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ABSTRACT 

Currently, electricity is of utmost importance to the progress of a country's economy and 

society. The relentless surge in energy demand from modern buildings poses a profound 

challenge to global primary energy consumption, exhibiting an unwavering upward trajectory. 

This study constitutes a pivotal effort directed at fortifying energy efficiency by 

precision-focused short-term load prognostication for Heating, Ventilation, and 

Air-Conditioning (HVAC) systems. Within this study, a cutting-edge methodology unfolds 

through the synergistic amalgamation of Restricted Boltzmann Machines (RBM) and Artificial 

Neural Networks (ANN). This integration unfolds a trans-formative process, initiating with 

RBM pre-training on input data to autonomously unravel intricate hierarchical features. 

Serving as a potent feature extractor, the RBMs learned features seamlessly interlace with the 

original input, engendering a harmonized set. Subsequently, this amalgamated set propels the 

training of the ANN, harnessing the synergistic prowess of RBMs unsupervised learning and 

ANNs nonlinear mapping acumen. The resultant amalgamation begets a robust and adaptive 

model, poised to elevate precision in HVAC system load predictions. A rigorous evaluation 
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substantiates the model’s efficacy, unveiling a strikingly low Mean Absolute Error (MAE) of 

0.1541, a minimal Mean Squared Error (MSE) of 0.3405, a diminutive Root Mean Squared 

Error (RMSE) of 0.5835, and an impeccable R-squared (R2) value of 1. This fusion propels 

advancements in predictive accuracy, poised to make a significant impact in the realm of 

energy-efficient HVAC system management. Furthermore, the suggested approach has 

significant adaptability and can be employed in several additional applications involving the 

prediction of energy system load. 

 

Keyword: HVAC System, Load Predictions, Deep Learning, RBMs, ANNs, Model 

Interactions.
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CHAPTER 1  Introduction 

1.1 Overview 

 Heating, ventilation, and air conditioning (HVAC) systems play a crucial role in 

maintaining thermal comfort and indoor air quality in various buildings, ranging from 

residential homes to commercial establishments [1]. Efficient operation of HVAC systems is 

essential for optimizing energy consumption and minimizing environmental impact. However, 

accurately predicting HVAC system load is a challenging task due to the complex inter-actions 

between various factors such as weather conditions, building characteristics, and occupant 

behavior [2-3]. In the intricate tapestry of modern architecture and building management, 

Heating, Ventilation, and Air Conditioning systems emerge as linchpins, orchestrating the 

delicate dance of thermal comfort and indoor air quality. From the snug confines of residential 

abodes to the sprawling spaces of commercial establishments, the ubiquity of HVAC systems 

underscores their pivotal role in shaping the environments we inhabit. Beyond mere creature 

comforts, these systems wield a profound influence on energy consumption and environmental 

impact, making their efficient operation an imperative for sustainable building practices. 

HVAC systems operate at the nexus of technological sophistication and human well-being, 

tasked with the mission of maintaining optimal thermal conditions and air quality within 

diverse structures. Residential homes, with their distinct requirements for comfort, stand 

alongside commercial establishments where HVAC systems cater to the diverse needs of 

occupants and the demands of various activities. In this nuanced context, the efficiency of 

HVAC systems becomes paramount, not merely as a measure of energy conservation but as a 

linchpin for environmental stewardship. The delicate balance between ensuring comfort and 

minimizing ecological footprint necessitates a profound understanding of HVAC operations, 

particularly in the realm of load prediction. Accurately predicting HVAC system load is a 

formidable challenge, an intricate puzzle governed by the dynamic interplay of numerous 

variables. Weather conditions, with their capricious shifts, exert a profound influence on the 

thermal demands placed on HVAC systems. The unique characteristics of the building itself, 

from its architectural design to the materials used, further complicate the prediction task. 

Moreover, the unpredictable element of human behavior, manifested in occupancy patterns 

and individual preferences, adds an additional layer of complexity. It is within this labyrinth of 

interactions that the quest for precision in HVAC system load prediction takes center stage. 

The significance of this challenge is underscored by the ripple effects it carries. Inefficiencies 

in predicting HVAC system loads result in sub-optimal performance, translating into 

unnecessary energy consumption and, consequently, an enlarged carbon footprint [4]. As 

global initiatives intensify to combat climate change, the role of HVAC systems in sustainable 

building practices becomes increasingly critical [5]. Therefore, is not merely to surmount the 

challenges of load prediction but to leverage technological advancements in a manner that 

aligns HVAC operations with the ethos environment responsibility. 
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Around the world, almost 40% of total energy consumption is attributed to buildings, with 

HVAC systems accounting for 40-60% of that energy usage [6]. As the world strives to 

address the challenges of energy consumption in buildings, optimizing HVAC systems has 

become a critical priority. Modern buildings are increasingly adopting energy-efficient 

appliances and cutting-edge technologies, paving the way for a future of sustainable energy 

supply management and fault detection mechanisms. While traditional regression analysis has 

limitations in accurately predicting the dynamic characteristics of HVAC load data, this study 

presents a groundbreaking approach [7-9].Despite these multifaceted considerations within 

this thesis, we propose an deep learning based approach to HVAC system load prediction by 

integrating Restricted Boltzmann Machines(RBMs) and Artificial Neural Networks (ANNs). 

This pioneering methodology aims to surmount the intricacies posed by unpredictable 

variables such as weather conditions, building characteristics, and occupant behavior. The 

ANNs offers a robust framework for capturing complex relationships within the data, while 

the RBMs enhances feature learning, optimizing the system’s adaptability. By synthesizing 

these advanced technologies, our approach seeks to transcend traditional limitations in load 

prediction, fostering precision and efficiency. This integration not only represents a significant 

contribution to the field but also exemplifies a tangible step towards the practical application 

of cutting-edge technologies in the pursuit of sustainable and energy-efficient HVAC system 

management. As we delve into the subsequent chapters, the intricate architecture and 

interactions of the ANNs and RBMs models will be explored, providing a comprehensive 

understanding of their role in revolutionizing load prediction methodologies for HVAC 

systems. 

1.2 Motivation 

 Deep learning models have emerged as a powerful tool for predicting HVAC system 

loads, offering significant advantages over traditional methods. These models excel at 

capturing complex nonlinearities and adapting to dynamic environments, leading to improved 

prediction accuracy, energy efficiency, proactive maintenance, enhanced system reliability, 

and ensured occupant comfort. Advancements in computational power and data accessibility 

have increased the feasibility of real world implementation, accelerating re-search and 

development efforts in this domain. My motivation for this study is to create an accurate 

HVAC system load prediction model using deep learning. The potential of unsupervised 

RBMs feature extraction combined with the prediction power of ANNs on short-time HVAC 

system data is promising. This ongoing research holds immense potential for creating 

intelligent and energy-efficient building management systems, paving the way for a more 

sustainable future. 

