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Abstract 
In this research, we considered two immiscible superposed fluids of variable densities.  The upper 
fluid was set in motion with uniform velocity and slide pass the lower stationary fluid.  The equations 
describing the above scenario are mathematically represented and linearized.   Thereafter, a normal 
mode solution was sought and the results obtained were discussed in line with onset of instability. We 
analysed the case of equal densities and as well equal velocities.  The case of variable densities was 
not discussed in this research due to the fact that the effects of gravity and surface tension were not 
considered in our model equations, however, readers may consult [12] for details 
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1. Introduction 

Superposed immiscible fluids are subject to destabilizing effect of velocity shear and the 

stabilizing effect caused by density variation.  This scenario is often called Kelvin–Helmholtz 

(KH) instability [1] which was originated and developed by von Helmholtz [2] and Kelvin [3] 

and had long been considered a standard for fluid mechanics.  Also, the basic theory of (KH) 

can be found in the following text books, such as Lamb [4],  Turner [5], Kundu [6] and 

Scorer [7] to mention a few. [8] observed in their study of Kelvin Helmholtz instability in 

fan-spine topology that the amplitude and characteristic wavelength of the K–H unstable 

vortices increased progressively. Critical study of the phenomena of instability, in addition to 

secondary instabilities had been considered by [9] , while the condition of the fastest-growing 

K–H mode is given by Miura & Pritchett [10] and Li et al. [11].  In this research, we 

considered two immiscible superpose fluids and study the dynamics of perturbing one of the 

fluids as detailed in section two.  
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2.  Problem Formulation 

Consider two immiscible fluids of variable densities 𝜌𝜌1 and 𝜌𝜌2.  The upper fluid with 𝜌𝜌2 is 

placed at (𝑧𝑧 > 0) while the lower fluid with density 𝜌𝜌1 is located at (z< 0) with (𝑧𝑧 = 0) 

signifying the interface.  The lower fluid is assume stationary while the upper fluid slide past 

the lower fluid with uniform velocity and steady velocity 𝑞𝑞 = 𝑈𝑈𝑈𝑈.  With introduction of 

gravity, the above formulation is known as Kelvin Helmholtz instability problem.  In the 

present study, gravity is not considered.  The above formulation is as shown in the diagram 

below. 

𝜌𝜌 = 𝜌𝜌2 and 𝑈𝑈 = 𝑈𝑈2𝑈𝑈,      𝑧𝑧 > 0 

 

 

 

𝜌𝜌 = 𝜌𝜌1 and 𝑈𝑈 = 𝑈𝑈1𝑈𝑈,      𝑧𝑧 < 0 

Figure 1: Schematic of the Problem Formulation 

 

Now, by perturbation the interface whose vertical displacement 𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡), and 

correspondingly we assume the velocity and pressure to be  𝑞𝑞1 , 𝑝𝑝1 and  𝑞𝑞2 , 𝑝𝑝2 in the regions 

𝑧𝑧 < 0 and 𝑧𝑧 > 0 respectively.  Introducing the velocity potential  𝜙𝜙 = 𝜙𝜙(𝑥𝑥, 𝑡𝑡)  for non-steady 

state and 𝜙𝜙 = 𝜙𝜙(𝑥𝑥) for steady state, the equations describing the flow scenario are as 

follows: 

Continuity equation 

∇ ∙ 𝑞𝑞 = 0 = ∇ ∙ ∇𝜙𝜙 = 0 = ∇2𝜙𝜙 = 0                (2.1) 

𝑞𝑞1 = ∇𝜙𝜙1     and     ∇2𝜙𝜙1 = 0 ,   𝑧𝑧 < 0                (2.2) 

with the Bernoulli’s equation given as 

𝜕𝜕𝜙𝜙1
𝜕𝜕𝑡𝑡

+ (∇2𝜙𝜙1)2

2
= −𝑝𝑝1

𝜌𝜌1
+ 𝐶𝐶1                (2.3) 

