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ABSTRACT: 

The study considered GDP as dependent variable, agriculture, industry and trade as 
independent variables respectively. The data was gotten from the central bank of Nigeria 
from 1983 to 2019. The aim of the study was to apply residual analysis approach to improve 
the performance of linear regression. The relationship between the dependent variable, GDP, 
and the independent variables, Agriculture, industry and trade was determined using the 
ordinary least squares estimation method. The results of the ordinary least squares estimated 
regression showed that Agriculture, industry and trade contributed significantly to GDP and 
were able to explain about 89% of the variance in GDP. Furthermore, evidence from Breusch-
pagan test confirmed that heteroscedasticity exist in the residuals of the linear regression 
model while ACF and PACF revealed that the error terms were autocorrelated. The Jarque-
Bera normality test revealed that the errors were normally distributed.  To account for the 
autocorrelation in the error terms, we applied two different generalized least squares models, 
that is  regression ARMA model (RAM) and overfitted regression ARMA model (ORAM) 
with different ARMA components, that is, ARMA (1, 2) and ARMA (1, 3) respectively. 
Results of our analysis revealed that the estimates of the RAM model were better than those 
of ORAM. Also based on minimum information selection criteria (AIC, BIC, LOGLIK) 
RAM was selected as the suitable model. The autocorrelation in the error terms was found to 
be completely modelled by ARMA (1, 2) process. An ARMA (1,3) model (specification) 
would be unusually complicated, but in any event the tests support the ARIMA(1,2) 
specification. 
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1 Introduction 

In developing predictive regression models, a number of concerns need to be addressed. The 
first is model adequacy, or explanatory power of the independent variable in accounting for 
the variability of the dependent variable. This is typically measured by the coefficient of 
determination 𝑅𝑅2, which is the percentage of variance in the dependent variable explained by 
the independent variable(s). A large value of 𝑅𝑅2 is always seen as a good suggestion of how 
well the model fits the data but the unexplained variation which largely make up the residuals 
and tend to be embedded with useful information is often overlooked [1].Linear regression 
models are tied to certain assumptions about the distribution of the error terms [2, 3]. The 
violation of assumptions surrounding linear regression models is reflected in the residuals. 
The possible model adequacies could be identified through residual analysis.  

Several diagnostic methods to check the violation of regression assumption are based on the 
study of model residuals. [3]. According to [1, 4] model adequacy or diagnostic checking 
incorporates all relevant information and when calibrated to the data no important significant 
departures from statistical assumptions made can be found. Actually, model adequacy 
involves residual analysis and over fitting.  

These residuals are obtained by taking the difference between an observed value of a time 
series and a predicted value from fitting a candidate model to the data. They are useful in 
checking whether a model has adequately captured the information in the data. Model 
adequacy is related mainly to the assumption that residuals are independent. Moreover, if the 
residuals of a given model are correlated, the model must be refined because it does not 
completely capture the statistical relationship amongst the variables [5]. Furthermore, a 
model is said to be adequate if the residuals are statistically independent implying that the 
residual series is uncorrelated. Therefore, in testing for model adequacy, which is mainly to 
check for independence of the residual series, an autocorrelation function (ACF), Partial 
autocorrelation function (ACF), Jarque-Bera normality test and Breusch-Pagan 
heteroscedasticity test are often considered. 

Another tool for checking adequacy regression model is over fitting, which has to do with 
adding another coefficient to a fitted model so as to see if the resulting model is better. If a 
simple model seems promising, check it out before trying a more complicated model [6].In 
this study, our aim is to apply the residual analysis approach targeted at improving the 
performance of linear regression model. 

The rest of the paper is organised follows, section two presents the materials and methods 
adopted in the study, section three takes care of results discussion while conclusion is 
handled by section four 

2 Materials and methods 

In this section, we shall discuss the methods and procedures adopted in achieving the aim of 
the study. 

 

2.1 Method of Ordinary Least Squares Linear Regression 

The least squares estimation procedure uses the criterion that the solution must give the 
smallest possible sum of squared deviations of the observed 𝑌𝑌𝑡𝑡from the estimates of their true 
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means provided by the solution. Let �̂�𝛽0and �̂�𝛽1be numerical estimates of the parameters 𝛽𝛽𝑜𝑜and 
𝛽𝛽1 respectively, and  

𝑌𝑌�𝑡𝑡 =  �̂�𝛽0 +  �̂�𝛽𝑡𝑡𝑋𝑋�𝑡𝑡 .                      (1) 

Be the estimated mean of  𝑌𝑌𝑡𝑡  for each 𝑋𝑋𝑡𝑡   t = 1, …, n. 