1.3 Problem Statement 

The effective operation of HVAC systems faces a substantial challenge due to the 

inadequacies of current load prediction methods. These methods often rely on simplistic models 
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that fall short in capturing the complex and short-term dynamics of buildings. This thesis aims 

to address a critical gap in our understanding by exploring how Deep Learning (DL) can 

revolutionize HVAC load predictions through the development and evaluation of advanced 

models. The key challenges include modeling the intricate dynamics of buildings, ensuring the 

availability and quality of diverse datasets, investigating short-term adaptability, and enhancing 

the interpret-ability of DL models. The overarching goal is to contribute significantly to the 

improvement of accuracy and adaptability in HVAC load predictions, thereby facilitating the 

development of energy-efficient building management strategies.  

1.4 Aims and Objective 

The primary objective of this research is to introduce a RBMs-ANNs integrated load 

prediction method for HVAC systems. To achieve this overarching goal, we systematically 

address the following specific objectives: 

1. Analyze the advantages and disadvantages of RBMs and ANNs in the context of HVAC 

system load prediction. 

2. Develop a new prediction method by integrating the strengths of RBMs and ANNs to 

enhance accuracy and efficiency. 

3. Validate the proposed method through comprehensive comparisons with RBMs, ANNs 

methods, utilizing realistic data collected from industries. 

4. Investigate the potential of the presented method to contribute to optimized power 

consumption design and planning for HVAC systems. 

5. Improve energy efficiency and occupant comfort by optimizing HVAC operation based on 

the developed load prediction model. 

6. Contribute valuable insights to the advancement of HVAC system control strategies and the 

broader development of energy management strategies in large-scale commercial buildings. 

This research aims to address the specified subjects sequentially, providing a 

comprehensive exploration of the integrated RBMs-ANNs approach for HVAC system load 

prediction and its practical implications. 

1.5  Organization of this Thesis 

The thesis is organized into five chapters that systematically guide the reader through the 

research process. Chapter 1 provides an introduction to HVAC load prediction, high-lighting 

its importance and the challenges it poses. Chapter 2 delves into the background of HVAC 

systems and load prediction, reviewing existing literature and identifying re-search gaps. 

Chapter 3 presents the proposed hybrid deep learning model, detailing its components, data 

pre-processing procedures, and training process. Chapter 4 presents the experimental setup, 

results. Finally, Chapter 5 summarizes the conclusion summary, discusses the limitations, and 

suggests directions for future work. 

The introduction section of this thesis delves into the significance of accurate HVAC 

system load prediction in optimizing energy consumption and minimizing environmental 

impact. It highlights the challenges associated with traditional load prediction methods, 

particularly regression analysis, in capturing the dynamic characteristics of HVAC load data. 
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The section introduces a groundbreaking approach that integrates Artificial Neural Networks 

and Restricted Boltzmann Machines to surmount these challenges. The motivation for this 

research stems from the global imperative to address the substantial energy consumption 

attributed to HVAC systems and the need for advanced load prediction methodologies for 

modern buildings. The problem definition clearly outlines the criticality of accurate 

short-term load prediction for large-scale commercial buildings and the inadequacy of 

traditional regression analysis methods. Finally, the section presents the aims and objectives 

of the research, which focus on developing a highly accurate and robust deep learning model 

for HVAC load prediction and contributing to the advancement of HVAC system control and 

energy management strategies. 
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CHAPTER 2  Background And Literature Review 

2.1 Background  

Heating, Ventilation, and Air Conditioning (HVAC) systems, akin to invisible 

choreographers of comfort, orchestrate ideal indoor environments, seamlessly balancing 

temperature and optimizing energy usage across diverse settings such as homes, offices, and 

industrial spaces [10]. As societies continue to urbanize and the demand for energy-efficient 

buildings rises, the importance of efficient HVAC system operation becomes increasingly 

evident. The effective management of HVAC systems involves predicting and regulating the 

system load, which refers to the amount of heating or cooling required to maintain the desired 

indoor conditions [11]. 

Traditionally, load prediction in HVAC systems has been approached using rule-based 

methods and mathematical models that rely on predefined equations [12-14]. However, these 

methods often struggle to adapt to the dynamic and nonlinear nature of building environments, 

leading to sub-optimal energy utilization and comfort levels. As a response to these challenges, 

the emergence of deep learning techniques has provided a promising avenue for more accurate 

and adaptive load predictions. 

Deep learning, a subset of machine learning, leverages artificial neural networks to 

automatically learn and extract hierarchical representations from data [15]. This approach has 

demonstrated remarkable success in various fields, including image recognition, natural 

language processing, and speech recognition [16-18]. The application of deep learning in the 

domain of HVAC systems introduces an innovative paradigm shift [19-20], enabling the 

development of models that can autonomously discover intricate pat-terns and dependencies 

within the data. 

The utilization of deep learning in load prediction for HVAC systems brings several 

advantages. Firstly, these models can adapt to diverse and dynamic building conditions, 

providing a more responsive and accurate prediction of the system load. Secondly, the ability 

of deep learning models to process large-scale and complex datasets allows for a 

comprehensive analysis of factors influencing HVAC performance, including external weather 

conditions, occupant behavior, and system characteristics. Thirdly, the auto-mated feature 

learning capability of deep learning mitigates the need for explicit feature engineering, 

potentially reducing the burden of model development and enhancing scalability [21]. 

Despite the promise of deep learning, the field of load prediction for HVAC systems using 

these techniques is still in its infancy. Current research efforts have begun exploring various 

neural network architectures, such as recurrent neural networks (RNNs) and long short-term 

memory networks (LSTMs), to capture temporal dependencies in the data 

Additionally, attention mechanisms and ensemble learning approaches are being 

investigated to enhance the interpretability and robustness of predictions [23]. 

This thesis contributes to the growing body of knowledge in the intersection of HVAC 
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systems and deep learning by addressing several critical aspects. Firstly, it delves into the 

existing literature on load prediction methods in HVAC systems, highlighting the limitations 

of traditional approaches and the potential benefits offered by deep learning. Secondly, it 

proposes novel deep learning architectures tailored to the intricacies of HVAC load prediction, 

aiming to improve accuracy and adaptability. Thirdly, the research investigates the impact of 

various input features, including weather data, occupancy patterns, and building characteristics, 

on the performance of deep learning models. 

The overarching goal of this research is to advance the understanding and application of 

deep learning techniques in the domain of HVAC system load prediction. By doing so, the 

thesis aims to contribute practical insights and methodologies that can be leveraged by 

building operators, energy managers, and researchers to enhance the efficiency, sustain-ability, 

and comfort of indoor environments. As the global focus on sustainable practices intensifies, 

the integration of advanced technologies like deep learning into HVAC systems becomes not 

only an academic pursuit but a crucial step towards a more energy-efficient and 

environmentally. 

