const	ant kVA	Cons	tant Z	Con	nstant I	Ge	neric							
						ID	kV	Sub-sys	% Mag.	Ang.	MW	Mvar	MW	Mvar	MW	Mvar	MW	Mva	r 						
					Busl Rus 2		132.000 33.000	1	100.0	0.0															
					Dusz Rus3		0.415	1	100.0	0.0															
					Bus4		0.415	1	100.0	0.0			0.000	-0.008											
					Bus5		0.415	1	100.0	0.0															
					Bus6		0.415	1	100.0	0.0															
					Bus7		0.415	1	100.0	0.0															
					Bus8		0.415	1	100.0	0.0															
					Bus9		0.415	1	100.0	0.0															
1					Bus10		0.415	1	100.0	0.0															
					Busll		0.415	1	100.0	0.0															
					Bus12		0.415	1	100.0	0.0															
					Bus13		0.415	1	100.0	0.0															
					Bus14		0.415	1	100.0	0.0															
					Bus15		0.415	1	100.0	0.0															ź
					Bus16		0.415	1	100.0	0.0															0
					Bus17		11.000	1	100.0	0.0															Ŧ
Pa	age: 1 o	of 2 Words	327																	B 🖥	⊒ ≣ 1	00% 🗩			+)
For	Help, j	oress F1															-	+					Bas	ie .	
E		<u>ا</u> کر])	e	6		x	P	w	9		W	X	⋬	Ż		P			Deskto	p ^	(r. 🗖	아) 루	5:05 PN 1/24/20	И 20

Appendix 2

₩ ₩ • 0 • 0 -		Untitled	l Bus [Com	npatibility Mo	de] - Microso	ft Word					- 0	Х
File Home Insert Page Layout References Mailings R Image: Several conduction Image: Several conduction	eview View	Nitro Pro 8	<mark>≵</mark> ↓ ¶	AaBbCcDd	AaBbCcDd	AaBb(AaBbCc	AaBb(AaBbCcD	AaBbCcDd	♣ Find ≠ ªac Replace	۵ (
Paste \downarrow \checkmark Format Painter B I \underline{U} \downarrow able \mathbf{x}_2 \mathbf{x}^2 $ _{\mathbf{A}}$ \downarrow $\underbrace{\mathbf{W}}$ \downarrow $\underline{\mathbf{A}}$ \downarrow		∎ ‡≣∗ <u>∛</u>	• • •	¶ Normal	¶ No Spacing	Heading 1	Heading 2	Title	Subtitle	Subtle Emp The Styles *	👌 Select 🔹	
Clipboard 🖬 Font 🖬	Pa	ragraph	Ę,				Styles				Editing	
Bus12	0.415 1	100.0	0.0									ß
Bus13	0.415 1	100.0	0.0									
Bus14	0.415 1	100.0	0.0									
Bus15	0.415 1	100.0	0.0									
Bus16	0.415 1	100.0	0.0									
Bus17	11.000 1	100.0	0.0									
Bus18	11.000 1	100.0	0.0									
Bus19	11.000 1	100.0	0.0									
Bus20	11.000 1	100.0	0.0									
Bus21	0.415 1	100.0	0.0 0.0	0.001								
Bus22	11.000 1	100.0	0.0									
Bus23	11.000 1	100.0	0.0									
Bus24	11.000 1	100.0	0.0									
Bus25	11.000 1	100.0	0.0									
Bus26	11.000 1	100.0	0.0									
Bus27	11.000 1	100.0	0.0									
Bus28	11.000 1	100.0	0.0									
Bus19	11.000 1	100.0	0.0									
Dus30	11.000 1	100.0	0.0									
Bus1	0.415 1	100.0	0.0 0/	0.001								
Busta	0.415 1	100.0	0.0 0.	01 0.001								
10000	0.415 1	100.0	0.0 0.1									
												v
												ź
												C
												*
Page: 1 of 2 Words: 327						_		+		即日日日 100% (-)-	Kase	-(†) ,
										»	Uase S	:05 PM
	X	W	9	a 🗏		Σ	Z	P		Desktop \land 🌈 🗖	(小) 単 1/2	24/2020