The least squares principle chooses �̂�𝛽0 and �̂�𝛽𝑡𝑡  that minimize the sum of squares of residuals 
(SSE), 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ (𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1 =  ∑ 𝜀𝜀𝑡𝑡2𝑛𝑛

𝑡𝑡=1 ,                    (2) 

where,𝜀𝜀𝑡𝑡 = (𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡) is the observe residuals for the ith observation 

Also we can express 𝜀𝜀𝑖𝑖  in terms of 𝑌𝑌𝑡𝑡 , 𝑋𝑋𝑡𝑡 , 𝛽𝛽𝑜𝑜and 𝛽𝛽1. Hence, we have 

𝜀𝜀𝑡𝑡  = 𝑌𝑌𝑡𝑡 −  𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑡𝑡  .                                (3) 

Equation (3) becomes 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ (𝑌𝑌𝑡𝑡 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑡𝑡)2𝑛𝑛
𝑡𝑡=1 .                               (4) 

The partial derivative of SSE with respect to the regression constant  �̂�𝛽0,th 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆
𝛿𝛿𝛽𝛽0

= 𝛿𝛿
𝛿𝛿𝛽𝛽0

 [∑ (𝑌𝑌𝑡𝑡 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑡𝑡)2𝑛𝑛  
𝑡𝑡=1 ] .                              (5) 

With some subsequent rearrangement, the estimate of �̂�𝛽0 is obtained as 

�̂�𝛽0 = �∑ 𝑌𝑌𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

� − 𝛽𝛽1[∑ 𝑋𝑋𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

].                                (6) 

The partial derivative of SSE with respect to the regression coefficient 𝛽𝛽1.   That is 

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆
𝛿𝛿𝛽𝛽1

= 𝛿𝛿
𝛿𝛿𝛽𝛽1

 [∑ (𝑌𝑌𝑡𝑡 − 𝛽𝛽0 − 𝛽𝛽1𝑋𝑋𝑡𝑡)2𝑛𝑛  
𝑡𝑡=1 ] .                              (7) 

Rearranging equation (8), we obtained the estimate of  𝛽𝛽1. 

 �̂�𝛽1 =
∑ 𝑌𝑌𝑡𝑡𝑋𝑋𝑡𝑡−

∑ 𝑌𝑌𝑡𝑡 ∑ 𝑋𝑋𝑡𝑡
𝑛𝑛
𝑡𝑡=1

𝑛𝑛
𝑡𝑡=1

𝑛𝑛
𝑛𝑛
𝑡𝑡=1

∑ 𝑋𝑋𝑡𝑡2
𝑛𝑛
𝑡𝑡=1 −

(∑ 𝑋𝑋𝑡𝑡
𝑛𝑛
𝑡𝑡=1 )2

𝑛𝑛

.                    (8) 

2.2 Method of Generalized Least Square (GLS) 

For a standard linear model 

𝑦𝑦 = 𝑋𝑋𝛽𝛽 + 𝜀𝜀,                       (9) 

where, y is the 𝑛𝑛 × 1 response vector; X is 𝑛𝑛 × 𝐾𝐾 + 1 model matrix model matrix, typically 
with an initial column of 1s for the regression constant; 𝛽𝛽 is a 𝐾𝐾 + 1 × 1 vector of regression 
coeficients to estimate; and 𝜀𝜀 is an 𝑛𝑛 × 1 vector of errors. Assuming that 𝜀𝜀 ~ 𝑁𝑁𝑛𝑛(0,𝜎𝜎2𝐼𝐼𝑛𝑛), or 
at least that the errors are uncorrelated and equally variable, leads to the familiar ordinary-
least-squares (OLS) estimator of 𝛽𝛽, 

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦.                               (10) 
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With covariance matrix 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 ) = 𝜎𝜎2(𝑋𝑋′𝑋𝑋)−1.                                         (11)
    