2.2  HVAC System and Load Prediction 

In the modern architectural landscape, Heating, Ventilation, and Air Conditioning (HVAC) 

systems stand as unsung heroes, diligently orchestrating the symphony of thermal com-fort 

and indoor air quality [24]. From the cozy confines of residential dwellings to the sprawling 

spaces of commercial establishments and industrial facilities, HVAC systems orchestrate a 

delicate balance between energy efficiency, occupant well-being, and environmental 

stewardship. At the heart of this intricate dance lies the concept of HVAC system load, a 

multifaceted measure of the energy demand placed upon these systems to maintain desired 

indoor conditions. 

The load on an HVAC system is a dynamic entity [25], shaped by a complex interplay of 

external and internal factors. Prevailing weather conditions, including ambient temperature, 

humidity, and solar radiation, exert a profound influence on the thermal demands placed upon 

the system. The intrinsic characteristics of the building itself, from its architectural design to 

the materials employed in its construction, further complicate the load prediction task. 

Moreover, the unpredictable element of human behavior, manifested in occupancy patterns 

and individual preferences, adds an additional layer of complexity. 

Traditional load prediction methods [26], often relying on statistical models and rule-based 

systems [12-13], have struggled to capture the intricate dynamics and complex nonlinear 

relationships that govern HVAC system operation. These limitations have resulted in 

sub-optimal load forecasting, leading to inefficient energy usage and compromised occupant 

comfort. In contrast, deep learning approaches have emerged as a beacon of hope, offering a 

promising avenue for accurate and efficient load forecasting. 

Deep learning algorithms, empowered by artificial neural networks (ANNs) and re-current 

neural networks (RNNs) [27], possess an uncanny ability to handle vast amounts of data, 
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extract meaningful insights, and discern patterns that are invisible to the human eye. These 

algorithms excel at automatically extracting relevant features from raw data, effectively 

modeling time series patterns, and capturing intricate nonlinear relationships between various 

influencing factors. As a result, deep learning has emerged as a trans-formative force in HVAC 

load prediction, paving the way for a future of enhanced energy efficiency, improved occupant 

satisfaction, and sustainable building operations. 

Deep learning’s transformative impact on HVAC load prediction stems from its ability to 

overcome the inherent limitations of traditional methods. Unlike statistical models and 

rule-based systems, deep learning algorithms do not require explicit feature engineering, a 

tedious and often error-prone process. Instead, they automatically learn relevant features from 

the data itself, adapting to the nuances of the specific application. Furthermore, deep learning 

algorithms excel at handling time series data, a crucial aspect of HVAC load prediction. RNNs, 

in particular, are designed to capture temporal dependencies and long-range patterns, making 

them well suited for forecasting future load demands. 

The benefits of deep learning for HVAC load prediction extend beyond its ability to 

capture complex dynamics and nonlinear relationships. Deep learning algorithms are also 

highly versatile, capable of incorporating diverse data sources, such as weather forecasts, 

building blueprints, and occupant behavior patterns. This wealth of information allows for a 

more comprehensive understanding of the factors influencing HVAC load, leading to more 

accurate and reliable predictions. 

The advent of deep learning has ushered in a new era of HVAC load prediction, one 

characterized by enhanced accuracy, efficiency, and versatility. Deep learning algorithms have 

overcome the inherent limitations of traditional methods, enabling the capture of complex 

dynamics, nonlinear relationships, and a broader range of influencing factors. As deep learning 

continues to evolve, its impact on HVAC load prediction will only intensify, paving the way 

for a future of sustainable energy management, occupant comfort, and environmental 

stewardship. 

2.3 Research Gaps in HVAC System Load Predictions 

Despite significant advancements in HVAC load prediction methods, several research gaps 

remain unaddressed [28-29]. These gaps encompass data acquisition and pre-processing, 

 model development and evaluation, real-time prediction and implementation, specific 

applications and domains, and human-AI collaboration and explainability. Enhancing data 

granularity, improving data quality, and integrating diverse data sources are crucial for 

accurate predictions. Effective feature engineering techniques and balancing model 

complexity with interpretability are essential for model development. Real-time data 

processing, model adaptation, and integration with building automation systems are critical for 

real-time prediction and implementation. Developing load prediction models specifically 

tailored to large-scale commercial buildings, incorporating renewable energy sources, and 

enabling HVAC systems to participate in demand response programs are crucial for specific 
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applications and domains. Human-in-the-loop systems, explainable AI, and incorporating 

domain knowledge into deep learning models can enhance decision-making, build trust, and 

improve model accuracy and interpretability. Addressing these research gaps will further 

advance the field of HVAC load prediction, leading to more accurate, efficient, and reliable 

models for optimizing energy consumption, enhancing occupant comfort, and promoting 

sustainable building practices. 

2.4 Literature Review 

Predicting Heating, Ventilation, and Air Conditioning (HVAC) system loads holds 

paramount importance in enhancing energy management, optimizing system performance, and 

achieving cost reduction in diverse building structures. Despite its significance, HVAC load 

prediction remains a dynamic area of research, with scholars continuously refining and 

advancing existing models. This literature review meticulously explores the work of previous 

researchers, emphasizing the evolution from traditional methods to the application of deep 

learning techniques, including Restricted Boltzmann Machines (RBMs), Artificial Neural 

Networks (ANNs), and hybrid models incorporating these technologies. 

Traditional methodologies have long been employed for HVAC load prediction, relying on 

empirical and analytical models. These methods, including time series analysis, linear 

regression, and statistical approaches, formed the foundation of load forecasting.  While 

effective to a certain extent, their limitations in capturing complex non-linear relationships and 

adapting to dynamic conditions spurred the exploration of advanced techniques. 

The advent of deep learning has significantly enhanced HVAC load prediction ac-curacy. 

Scholars have explored various architectures, such as recurrent neural networks (RNNs) [30], 

convolutional neural networks (CNNs) [31], and deep belief networks (DBNs)[32], each 

tailored to specific characteristics of HVAC systems. RNNs, adept at modeling time-series 

data, capture long-term dependencies crucial for accurate load predictions. CNNs excel in 

extracting spatial features, essential for buildings with multiple zones. DBNs, as generative 

models, provide intricate representations of data, proving effective in both commercial and 

residential settings. 

In a notable and groundbreaking work conducted by Engel et al. (2019), the integration of 

an attention mechanism into an LSTM-based model for HVAC load prediction stands as a 

pivotal advancement. This innovative approach dynamically attends to temporal features, 

introducing a nuanced layer of adaptability to the model, ultimately contributing to a 

substantial improvement in predictive accuracy [33]. Concurrently, Son et al. (2019) extended 

the horizons of LSTM modeling by incorporating critical weather information into an adaptive 

learning rate LSTM model. Their research not only under-scores the significance of external 

factors but also highlights the adaptive nature of the model, showcasing its ability to 

dynamically adjust to varying conditions and thereby enhance the comprehensiveness of 

HVAC load predictions [34]. Additionally, Ayadi et al. (2019) made notable strides in the 

domain of enhanced deep learning architectures for HVAC load prediction, accentuating the 
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importance of considering external factors such as weather conditions and building 

characteristics. This collective body of research reaffirms the critical role of contextually 

relevant temporal and external features in the iterative refinement and enhancement of 

predictive models for HVAC load forecasting [35]. 