Similarly, in the upper fluid, we have 

𝑧𝑧 = 0
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𝑞𝑞2 = ∇𝜙𝜙2     and     ∇2𝜙𝜙2 = 0 ,   𝑧𝑧 > 0                (2.4) 

and the corresponding Bernoulli’s equation is given as 

𝜕𝜕𝜙𝜙2
𝜕𝜕𝑡𝑡

+ (∇2𝜙𝜙2)2

2
= −𝑝𝑝2

𝜌𝜌2
+ 𝐶𝐶1                (2.5) 

The kinematic condition at the interface 𝐺𝐺 = 𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡) is given as 

𝜕𝜕𝐺𝐺
𝜕𝜕𝑡𝑡

+ ∇q1 ∙ ∇𝐺𝐺 = 0          (2.6) 

and 

𝜕𝜕𝐺𝐺
𝜕𝜕𝑡𝑡

+ ∇q2 ∙ ∇𝐺𝐺 = 0          (2.7) 

Or 

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

+ 𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜙𝜙1
𝜕𝜕𝑧𝑧

,      𝑧𝑧 = 𝜂𝜂                                                                   (2.8) 

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

+ 𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜙𝜙2
𝜕𝜕𝑧𝑧

,      𝑧𝑧 = 𝜂𝜂                                                                         (2.9) 

The dynamic condition at the interface 𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡) is given as 𝑝𝑝1 = 𝑝𝑝2.  This therefore 

implies that the Bernoulli equation becomes 

𝜌𝜌1 �𝐶𝐶1 �
𝜕𝜕𝜙𝜙1
𝜕𝜕𝑡𝑡

+ (∇𝜙𝜙1)
2

2
�� = 𝜌𝜌1 �𝐶𝐶2 �

𝜕𝜕𝜙𝜙2
𝜕𝜕𝑡𝑡

+ (∇𝜙𝜙2)
2

2
��    (2.10) 

Note that the distortion at the perturbed interface decreases proportionally away from the 

interface.  Eventually at 𝑧𝑧 → ∞ and 𝑧𝑧 → −∞, there exists no transient disturbances and thus 

∇𝜙𝜙1 = 𝑈𝑈1𝑈𝑈 and  ∇𝜙𝜙2 = 𝑈𝑈2𝑈𝑈   thus               (2.10) 

𝜌𝜌1 �𝐶𝐶1 −
𝑈𝑈1
2

2
� = 𝜌𝜌2 �𝐶𝐶1 −

𝑈𝑈2
2

2
�                                                            (2.11) 
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3. Linearization Process 

Since the displacement of the interface is very minimal in relation to other scales, the velocity 

potential is therefore presented as: 

𝜙𝜙1 = 𝑈𝑈1𝑥𝑥 + 𝜖𝜖𝜙𝜙1
′              𝑧𝑧 < 𝜖𝜖𝑧𝑧                                                             (3.1) 

𝜙𝜙2 = 𝑈𝑈2𝑥𝑥 + 𝜖𝜖𝜙𝜙2
′              𝑧𝑧 > 𝜖𝜖𝑧𝑧                                                             (3.2) 

with  𝜖𝜖 ≪ 1.  The interface position of the fluids is therefore represented by 

𝑧𝑧 = 𝜖𝜖𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑡𝑡) as shown in figure 2 

𝜙𝜙 = 𝜙𝜙2 

 

                                                                                                         𝑧𝑧 = 0 

𝜙𝜙 = 𝜙𝜙1                                      𝑧𝑧 = 𝜖𝜖𝑧𝑧 

Figure 2: Perturbed interface 

Now substituting equations (3.1) and (3.2) into equations (1.1) and (1.3) and neglecting terms 

Ο(𝜖𝜖2) and higher, it results to a linearised set of equations given by  

∇2𝜙𝜙1
′ = 0,     𝜖𝜖𝑧𝑧 < 0                                                                                                    (3.3) 