More generally, we can assume that 𝜀𝜀 ~ 𝑁𝑁𝑛𝑛(0,∑), where the error covariance matrix ∑ is 
symmetric and positive-definite. Different diagonal entries in ∑error variances that are not 
necessarily all equal, while nonzero off-diagonal entries correspond to correlated errors. 
Suppose, for the time-being, that ∑ is known. Then, the log-likelihood for the model is 

log 𝐿𝐿(𝛽𝛽) = −𝑛𝑛
2
𝑜𝑜𝑜𝑜𝑙𝑙2𝜋𝜋 − 1

2
log(𝑑𝑑𝑑𝑑𝑡𝑡∑) − 1

2
(𝑦𝑦 − 𝑋𝑋𝛽𝛽)′∑−1(𝑦𝑦 − 𝑋𝑋𝛽𝛽),              (12) 

which is maximised by the generalised least square (GLS) estimate of 𝛽𝛽, 

𝑏𝑏𝐺𝐺𝐿𝐿𝑆𝑆 = (𝑋𝑋′∑−1𝑋𝑋)−1𝑋𝑋′∑−1𝑦𝑦                   (13) 

With covariance matrix 

𝑉𝑉𝑣𝑣𝑣𝑣(𝑏𝑏𝐺𝐺𝐿𝐿𝑆𝑆) = (𝑋𝑋′∑−1𝑋𝑋)−1                   (14) 

If we assume that the process generating the regression errors is stationary: That is, all of the 
errors have the same expectation (already assumed to be 0) and the same variance (𝜎𝜎2), and 
the covariance of two errors depends only upon their separation s in time: 

𝐶𝐶(𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑡𝑡−𝑜𝑜) = 𝐶𝐶(𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑡𝑡−𝑜𝑜)𝜎𝜎2𝜌𝜌𝑜𝑜 .                  (15) 

where 𝜌𝜌𝑜𝑜 is the error autocorrelation at lag s. 

In this situation, the error covariance matrix has the following structure: 

Ʃ=

⎝

⎜
⎛

1 𝜌𝜌1 𝜌𝜌2 … 𝜌𝜌𝑛𝑛−1
𝜌𝜌1 1 𝜌𝜌1 … 𝜌𝜌𝑛𝑛−2
𝜌𝜌2 𝜌𝜌1 1 … 𝜌𝜌𝑛𝑛−3
⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝜌𝑛𝑛−1 𝜌𝜌𝑛𝑛−2 𝜌𝜌𝑛𝑛−3 … 1 ⎠

⎟
⎞

=𝜎𝜎2𝜌𝜌                                                                         (16) 

Hence, for known values of 𝜎𝜎2and 𝜌𝜌𝑜𝑜 , then GLS estimator of 𝛽𝛽 can be computed in a time 
series regression. In addition, in the error covariance matrix Ʃ, the large number (n-1) of 
different 𝜌𝜌𝑜𝑜 makes their estimation impossible without specifying additional structure for the 
autocorrelated errors [7]. Moreover, this additional could be specified to follow stationary 
time series models such as Autoregressive (AR), Moving Average (MA) and Autoregressive 
Moving Average (ARMA). 

2.3 Autoregressive (AR) Model 

Autoregressive models are based on the idea that current values of the series 𝑋𝑋𝑡𝑡  can be 
explained as a function of past values, 𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡−2, … ,𝑋𝑋𝑡𝑡−𝑝𝑝 , where 𝑝𝑝 determines the number of 
steps into the past needed to forecast the current values. An autoregressive model of order p 
abbreviated as 𝐴𝐴𝑅𝑅(𝑝𝑝) can be written as: 

𝑋𝑋𝑡𝑡 = 𝜑𝜑1𝑋𝑋𝑡𝑡−1 + 𝜑𝜑2𝑋𝑋𝑡𝑡−2 + ⋯+ 𝜑𝜑𝑝𝑝𝑋𝑋𝑡𝑡−𝑝𝑝 + 𝑑𝑑𝑡𝑡 ,                (17) 
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where, 𝑋𝑋𝑡𝑡  is the stationary series, 𝜑𝜑1,𝜑𝜑2, …𝜑𝜑𝑝𝑝  are parameters of AR (𝜑𝜑𝑝𝑝 = 0) unless if 
otherwise stated, we assumed that 𝑑𝑑𝑡𝑡  is Gaussian white noise with mean zero and variance 𝛿𝛿2. 
The highest order of 𝑝𝑝 is referred to as the order of the model. 

The model in lag operator takes the following form. 