The integration of external factors and the exploration of ensemble approaches and hybrid 

models have emerged as focal points in the quest for enhanced HVAC load prediction. 

Researchers such as Chou et al. (2018) and J´unior et al. (2019) have significantly contributed 

to this trend by merging seasonal Autoregressive Integrated Moving Average (ARIMA) 

models with machine learning methods, creating hybrid models that harness the strengths of 

both approaches [36, 37]. This synergistic fusion has demonstrated improved predictive 

capabilities, benefiting from the precision of ARIMA in capturing seasonality and the 

adaptability of machine learning methods to dynamic changes in the data. 

In a different vein, Li et al. (2021) proposed a forward-thinking approach with a 

multi-scale convolutional recurrent neural network. This innovative hybrid model effectively 

captures multi-scale patterns present in HVAC load data, showcasing the potential for 

combining the strengths of convolutional and recurrent architectures to achieve superior 

predictive accuracy [38]. This approach acknowledges the diverse temporal and spatial 

intricacies inherent in HVAC systems, demonstrating the adaptability of hybrid models to 

capture complex patterns. The exploration of hybrid models has extended to combinations of 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. These hybrid 

architectures have proven their superiority in capturing long-term dependencies while 

efficiently handling varying input sequence lengths [39]. The collaboration of LSTM and 

GRU networks reflects a nuanced understanding of the complementary strengths of these 

architectures, ultimately contributing to the development of more robust and adaptive HVAC 

load prediction models. Collectively, these studies highlight the growing recognition of the 

potential inherent in hybrid models. The integration of diverse techniques and architectures not 

only addresses the limitations of individual models but also opens avenues for innovation in 

HVAC load prediction. As research in this field continues to evolve, the refinement and 

exploration of hybrid models are poised to play a pivotal role in advancing the accuracy and 

versatility of HVAC load forecasting. 

The application of Restricted Boltzmann Machines (RBMs) in the realm of HVAC load 

forecasting and predictions has demonstrated promising outcomes, contributing to 

advancements in accuracy and efficiency. Noteworthy studies by Fu et al. (2018) show- 

cased the superior accuracy of RBMs when compared to traditional statistical models 

within a commercial building context, establishing RBMs as a potent tool for precise load 

predictions [40]. Extending the exploration to residential HVAC systems, Ouyang et al. (2019) 

provided further evidence of the effectiveness of RBMs in predicting cooling loads, 

underscoring the versatility of RBMs across diverse settings [41]. Building on these findings, 

Fu et al. (2018) proposed a pioneering hybrid RBM model, strategically combining RBMs 

with a deep neural network architecture. This hybrid approach not only reinforced the 
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accuracy of load prediction but also exemplified the potential synergy between RBMs and 

deep learning techniques for enhanced HVAC load forecasting [42]. 

Recent publications have significantly enriched the landscape of HVAC load prediction 

with innovative and forward-thinking approaches. In a groundbreaking contribution, Liu et al. 

(2022) introduced a sophisticated HVAC control system tailored for smart buildings. This 

pioneering system leverages a multi-step predictive deep reinforcement learning algorithm, 

offering an intelligent and dynamic approach to energy management for optimal power 

consumption and user satisfaction [43]. Furthermore, Song et al. (2023) presented a 

cutting-edge deep learning-based prediction framework, aTCN-LSTM, demonstrating 

remarkable effectiveness in cooling load prediction for a towering 51-story hotel building 

located in Guangzhou, China [44]. The work of Zhang et al. (2023) delved into the realm of 

ground source heat pump systems, employing a hybrid CNN-LSTM model to predict the 

outlet water temperature of an energy pile. This innovative approach contributes significantly 

to the advancement of ground source heat pump technologies [45]. Gao et al. (2023) shifted 

the focus to model predictive control in building renewable energy systems, showcasing the 

efficacy of a hybrid prediction model within the MPC framework. Their research provides 

valuable insights into optimizing the operation of these systems while meeting safety and 

efficiency requirements [46]. Additionally, Moayedi et al. (2023) addressed the critical issue of 

heat loss in green buildings, undertaking a comparative analysis of the performance of two 

ANNs methodologies. Their work not only contributes to advancing green building 

technologies but also emphasizes the potential impact of optimization algorithms in enhancing 

the precision of heat loss predictions [47]. 

While the literature showcases significant advancements in HVAC load prediction, certain 

aspects require critical consideration. The absence of explicit discussions on the limitations or 

challenges encountered by these machine learning methods in building load prediction leaves 

room for further investigation. A nuanced understanding of these limitations would provide 

researchers and practitioners with valuable insights for practical applications. 

The evolution of HVAC system load predictions reflects a progressive shift toward 

leveraging the capabilities of deep learning techniques. Each study contributes to the 

advancement of HVAC load prediction, with a growing emphasis on addressing challenges 

and incorporating innovative approaches. This literature review provides a comprehensive 

overview of the current state of research in HVAC system load prediction, highlighting 

advancements, trends, and areas for future exploration. As technology continues to evolve, the 

integration of deep learning and hybrid models is likely to play a pivotal role in shaping the 

future of HVAC load prediction, offering more accurate and adaptive solutions for 

energy-efficient building management. 
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CHAPTER 3  Methodology 

3.1 Overview 

In this research, a cutting-edge approach to load prediction in HVAC systems was adopted, 

leveraging the power of deep learning. Figure (1) illustrates the key components of the 

proposed framework, where the synergy of a Restricted Boltzmann Machines (RBMs) and an 

Artificial Neural Networks (ANNs) is harnessed to enhance the accuracy and adaptability of 

load predictions [48-50]. 

Figure 1. Overview of the Proposed Framework. 

The combination of the RBMs and ANNs leverages the strengths of both architectures, 

creating a robust framework for HVAC load prediction. RBMs are known for their 

unsupervised learning capabilities, allowing them to capture intricate patterns and 

dependencies in the data without the need for labeled examples. This unsupervised 

pre-training phase enhances the feature learning process, enabling the network to discern 

meaningful representations from the raw input data. 

The foundation of the framework lies in the application of a Restricted Boltzmann 

Machines, a generative stochastic artificial neural network. RBMs are particularly well-suited 
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for modeling complex and high-dimensional datasets, making them an ideal choice for 

capturing intricate patterns in HVAC system load dynamics. The RBM component of the 

framework is responsible for unsupervised feature learning, extracting latent representations 

from the input data. This unsupervised pre-training phase facilitates the automatic discovery of 

meaningful hierarchical features, enabling the model to adapt to varying conditions within the 

building environment. 