∇2𝜙𝜙2
′ = 0,     𝜖𝜖𝑧𝑧 > 0                                                                                                    (3.4) 

Similarly, using equations (3.1) and (3.2) in the kinematic boundary conditions (1.5) and 

(1.6), we have the following set of equations 

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

+ 𝑈𝑈1
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜙𝜙1
′

𝜕𝜕𝑧𝑧
,      𝜖𝜖𝑧𝑧 = 0                                                                              (3.5) 

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

+ 𝑈𝑈2
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜙𝜙2
′

𝜕𝜕𝑧𝑧
,      𝜖𝜖𝑧𝑧 = 0                                                                              (3.6) 
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but in the dynamic condition (1.10), the term 

 𝑈𝑈1
2

2
= (∇𝜙𝜙1)2

2
= �𝑈𝑈1𝑈𝑈+𝜖𝜖∇𝜙𝜙1

′ �
2

2
= 𝑈𝑈1

2

2
+ 𝜖𝜖𝑈𝑈1

𝜕𝜕𝜙𝜙1
′

𝜕𝜕𝑥𝑥
  similarly, 

𝑈𝑈2
2

2
= (∇𝜙𝜙2)2

2
= �𝑈𝑈2𝑈𝑈+𝜖𝜖∇𝜙𝜙2

′ �
2

2
= 𝑈𝑈2

2

2
+ 𝜖𝜖𝑈𝑈2

𝜕𝜕𝜙𝜙2
′

𝜕𝜕𝑥𝑥
.   Thus the linearised dynamic condition 

results to  

𝜌𝜌1 �
𝜕𝜕𝜙𝜙1

′

𝜕𝜕𝑡𝑡
+  𝑈𝑈1

𝜕𝜕𝜙𝜙1
′

𝜕𝜕𝑥𝑥
� = 𝜌𝜌2 �

𝜕𝜕𝜙𝜙2
′

𝜕𝜕𝑡𝑡
+  𝑈𝑈1

𝜕𝜕𝜙𝜙2
′

𝜕𝜕𝑥𝑥
� , 𝜖𝜖𝑧𝑧 = 0                                            (3.7) 

4. NORMAL MODE ANALYSIS 

Let the perturbation at the interface 𝑧𝑧 = 𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑡𝑡) be sinusoidal of the form 

𝜂𝜂 = 𝛼𝛼𝑒𝑒𝑈𝑈(𝑘𝑘𝑥𝑥−𝜔𝜔𝑡𝑡 )                                                                                                            (4.1) 

and 

𝜙𝜙1
′ = 𝛽𝛽1𝑒𝑒−𝑘𝑘𝑧𝑧𝑒𝑒𝑈𝑈(𝑘𝑘𝑥𝑥−𝜔𝜔𝑡𝑡 )                                                                                                 (4.2) 

𝜙𝜙2
′ = 𝛽𝛽2𝑒𝑒−𝑘𝑘𝑧𝑧𝑒𝑒𝑈𝑈(𝑘𝑘𝑥𝑥−𝜔𝜔𝑡𝑡 )                                                                                                (4.3) 

where 𝛼𝛼,   𝛽𝛽1 and   𝛽𝛽2 are unknown constants. 

Now substituting equations (4.1) – (4.3) into the kinematic and dynamic boundary conditions 

(3.5), (3.6) and (3.7), we have the following: 

(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈1)𝛼𝛼 = −𝑘𝑘𝛽𝛽1                                                                                             (4.4)  

(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈2)𝛼𝛼 = −𝑘𝑘𝛽𝛽2                                                                                             (4.5)  

𝜌𝜌1(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈1)𝛽𝛽1 = 𝜌𝜌2(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈2)𝛽𝛽2                              (4.6) 

Equations (4.4) –(4.6) are rearranged as 

(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈1)𝛼𝛼              +       𝑘𝑘𝛽𝛽1                                                                 = 0              (4.7) 
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(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈2)𝛼𝛼                                                                    − 𝑘𝑘𝛽𝛽2                = 0               (4.8)                                                               