�1 −𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 −⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝�𝑋𝑋𝑡𝑡 = 𝑑𝑑𝑡𝑡 ,                 (18) 

where the lag (backshift) operator is defined as 𝛽𝛽𝑝𝑝𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−𝑝𝑝 , 𝑝𝑝 = 0, 1, 2. 

More concisely we can express the equation (18 ) as 𝜑𝜑(𝛽𝛽)𝑋𝑋𝑡𝑡 = 𝑑𝑑𝑡𝑡 .  

The autoregressive operator 𝜑𝜑(𝐵𝐵) is defined to be �1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 −⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝� 

The values of 𝜑𝜑 which make the process stationary are such that the roots of 𝜑𝜑(𝐵𝐵) = 0 lie 
outside the unit circle in the complex plane [8]. If the roots of 𝜑𝜑(𝐵𝐵)are larger than one in 
absolute values, then the process satisfying the autoregressive equation which can be 
represented as: 

𝑥𝑥𝑡𝑡 = ∑ 𝜑𝜑𝑗𝑗𝑋𝑋𝑡𝑡−1
∞
𝑗𝑗=1                     (19) 

The coefficient of 𝜑𝜑𝑗𝑗 converges to zero such that  

∑ �𝜑𝜑𝑗𝑗 � < ∞∞
𝑗𝑗=1      

If some roots are “exactly” one in modulus, no stationary solution exists. The plot of the ACF 
of a stationary 𝐴𝐴𝑅𝑅(𝑝𝑝) model shows a mixture of damping sine and cosine pattern  and 
exponential decay depending on the nature of its characteristic roots. 

Another characteristic feature of 𝐴𝐴𝑅𝑅(𝑝𝑝) model is the partial autocorrelation function defined 
as  

𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃(𝑗𝑗)  =  𝐶𝐶𝑜𝑜𝑣𝑣𝑣𝑣(𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡−𝑗𝑗 |𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡−2, … , 𝑥𝑥𝑡𝑡−𝑗𝑗+1), becomes exactly zero for values larger 
than 𝑝𝑝[9]. 

 

2.4 Moving Average (MA) Models  

An alternative to autoregressive representation in which the 𝑋𝑋𝑡𝑡−1 on the left-hand side of  the 
equation are assumed to be combined linearly to form the observed data. A series 𝑋𝑋𝑡𝑡is said to 
follow a moving average process of order q or simply 𝑀𝑀𝐴𝐴(𝑞𝑞) process if 

 𝑋𝑋𝑡𝑡 = 𝑑𝑑𝑡𝑡  + 𝜃𝜃1𝑑𝑑𝑡𝑡−1 + 𝜃𝜃2𝑑𝑑𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑝𝑝𝑑𝑑𝑡𝑡−𝑞𝑞 ,             (20) 

where 𝜃𝜃1,𝜃𝜃2, …,𝜃𝜃𝑞𝑞  are the MA parameters to be estimated𝑑𝑑𝑡𝑡 , 𝑑𝑑𝑡𝑡−1, …, 𝑑𝑑𝑡𝑡−𝑞𝑞  are error terms. 
The value of 𝑞𝑞 is called the order of MA model [9]. In order to preserve a unique 
representation, usually the requirement is imposed that all  roots of  

𝜃𝜃(𝐵𝐵) = 1 + 𝜃𝜃1𝐵𝐵 + 𝜃𝜃2𝐵𝐵2 + ⋯+ 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞 = 0                 (21) 

are greater than one in absolute value. If all the roots of 𝜃𝜃(𝐵𝐵) = 0 lie outside the unit circle, 
the 𝑀𝑀𝐴𝐴 process has an autoregressive representation of generally infinite order.  
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2.5 Autoregressive Moving Average (ARMA)  

We now proceed with the general development of autoregressive moving average (ARMA) 
models for stationary time series. In most cases, it is best to develop a mixed autoregressive 
moving average model when building a stochastic time series. The order of an ARMA model 
is expressed in terms of both p and q. the model parameters relate to what happen in period t 
to both the past random errors that occur in the past periods. The ARMA model is defined as 
follows: 

𝑋𝑋𝑡𝑡 = 𝜑𝜑1𝑋𝑋𝑡𝑡−1 + ⋯+ 𝜑𝜑𝑝𝑝𝑋𝑋𝑡𝑡−𝑝𝑝 + 𝑑𝑑𝑡𝑡 − 𝜃𝜃1𝑑𝑑𝑡𝑡−1 −⋯− 𝜃𝜃𝑝𝑝𝑑𝑑𝑡𝑡−𝑝𝑝             (22) 