Building upon the feature representations learned by the RBM, an Artificial Neural 

Networks is employed as the second component of the framework. The ANNs is a versatile 

and widely used deep learning architecture known for its ability to model complex 

relationships in data. In this context, the ANN serves as the predictive engine, taking the 

learned features from the RBM and mapping them to the target variable HVAC system load. 

The ANN is trained in a supervised manner, utilizing historical load data to optimize its 

parameters and improve prediction accuracy. The synergy between RBM and ANN introduces 

a unique hybridization approach, where the strengths of each component complement the other. 

The RBM unsupervised learning enhances the model’s ability to capture latent features, while 

the ANN refines these features in a supervised manner, aligning them with the actual load 

patterns. The fine-tuning process, guided by backpropagation, further refines the model’s 

parameters based on the observed discrepancies between predicted and actual loads. 

The entire framework undergoes a comprehensive training process using historical HVAC 

system data. The dataset, comprising information such as external temperatures, occupancy 

patterns, and past load profiles, is partitioned into training and validation sets. The RBM 

learns latent features from the training data, and the ANN refines its predictions through 

iterations. Rigorous validation ensures the robustness and generalization capability of the 

model before deployment. 

To assess the performance of the RBMs-ANNs hybrid model, standard regression metrics 

such as Mean Absolute Error (MAE), Mean Squared Error (MSE) , Root Mean Squared Error 

(RMSE) and an R-Squared R2 are employed [52]. These metrics quantify the dissimilarity 

between predicted and actual load values, providing a quantitative measure of the model’s 

accuracy and reliability. 

3.2 Data Collection 

  In the pursuit of constructing a robust hybrid neural network model for HVAC system 

load prediction, a dataset comprising 1152 data points spanning from January 11, 2023, to 

February 27, 2023, has been meticulously collected. These data points, generated at 1-hour 

intervals, encapsulate the load reports for 24 hours a day, offering a comprehensive foundation 

for model development and evaluation Figure (2) for a visual representation of collected data 

samples. To ensure the model’s reliability and generalizability, the historical data is 

strategically divided into two distinct datasets: the Training Dataset, utilized for parameter 

acquisition during the model training phase, and the Test Dataset, serving as an independent 

benchmark dataset for assessing the model’s predictive performance. 
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The most influencing parameters impacting HVAC load include outdoor temperature, 

indoor temperature, atmospheric pressure, relative humidity, cloud state, wind speed, intensity 

of solar radiation, systems supply water temperature, systems return water temperature, and 

system load. While theoretically any factor influencing HVAC load could be considered, 

practical engineering constraints often limit the availability of certain parameters. To strike a 

balance between model accuracy and practical feasibility, a refined set of parameters was 

selected, encompassing outdoor temperature, indoor temperature, systems supply water 

temperature, systems return water temperature, and system load. 

Here, TEO, TEM, TRW, TSW and LOAD represent specific parameters, where TEO 

stands for outdoor temperature, TEM for indoor temperature, TRW for system return water 

temperature, TSW for system supply water temperature and LOAD for actual load of the  

HVAC system in figure (2). 

 
Figure 2. A Bunch of Collected Data Samples. 

Outdoor Temperature: 

Outdoor temperature, a pivotal factor decisively influencing HVAC system load, exhibits a 

strong positive correlation with hourly load variations. 

Indoor Temperature: 

Indoor temperature, another crucial input, plays a central role in determining load by 

considering the difference between outdoor and indoor temperatures, accounting for comfort 

requirements specified by zone authorities. 

Supply and Return Water Temperature 

Supply and return water temperatures were chosen to decode the relation of supply and 

return water temperature difference with load variations, providing a dynamic dimension to 

predict HVAC load considering the patterns within their differences. 

Actual Load 
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Finally, the actual load for the selected hour was taken as the label input for the proposed 

model for prediction. This input parameter will act as the benchmark to compare with the 

proposed model, where the difference declares the optimality of the HVAC system. 

3.3 Data Pre-processing 

Data pre-processing is a important part of this thesis to get accurate and reliable predictions 

from HVAC system data using deep learning models, the significance of data pre-processing 

cannot be overstated [50]. This critical phase lays the groundwork for model training, ensuring 

that the input data is well-structured, cleansed of imperfections, and optimally formatted for the 

intricacies of the chosen algorithm, in this case, a combination of RBM and ANN. 

 

Figure 3. Data Pre-processing overview of this thesis. 

3.3.1 Overview of Data Pre-processing 

Data Cleaning: Remove unnecessary data points or columns to focus the dataset and 

enhance model efficiency. Identify and eliminate duplicated records to avoid biases and 

inaccuracies. Handle noisy data points by applying techniques like smoothing or filtering. 

Rectify inaccuracies, anomalies, or outliers that may distort the model’s understanding. Convert 

data to appropriate types for uniformity and compatibility. Implement strategies for missing 

values, including imputation or removal. Identify and resolve issues where predictor variables 

are highly correlated. 

Data Transformation: Detect and handle outliers to prevent them from disproportionately 

influencing the model. Convert data into acceptable formats, ensuring consistency and 

adherence to model requirements. 

Data Reduction: Apply dimensionality reduction techniques like Principal Component 

Analysis (PCA). Categorize and group variables to manage complexity and facilitate model 

training. 
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Figure 4. Comparison of Raw and Preprocessed Data for HVAC System Load Prediction. 

In essence, data pre-processing is a meticulous and iterative process that refines raw HVAC 

system data for deep learning models. By addressing data quality can be shown in Figure (4), 

format, and dimensionality issues, this process enhances the accuracy and efficiency of 

predictions, contributing to the optimization of HVAC system load prediction models. 

3.3.2 Feature Scaling and Normalization 

 Feature scaling and normalization are crucial pre-processing steps, especially when 

working with deep learning models. These techniques ensure that the features contribute 

uniformly to the model training process, preventing any particular feature from dominating due 

to differences in scale. Standardization and normalization techniques, such as Min-Max scaling 

or Z-score normalization, are applied to re scale the features within a standard range. This not 

only aids in faster convergence during model training but also enhances the model’s ability to 

generalize well to unseen data. 
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Figure 5. Feature Scaling of the HVAC Dataset. 

Figure (5) illustrates the impact of Feature Scaling, showcasing how the scaling process 

helps in achieving a balanced representation of features. Additionally, in Figure (6), Feature 

Normalization is visually demonstrated, highlighting the effectiveness of techniques like 

Min-Max scaling or Z-score normalization in bringing features to a standard range. The choice 

of scaling method depends on the characteristics of the data and the requirements of the specific 

deep learning algorithm employed in the subsequent phases of the study. 

 
Figure 6. Feature Normalization of the HVAC Dataset. 