                          𝜌𝜌1(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈1)𝛽𝛽1       − 𝜌𝜌2(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈2)𝛽𝛽2                = 0               (4.9) 

and presented in matrix form as 

�
−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈1 𝑘𝑘 0
−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈2 0 −𝑘𝑘

0 𝜌𝜌1(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈1) −𝜌𝜌2(−𝑈𝑈𝜔𝜔 + 𝑈𝑈𝑘𝑘𝑈𝑈2)
� �
𝛼𝛼
𝛽𝛽1
𝛽𝛽2

� = 0             (4.10) 

A nontrivial solution exists if and only if the determinant of the matrix of coefficients in 

equation (4.10) vanishes, which results to: 

𝜌𝜌1(−𝜔𝜔 + 𝑘𝑘𝑈𝑈1)2 + 𝜌𝜌2(−𝜔𝜔 + 𝑘𝑘𝑈𝑈2)2 = 0                                                                 (4.11) 

𝜌𝜌1(𝜔𝜔2 − 2𝜔𝜔𝑘𝑘𝑈𝑈1 + 𝑘𝑘2𝑈𝑈1
2) + 𝜌𝜌2(𝜔𝜔2 − 2𝜔𝜔𝑘𝑘𝑈𝑈2 + 𝑘𝑘2𝑈𝑈2

2) = 0  

(𝜌𝜌1 + 𝜌𝜌2)𝜔𝜔2 − 2𝑘𝑘(𝜌𝜌1𝑈𝑈1 + 𝜌𝜌2𝑈𝑈2)𝜔𝜔 + 𝑘𝑘2(𝜌𝜌1𝑈𝑈1
2 + 𝜌𝜌2𝑈𝑈2

2) = 0                                 (4.12) 

Observe that equation (4.12) is a quadratic equation in 𝜔𝜔.    Therefore, solving equation 

(4.12) by formula method we have 

𝜔𝜔 =
2𝑘𝑘(𝜌𝜌1𝑈𝑈1 + 𝜌𝜌2𝑈𝑈2) ± �4𝑘𝑘2(𝜌𝜌1𝑈𝑈1 + 𝜌𝜌2𝑈𝑈2)2 − 4𝑘𝑘2(𝜌𝜌1 + 𝜌𝜌2)(𝜌𝜌1𝑈𝑈1

2 + 𝜌𝜌2𝑈𝑈2
2)

2(𝜌𝜌1 + 𝜌𝜌2)  

Simplification of the terms under the square root symbol, result to the following: 

4𝑘𝑘2[𝜌𝜌1
2𝑈𝑈1

2 + 2𝜌𝜌1𝜌𝜌2𝑈𝑈1𝑈𝑈2 + 𝜌𝜌2
2𝑈𝑈2

2] − 4𝑘𝑘2[𝜌𝜌1
2𝑈𝑈1

2 + 𝜌𝜌1𝜌𝜌2𝑈𝑈1
2 + 𝜌𝜌1𝜌𝜌2𝑈𝑈2

2 + 𝜌𝜌2
2𝑈𝑈2

2] 

= 4𝑘𝑘2𝜌𝜌1
2𝑈𝑈1

2 + 8𝑘𝑘2𝜌𝜌1𝜌𝜌2𝑈𝑈1𝑈𝑈2 + 4𝑘𝑘2𝜌𝜌2
2𝑈𝑈2

2 − 4𝑘𝑘2𝜌𝜌1
2𝑈𝑈1

2 − 4𝑘𝑘2𝜌𝜌1𝜌𝜌2𝑈𝑈1
2 − 4𝑘𝑘2𝜌𝜌1𝜌𝜌2𝑈𝑈2

2

− 4𝑘𝑘2𝜌𝜌2
2𝑈𝑈2

2 

        = 8𝑘𝑘2𝜌𝜌1𝜌𝜌2𝑈𝑈1𝑈𝑈2 − 4𝑘𝑘2𝜌𝜌1𝜌𝜌2(𝑈𝑈1
2 + 𝑈𝑈2

2) 