Where the 𝜑𝜑’s are autoregressive parameters to be estimated and 𝜃𝜃’s the moving  average 
parameters to be estimated. The 𝑑𝑑’s are series of unknown errors (or residuals)  which are 
assumed to follow the normal probability distribution. [10] used a  backshift operator to 
make the model easier. The backshift operator 𝐵𝐵 has the effect of  changing time period 𝑡𝑡 to 
time period 𝑡𝑡 − 1.  

𝐵𝐵𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−1,𝐵𝐵2𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−2And so on. Using the backshift notation, the above model may  be 
rewritten as: 

�1 −𝜑𝜑1𝐵𝐵 −⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝�𝑋𝑋𝑡𝑡 = �1 − 𝜃𝜃1𝐵𝐵 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞�𝑑𝑑𝑡𝑡                (23) 

Equation (23) may be abbreviated further by writing: 

𝜑𝜑𝑝𝑝(𝐵𝐵)𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝑑𝑑𝑡𝑡                    (24) 

These formulas show that the operators 𝜑𝜑𝑝𝑝(𝐵𝐵) and 𝜃𝜃𝑞𝑞(𝐵𝐵) are polynomials in 𝐵𝐵 of orders  𝑝𝑝 
and 𝑞𝑞 respectively. The ARMA model is stable, i.e. it has a stationary solution if all roots of 
𝜑𝜑(𝐵𝐵) = 0 are larger than one in absolute value. 

2.6 Detecting Autocorrelation in the Error Terms 

Consider the following two variable regression model 

𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝑢𝑢𝑡𝑡 .                    (25) 

Assume the error term 𝑢𝑢𝑡𝑡follows the 𝑝𝑝𝑡𝑡ℎ  order autoregressive, AR(p), structure as follows 

𝑢𝑢𝑡𝑡 = 𝜌𝜌1𝑢𝑢𝑡𝑡−1 + 𝜌𝜌2𝑢𝑢𝑡𝑡−2 + ⋯+ 𝜌𝜌𝑝𝑝𝑢𝑢𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 .                 (26) 

Where, 𝜀𝜀𝑡𝑡  is a white noise term. 

The null hypothesis 𝐻𝐻0 to be tested is that; 

𝐻𝐻0:𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌𝑝𝑝 = 0 

Thus to obtain the residual 𝑢𝑢�𝑡𝑡  from equation (26) and regress 𝑢𝑢�𝑡𝑡  on the original  

𝑌𝑌𝑡𝑡and𝑢𝑢�𝑡𝑡−1,𝑢𝑢�𝑡𝑡−2, … ,𝑢𝑢�𝑡𝑡−𝑝𝑝  that is  

𝑢𝑢�𝑡𝑡 =∝1+∝2 𝑋𝑋𝑡𝑡 + 𝜌𝜌�1𝑢𝑢�𝑡𝑡−1 + 𝜌𝜌�2𝑢𝑢�𝑡𝑡−2 + ⋯+ 𝜌𝜌�𝑝𝑝𝑢𝑢�𝑡𝑡−𝑝𝑝+𝜀𝜀𝑡𝑡                (27) 

Then, the 𝑅𝑅2 obtained from the above auxiliary regression is used to compute BG test 
statistic given as 
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(𝑛𝑛 − 𝑝𝑝)𝑅𝑅2~𝑋𝑋𝑃𝑃𝑝𝑝 ,                    (28) 

where, n is the sample size, p is the number of lags of the residual 𝑢𝑢�𝑡𝑡  included in the auxiliary 
regression. If (𝑛𝑛 − 𝑝𝑝)𝑅𝑅2 exceed the critical chi-square value of the chosen level of 
significance, we reject the null hypothesis, in which case at least one rho is equation (28) is  
statistically significantly different from zero, hence we conclude that there is autocorrelation 
in the error term 𝑢𝑢𝑡𝑡  

3  Results and Discussion 

In this study, we consider Gross Domestic Product as the dependent variable (denoted by 
(GDP), Agriculture (denoted by Agric), industry and trade as independent variables. The data 
were obtained as available from the Central Bank of Nigeria Statistical Bulletin for a period 
ranging from 1983 to 2019. Each series consists of 37 observations. R package and E-views 
were the statistical software used for analysis.   