3.3.3 Preprocessed Dataset Visualization  

    In this section, we present visualizations that offer insights into the HVAC System 

Load Prediction dataset after pre-processing. 

 

Spider Plot of Correlations: 

A spider plot is utilized in Figure (7) to visually represent the correlations between different 

variables in the HVAC System Load Prediction dataset. Each spoke in the plot corresponds to a 

specific variable, and the length of the line connecting to each point indicates the strength and 

direction of correlation with the other variables. This visualization offers an insightful overview 

of the interrelationships within the dataset, aiding in understanding how various features 

influence each other. 
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Figure 7. Spider Plot of Correlations 

Histogram of the Dataset: 

This histogram provides a distribution overview of the dataset, showcasing the frequency or 

count of values within specific ranges for each variable. Histograms are valuable for identifying 

patterns, central tendencies, and potential outliers in the dataset. For your HVAC System Load 

Prediction dataset, this visualization allows a quick grasp of the distribution of individual 

features, offering insights into the data’s overall characteristics. 

 

Figure 8. Histogram of the Dataset 

Pair Plot of the Dataset: 

A pair plot is presented in this figure, displaying pairwise relationships between different 

variables in the dataset. Each scatter plot in the matrix represents the correlation or association 

between two variables. Diagonal plots show the distribution of individual variables. This 
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visualization is beneficial for identifying patterns, trends, and potential correlations, providing a 

comprehensive view of the relationships between various features. 

 
Figure 9. Pair Plot of the Dataset 

Correlation Heatmap: 

The heatmap visually represents the correlation matrix of the dataset. Colors indicate the 

strength and direction of correlations between pairs of variables. Brighter colors (such as yellow 

or white) signify stronger correlations, while darker colors (such as blue) indicate weaker or 

negative correlations. This heatmap is a powerful tool for identifying which variables are highly 

correlated, helping to guide feature selection and understand the relationships crucial for HVAC 

system load prediction. 
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Figure 10. Correlation Heatmap 

These visualizations collectively contribute to a comprehensive exploration and 

understanding of the HVAC System Load Prediction dataset, serving as a crucial step in the 

pre-processing phase of your analysis. 

3.4 Restricted Boltzmann Machine (RBM) 

3.4.1 Overview of RBM 

Restricted Boltzmann Machines (RBMs) are powerful generative models used in 

unsupervised learning tasks [48]. Figure (11) illustrates the typical structure of an RBM. 

 
Figure 11. Structure of a Restricted Boltzmann Machine (RBM). 

An RBM consists of visible and hidden layers denoted by vectors v and h, respectively. The 

joint distribution of visible and hidden units is defined by the energy function: 

( , ; , , ) i j ij i i j j

i j i j

E v h W b c v h W v b h c       (3.1) 

GSJ: Volume 12, Issue 7, July 2024 
ISSN 2320-9186 952

GSJ© 2024 
www.globalscientificjournal.com



 

Where W represents the weight matrix, b and c are bias vectors for visible and hidden units, 

respectively. 

The probability of a configuration (v, h) is given by the Boltzmann distribution: 
( , ; , , )

( , ; , , )
E v h W b ce

P v h W b c
Z



  (3.2) 

Where Z is the normalization constant (partition function) to ensure the probabilities sum to 

1. The training of RBMs involves maximizing the log-likelihood of the training data. The 

update rules for the weight matrix and biases are derived from the gradient of the log-likelihood 

with respect to the model parameters. One of the key strengths of RBMs lies in their ability to 

learn hierarchical representations of data. This is particularly advantageous for feature learning 

in complex datasets. Figure (12) depicts the contrastive divergence (CD) figure, showcasing the 

progressive refinement of learned features over epochs. 

 
Figure 12. Contrastive Divergence (CD) in the training process of (RBM). 

RBMs provide a versatile framework for unsupervised learning, capturing intricate patterns 

in data. Their training algorithm, often based on contrastive divergence, enables efficient 

learning of probabilistic representations. 

3.4.2 RBM Feature Extractions 

In the Restricted Boltzmann Machines (RBMs), feature extraction involves learning a 

compact and informative representation of the input data. This section explores the process of 

feature extraction using RBMs. 

Hidden Layer Representation 

The hidden layer (h) in an RBM captures essential features from the visible layer (v). The 

probability of a hidden unit being activated is given by the sigmoid function: 

( 1 ) ( )j ij i j

i

P h v w v b    (3.3) 

Where ijw  is the weight connecting visible unit vi to hidden unit jh , and jb
 
is the bias of 

hidden unit jh . The sigmoid function σ(x) is defined as 
1

.
1 xe

 

Reconstruction of Visible Layer 
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After learning the hidden layer representation, the RBM can reconstruct the visible layer (v′). 

The probability of a visible unit being activated is similarly defined by the sigmoid function: 

( 1 ) ( )i ij i j

i

P v h w h a    (3.4) 

Where ijw
 
is the weight connecting hidden unit jh  to visible unit iv , and ja  is the bias of 

visible unit iv . 

Feature Extraction 

The features extracted by the RBM can be represented as the probabilities of hidden units 

being activated: 

1 2[ ( 1 ), ( 1 ),...., ( 1 )]nh P h v P h v P h v     3.5 

These probabilities serve as a condensed representation of the input data, capturing relevant 

patterns and features. 

The feature extraction process in RBMs enhances the model’s ability to capture hierarchical 

and complex structures in the data, making it well-suited for various unsupervised learning 

tasks. 

3.4.3 Approach Training of RBM for Feature Learning 

Training an RBM involves learning the parameters ( ijw , ia , jb ) that maximize the likelihood 

of the training data. The training process aims to adjust the weights and biases to reconstruct the 

input data well. The update rules for the weights and biases during contrastive divergence (CD) 

training are given by: 

( )ij i j i jdata recon
w v h v h   (3.6) 

( )i i idata recon
a v v   (3.7) 

( )i j jdata recon
b h h   (3.8) 

Where ϵ is the learning rate, and the angle brackets denote expectations under the 

distribution specified. 

RBM is used in this thesis for feature extraction, capturing complex patterns and 

dependencies within the data, facilitating the subsequent use of Artificial Neural Networks 

(ANN) for more advanced tasks. 

3.5 Artificial Neural Network (ANN) Model 

3.5.1 Overview of ANN 

Artificial Neural Networks (ANNs) form a foundational pillar of contemporary deep 

learning, mimicking the intricacies of the human brain to decipher intricate patterns within 

complex datasets. Comprising interconnected nodes organized into layers, including in-put, 

hidden, and output layers, ANNs operate by adjusting weights between nodes during a training 

phase to minimize discrepancies between predicted and actual outputs. Neural activation, 
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governed by functions like sigmoid or ReLU, determines how neurons process information. 