        = 4𝑘𝑘2𝜌𝜌1𝜌𝜌2[2𝑈𝑈1𝑈𝑈2] − 4𝑘𝑘2𝜌𝜌1𝜌𝜌2(𝑈𝑈1
2 + 𝑈𝑈2

2) 

        = −4𝑘𝑘2𝜌𝜌1𝜌𝜌2[𝑈𝑈1
2 − 2𝑈𝑈1𝑈𝑈2 + 𝑈𝑈2

2] 
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        = −4𝑘𝑘2𝜌𝜌1𝜌𝜌2(𝑈𝑈1 − 𝑈𝑈2)2 

Thus 

           �4𝑘𝑘2(𝜌𝜌1𝑈𝑈1 + 𝜌𝜌2𝑈𝑈2)2 − 4𝑘𝑘2(𝜌𝜌1 + 𝜌𝜌2)(𝜌𝜌1𝑈𝑈1
2 + 𝜌𝜌2𝑈𝑈2

2) = �−4𝑘𝑘2𝜌𝜌1𝜌𝜌2(𝑈𝑈1 −  𝑈𝑈2)2 

         = 2𝑈𝑈𝑘𝑘(𝑈𝑈1 − 𝑈𝑈2)�𝜌𝜌1𝜌𝜌2 

∴ 𝜔𝜔 = 𝑘𝑘 (𝜌𝜌1𝑈𝑈1+𝜌𝜌2𝑈𝑈2)
𝜌𝜌1+𝜌𝜌2

± 𝑈𝑈𝑘𝑘 �𝜌𝜌1𝜌𝜌2(𝑈𝑈1−𝑈𝑈2)
𝜌𝜌1+𝜌𝜌2

                                                                (4.13) 

5. RESULTS AND DISCUSSION 

Considering equation (4.13), the following can be deduced 

 

(i) if  𝜌𝜌1 = 𝜌𝜌2 and suppose 𝑈𝑈1 = −𝑈𝑈2 =𝑈𝑈 > 0, equation (4.13) it reduces to 

 𝜔𝜔 = ±𝑈𝑈𝑘𝑘𝑈𝑈                                                                                                       (5.1)  

is purely imaginary.  Thus the term +𝑈𝑈𝑘𝑘𝑈𝑈 signifies instability and the growth rate is given as 

𝑈𝑈𝑘𝑘 = 2𝜋𝜋𝑈𝑈
𝜆𝜆

 where 𝜆𝜆 is the wave length.    

(ii) if 𝑈𝑈1 = 𝑈𝑈2 = 𝑈𝑈, the imaginary part of equation (4.13) vanishes and thus 

𝜔𝜔 = 𝑘𝑘𝑈𝑈                           (5.2) 

In (5.2), the magnitude of the wave front is a function of 𝑈𝑈 and decays linearly.  The special 

cases of 𝜌𝜌1 < 𝜌𝜌2 and 𝜌𝜌1 > 𝜌𝜌2   and cannot be sufficiently interpreted using equation (4.13) 

since surface tension and gravitational effects were not considered in our model. More 

details can be obtain from the book of [12]                                                                                                                                                                                                      

5. Conclusions  

We considered two immiscible fluids of variable densities 𝜌𝜌1 and 𝜌𝜌2.  The upper fluid with 

𝜌𝜌2 is placed at (𝑧𝑧 > 0) while the lower fluid with density 𝜌𝜌1 is located at (z< 0) with 

(𝑧𝑧 = 0) signifying the interface.  The upper fluid was set in motion with uniform velocity 

and slide pass the lower stationary fluid.  The equations describing the above scenario are 
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mathematically represented and linearized.   Thereafter, a normal mode solution was sought 

and the results obtained were discussed in line with onset of instability.  
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