Since our aim is to use residual analysis approach to improve the performance of linear 
regression analysis, we begin by ascertaining the relationship between the dependent and the 
independent variables via a linear regression. The estimated linear regression model is 
presented in Table 1 

Table 1: Estimates of Linear Regression Model 

 Estimates Std. error T-value P-value 

Intercept 0.03416    0.03416     3.019 0.004951 ** 

Agric 0.27966 0.04734 5.907 1.42e-06 *** 

Industry 0.27266 0.03757    7.258 3.02e-08 *** 

Trade 0.22908 0.05573    4.111 0.000256 *** 

𝑅𝑅2 0.8932    

F-statistics 89.22 p.value=1.2e-15   

From Table 1, it is observed that all the independent variables are significant since the p-
values corresponding to Agric (1.42e-06), industry (3.02e-08) and trade (0.000256) are less 
than 5% significance level and were able to explain about 89% (𝑅𝑅2 = 0.8932) of the 
variation in GDP. Also from Table 1, the p-value (1.2𝑑𝑑−15) corresponding to the F-statistics 
(89.22) is less than 5% level of significance level which also give credence to the fact that the 
independent variables jointly influence the variation in the dependent variable. On the other 
hand, about 10.68% of unexplained variation is embedded in the residuals. This implies that 
useful information can further be modelled from the residual term, hence, the need for 
residual analysis.  

3.1 Model Diagnosis 

Regression model diagnosis is used to evaluate the model assumptions and investigate 
whether or not there are observations with large, undue influence on the model. Since our 
interest is geared towards increasing the performance of linear regression model using the 
residual analysis approach, we shall evaluate the residuals under the three main assumptions 
(1) No serial correlation (2) homoscedasticity (3) Residuals are normally distributed. 
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3.1.1  Diagnostic checking for serial correlation.  

To diagnose the model for serial correlation we plot the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) of the residual. If the lags of the ACF and PACF of 
the residuals of the fitted model are zero, there is no serial correlation. Conversely, if the 
coefficient of the terms of both ACF and PACF are significant, then there is serial correlation 
in the residuals of the model. Assessing Figures 1 and 2, we observed that lags 1, lag 2 and 
lag 3 of the ACF, and lags 1 of the PACF are significant. This indicates that the residuals 
serially correlated thereby violating the assumption of no serial correlation.  

Figure 1: ACF of Linear Regression Model  

Figure 2: PACF of Linear regression model 

3.1.2 Diagnostic Checking for Heteroscedasticity. 

In testing for heteroscadaticity in the residuals of the model, we applied Breusch pagan test. 
Observing Table 2, we notice that the p- value (0.0001) corresponding to the test statisctic 
(18.09862) is less than 5% level of significance which confirms the presence of 
heteroscadaticity in the model. Therefore, the assumption of homoscedasticity is violated 

Table 2: Breusch-pagan Heteroscedasticity Test 

     
     F-statistic 14.84171     Prob. F(2,31) 0.0000 

Obs*R-squared 18.09862     Prob. Chi-Square(2) 0.0001 

     
     3.1.3 Diagnostic checking for normality of the residual   
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Figure 3: Jarque – Bera Histogram Normality Test 

Considering Jarque – Bera normality test in Figure 3, the p- value (0.1543) corresponding to 
Jarque-Bera test (3.7383) is more than 5% level of significance which is desirable because 
the errors are normally distributed and the assumption of normality of the error is not 
violated.  

Having identified and established the presence of autocorrelation and heteroscadaticity in the 
residual series, we moved to ascertain the order of Autoregressive Moving Average (ARMA) 
model that could capture the information in the autocorrelated errors. Observing the ACF and 
PACF in Figures 1 and 2, respectively, there is a cut off at lag 2 in ACF  while there is a cut-
off at lag 1 in PACF. This implies that a mixed model can entertained. Hence, ARMA (1,2) 
model could be identified. Also, overfitting approach is employed by adding one parameter to 
the fitted model to see if the model is adequate. 