ANNs encompass diverse architectures, including Feedforward Neural Networks (FNN) for 

standard tasks, Recurrent Neural Networks (RNN) for sequential data, and Convolutional 

Neural Networks (CNN) tailored for spatial data. This versatile frame-work, with its capacity 

for learning intricate representations, has become instrumental in a myriad of applications, 

ranging from image recognition to time-series analysis and beyond [49]. 

3.5.2 Architecture and Layers 

An Artificial Neural Network (ANN) is a computational model inspired by the structure and 

functioning of the human brain. It consists of interconnected nodes organized into layers. In a 

typical feedforward neural network, information flows from the input layer through hidden 

layers to the output layer. Let x represent the input vector, ( )lh the hidden layer activation's at 

layer l , and y the output vector. The network’s architecture is defined by the number of layers, 

nodes in each layer, and the activation functions used. A simple fully connected feedforward 

network can be represented as: 

 

 
Figure 13. ANN Architecture. 

( ) ( ) ( 1) ( 1) (1) (1) (1) ( 1) ( )( . ( ..... ( . ) ) )L L L L L Ly f W f W f W x b b b       (3.9) 

Where ( )LW  and ( )Lb are the weight matrix and bias vector at layer l , respectively, and ( )lf  

is the activation function. 

3.5.3 Training Process of ANN 

The training of an ANN involves optimizing the weights and biases to minimize a defined 

loss or error function. One common optimization algorithm is gradient descent. The 

back-propagation algorithm is used to compute the gradients of the loss function with respect to 

the weights and biases, facilitating weight updates. The weight update rule for a single layer is 

given by: 
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
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( ) ( )

( )
.l l

l
b b

b



 


 (3.11) 

Where α is the learning rate, and  is the loss function. 

The training process aims to find the optimal set of weights and biases that minimize the 

difference between the predicted output and the actual target values. 

3.6 Proposed Integration of RBM and ANN 

3.6.1 Data Flow System 

In the context of HVAC system load prediction, the proposed RBM-ANN model integrates 

Advanced deep learning techniques to enhance load predictions accuracy. The data flow 

within this model can be described in detail across several key stages. 

The process commences with the collection of comprehensive HVAC system data. This 

dataset typically encompasses a variety of parameters, including ambient temperature, outdoor 

temperature, historical load data, and occupancy patterns. However, raw data is often messy 

and incomplete. Therefore, a crucial initial step involves pre-processing to ensure data quality 

and reliability. 

During pre-processing, missing values are handled through imputation methods such as 

mean or median imputation. Outliers, which could potentially skew the model’s performance, 

are identified and addressed. Additionally, the data is standardized or normalized to bring all 

variables to a consistent scale, preventing dominance by variables with larger magnitudes. 

This prepares the data for subsequent feature extraction. 

Once the use of Restricted Boltzmann Machines for feature extraction. RBM’s leverages 

Gibbs sampling to iteratively generate samples, capturing intricate relationships between 

variables. This unsupervised pre-training process allows RBMs to discern complex 

hierarchical features, creating a more compact and informative representation of the original 

data. 

In the following, RBM produces a condensed feature set. This set encapsulates the most 

salient aspects of the HVAC system data, effectively reducing dimensionality while retaining 

essential information. These extracted features serve as the input for the subsequent Artificial 

Neural Network (ANN) training phase. 

Once the ANN is trained and fine-tuned, it is ready for load prediction. New or unseen data, 

representative of real world conditions, is fed into the model. The ANN utilizes the condensed 

feature set to generate predictions of HVAC system load, which providing insights into future 

load patterns based on the learned relationships from the training data. 

3.6.2 Integrated Network 

RBM constituting the first neural network of the proposed integration, functions uniquely, 
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serving as a specialized platform for feature extraction. Through the interplay of a visible layer 

and a hidden layer, the RBMs network adeptly identifies intricate data patterns, generating 

essential features for subsequent network processing. Subsequently, the second neural network 

ANNs, comprising an input layer, a hidden layer, and an output layer, plays a pivotal role in 

the precise modeling of the load prediction process. The significance of the number of nodes 

in the hidden layer is duly emphasized, as it significantly influences the training outcomes. 

Nonetheless, the selection of the ideal number of hidden layer nodes remains subject to an 

iterative trial and error process, often guided by experiential insights and an extensive series of 

experiments. 

Determining the precise number of neurons within the hidden layer requires a meticulous 

parameter search approach, aimed at optimizing the prediction accuracy. A strategic 

adjustment of the number of hidden layer nodes, coupled with a comprehensive evaluation of 

the model's convergence speed, enhances the network's fitting capabilities, driving the error 

rate towards the desired threshold. In this investigation concerning the RBMs neural network, 

the architecture comprises five input nodes representing distinct parameters, including return 

water temperature (RWT), supply water temperature (SWT), indoor temperature (TEM), 

outdoor temperature (TEO), and the Load, serving as the visible or input layer. The hidden 

layer is constructed with four hidden nodes, facilitating the extraction of crucial latent 

features.  

Upon integrating the latent features derived from the RBM network towards ANN 

network, designed with a total of four input nodes in the input layer. Furthermore, the model 

incorporates two hidden layers featuring 128 and 64 nodes, respectively, to ensure the model's 

predictive accuracy, the output layer is aligned with the load data from the dataset, thereby 

enabling the generation of anticipated predictions for the HVAC system. 

Through this systematic exploration and fine-tuning process, the study effectively 

establishes an optimized neural network architecture, poised to deliver accurate and reliable 

load predictions within the realm of HVAC system. The topology of the proposed integrated 

network is shown below in figure (14). 

 

Figure 14. Proposed Integrated Network 
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3.6.3 Integration Method 

The integration of Restricted Boltzmann Machines (RBM) and Artificial Neural Networks 

(ANN) serves as a robust framework for feature extraction and subsequent prediction tasks, 

providing a comprehensive solution for complex challenges in load prediction for HVAC 

systems. This integration is a two-fold process: feature extraction using RBM, followed by 

prediction using ANN. 

The Restricted Boltzmann Machine (RBM) stands as a powerful unsupervised learning 

algorithm, celebrated for its ability to autonomously unearth hierarchical features from input 

data. In the realm of HVAC load prediction, RBM assumes the role of an intelligent feature 

extractor, unraveling complex patterns inherent in the input dataset. 

Breaking down the RBM architecture, we introduce the key players: v, the visible layer 

representing the input data; h, the hidden layer capturing latent features; W , the weight matrix 

governing the connections between these layers; b, the visible layer bias; and c, the hidden 

layer bias. Each element in this ensemble plays a distinct role in shaping the RBM’s learning 

process. 

The crux of RBM’s functionality lies in its energy function, a pivotal aspect in the 

unsupervised learning journey. The energy function, denoted as: 

( , ) T T TE v h b v c h v Wh     (3.13) 

This equation encapsulates the intricate dance of interactions among visible and hidden 

units, intertwined with the influence of their connection strengths represented by the weight 

matrix W . The negative signs underscore the pursuit of lower energy configurations, aligning 

with the inherent quest for more representative and informative feature combinations. 