To entertain an improved model that could account for both explained and unexplained 
variations in the dependent variable, the regression and ARMA models are combined to 
achieve a single model that best describes the variation in the dependent variable and is  
presented in Table 3. 
Table 3: Regression-ARMA Model versus Overfitted Regression-ARMA Model   
Regression            Regression-ARMA Model      
Model                                  (RAM) 
Components 
 

Overfitted Regression-ARMA Model   
                         (ORAM) 
 

 𝛽𝛽0𝑅𝑅𝐴𝐴𝑀𝑀  𝛽𝛽1𝑅𝑅𝐴𝐴𝑀𝑀  𝛽𝛽2𝑅𝑅𝐴𝐴𝑀𝑀  𝛽𝛽3𝑅𝑅𝐴𝐴𝑀𝑀  𝛽𝛽0𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  𝛽𝛽1𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  𝛽𝛽1𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  𝛽𝛽3𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  
         
Parameter 0.0362 0.2693 0.2550 0.0300 0.0367 0.2738 0.2251 0.1924 
Std error 0.0185 0.0368 0.0283 0.0441 0.0212 0.0660 0.0285 0.0431 
t-value 1.9557 7.3280 9.0037 4.6044 1.7272 7.4813 8.8221 4.4615 
p-value 0.0593 0.0000 0.0000 0.0001 0.0938 0.0000 0.0000 0.0001 

 
ARMA 
Model 
Components 

 

ARMA (1,2) 
 
 
 

ARMA(1,3) 
 
 
 

Parameter 

𝜑𝜑1𝑅𝑅𝐴𝐴𝑀𝑀   𝜑𝜑2𝑅𝑅𝐴𝐴𝑀𝑀  𝜃𝜃1𝑅𝑅𝐴𝐴𝑀𝑀   𝜑𝜑1𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  𝜑𝜑2𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  𝜑𝜑3𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  𝜃𝜃1𝑂𝑂𝑅𝑅𝐴𝐴𝑀𝑀  
       

0.8487 
                 

-0.8549 
    

0.1451    0.8573 0.1219 -0.9359 
 

0.0024 
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AIC  -134.3614 -132.2299 
BIC -121.6932 -117.9782 

LOGLIK 75.18067 75.1149 
 

From the regression model component, it is observed that all the independent variables for 
both models are significant with their corresponding p- values less than 5% significance 
level. Since the overfitting is not directly affecting the regression component of the joint 
model, there are significant changes observed in the parameters. For the ARMA component, 
the ARMA(1,2) model appeared to be adequate given that the corresponding information 
criteria are smaller than those of ARMA(1,3) model. Thus, by overfitting approach, it is 
indicative that ARMA (1,2) model is enough to improve the regression model fitted earlier 
on.  

4 Conclusion  

This study applied residual analysis approach to improve the performance of linear 
regression. The relationship between the dependent variable, GDP, and the independent 
variables, Agriculture, industry and trade was determined using the ordinary least squares 
estimation method. 

The results of the ordinary least squares estimated regression showed that Agriculture, 
industry and trade contributed significantly to GDP and were able to explain about 89% of 
the variance in GDP. Furthermore, evidence from Breusch-pagan test revealed that 
heteroscedasticity exist in the residuals of the linear regression model while ACF and PACF 
revealed that the error terms were autocorrelated. The JarqueBera normality test revealed that 
the errors were normally distributed.  To account for the autocorrelation in the error terms, 
we applied two different generalized least squares model, that is RAM and ORAM with 
different ARMA components, that is, ARMA (1, 2) and ARMA (1, 3) respectively. Results of 
our analysis revealed that the estimates of the RAM model were better. Also based on 
minimum information selection criteria (AIC, BIC, LOGLIK) RAM was selected as the 
suitable model. The autocorrelation in the error terms was found to be completely modelled 
by ARMA (1, 2) process. An ARMA (1,3) model (specification) would be unusually 
complicated, but in any event the tests support the ARIMA(1,2) specification. 

 Therefore, our study showed that where the error terms of ordinary least squares estimated 
regression model are correlated, the model parameters become ineffective, the standard errors 
biased; and the t-statistics and the p-values no more valid. On the other hand, this study 
evidently proved that residual analysis can be applied to improve the performance of a 
regression model and that generalized least squares is a solution for the violation of 
assumption serial correlation of the linear regression model. 

Moreover, the findings of this study are in agreement with the study of [13] that agriculture a 
has a significant impact on GDP but differs in terms of approach adopted in this study. 
Furthermore, it is suggested that this study be extended to cover the possible violation of 
assumption of the homoscedasticity. 
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