In essence, RBM’s learning process revolves around the delicate adjustment of the weight 

matrix (W), visible layer bias (b), and hidden layer bias (c). These adjustments are 

orchestrated to maximize the likelihood of the training data, thereby fine-tuning the RBM to 

discern and encapsulate the salient features present in the input dataset. 

The probability distributions of the visible and hidden layers are determined by the 

sigmoid activation function: 

1
( ) exp( ( , ))P v E v h

Z
   (3.14) 

1
( ) exp( ( , ))P h E v h

Z
   (3.15) 

Where Z denotes the normalization constant. 

The training of RBM involves adjusting the weights and biases to maximize the likelihood 

of the training data. Once trained, RBM extracts meaningful features from the input data, 

capturing complex patterns and relationships. 

The learned representations from RBM flow into the Artificial Neural Network (ANN) for 

prediction. The ANN, consisting of interconnected layers and nodes, adjusts weights during 
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training. Let x represent the input features from RBM, ( )lh the hidden layer activation's, y  

the output layer, and ( )lW , ( )lb the weight matrix and bias vector at layer l . The prediction 

process is expressed as 
( ) ( ) ( 1) ( 1) (1) (1) (1) ( 1) ( )( . ( ..... ( . ) ) )L L L L L Ly f W f W f W x b b b       (3.16) 

Here, ( )lf represents the activation function at layer l ,providing the non-linearity necessary 

for capturing complex relationships in the data. 

This integrated approach strategically combines RBM’s unsupervised feature learning with 

ANN prediction capabilities, forming a synergistic solution to address the intricacies of load 

prediction tasks in HVAC systems. As the RBM autonomously refines its understanding of the 

hierarchical structures within the data, it emerges as a powerful tool for feature extraction. 

This feature-rich representation becomes a cornerstone in the integration with Artificial Neural 

Networks (ANN) for HVAC load prediction, empowering the overall model with the capacity 

to navigate the intricacies of short-term load predictions in dynamic systems. 

3.7 Evaluation Matrices 

In this section, we present the evaluation metrics used to assess the performance of the 

HVAC load prediction model. 

The Mean Absolute Error (MAE) measures the average absolute difference between the 

predicted and true values. It is calculated as follows: 

, ,

1

1 n

true i pred i

i

MAE y y
n 

 
 

(3.17) 

Where n is the number of data points, 
,true iy  is the true load value for data point i, and 

,pred iy  is the predicted load value for data point i. 

The Mean Squared Error (MSE) measures the average squared difference between the 

predicted and true values. It is calculated as follows: 
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The Root Mean Squared Error (RMSE) is the square root of the MSE and is in the same 

unit as the target variable. It is calculated as follows: 

RMSE MSE  (3.19) 

R-squared measures the proportion of the variance in the load values that is predictable 

from the features. It is calculated as follows: 
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 (3.20) 

Where true
y  is the mean of the true load values. 

These metrics provide a comprehensive evaluation of the model’s performance in 

predicting HVAC system load. 
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3.8 Implementation Details 

In this section, we outline the key details of the neural network implemented for HVAC 

System Load Prediction. 

Table 1. Implementation Details for Load Predictions using RBM and ANN 

Component Details 

RBM (Restricted Boltzmann Machine)  

Architecture RBM with 5 visible and 4 hidden units 

Initialization 
Random normal initialization with mean 0.0 and 

standard deviation 0.01 

Training Method 
Contrastive Divergence (CD) with 1 Gibbs 

sampling step 

Pre-training Epochs 1200 

Learning Rate 0.01 

Artificial Neural Network (ANN)  

Architecture 
Sequential model with128 ReLU,64 ReLU and 1 

linear activation layers 

Input Shape 4 input features 

Optimizer Adam 

Learning Rate (ANN) 0.001 

Training Epochs (ANN) 650 

This Table (1) outlines the configuration details for predicting HVAC system loads using a 

combination of a Restricted Boltzmann Machine (RBM) and an Artificial Neural Network 

(ANN). The RBM, with 5 visible and 4 hidden units, undergoes pre-training for 1200 epochs 

using Contrastive Divergence with a learning rate of 0.01. The ANN, consisting of a sequential 

model with layers of 128 ReLU, 64 ReLU, and 1 linear activation, is trained for 650 epochs 

using the Adam optimizer with a learning rate of 0.001. The input shape for the ANN is 

defined by 4 input features. This comprehensive setup aims to capture intricate relationships in 

the data, utilizing RBM for feature extraction and ANN for subsequent load predictions in 

HVAC systems. 
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CHAPTER 4  Experiment And Results 

This section presents the results of the experiments. An overview of the predictions  

results. Here the dataset shows hourly performance, and the data proves the models work with 

unseen future data. The results of each method are discussed in more detail. 

4.1 Experiments Details 

4.1.1 Hardware and Software Requirements  

The experiments were conducted using the following hardware and software resources: 

Table 2. Hardware Specifications 

Hardware Component Specification 

CPU Core i7 13600 KF 

GPU NVIDIA RTX 4090 

RAM 64 GB 

ROM M.2 4 TB 

The experiments were conducted on a robust hardware setup detailed in Table (2). The 

system featured a powerful Core i7 13600 KF CPU, providing substantial processing 

capabilities, complemented by the cutting-edge NVIDIA RTX 4090 GPU, enhancing the 

efficiency of parallelized computations essential for deep learning tasks. The substantial 64 

GB of RAM ensured ample speed for data calculations and manipulation, while the M.2 4 TB 

ROM facilitated fast data access. This well-configured hardware setup played a crucial role in 

achieving reliable and high-performance results throughout the experimental process. 

Table 3. Software Versions 

Software Component Version 

Operating System Windows 11 Pro 

Python 3.9 

Deep Learning Frameworks TensorFlow 2.14.0 

Other Software CUDA 11.3 

In terms of software resources, the experiments were executed on a stable and up-to-date 

software environment outlined in Table (3). The operating system employed was Windows 11 

Pro, offering a user-friendly interface and compatibility with various applications. Python 3.9 

served as the primary programming language, providing a versatile platform for implementing 

and executing the experimental code. Deep learning tasks were conducted using TensorFlow 

2.14.0, a popular and widely-used deep learning framework known for its flexibility and 

scalability. Additional software components, such as CUDA 11.3, were utilized to harness the 

parallel processing capabilities of the GPU, further optimizing the performance of the deep 

learning algorithms employed in the experiments. This harmonious combination of hardware 

and software resources laid a solid foundation for the successful execution of the experiments. 
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4.1.2 Packages 

The experiments utilized the following software packages and libraries: The Python 3.9 

version used for the experiments. 

Deep Learning Frameworks: The deep learning frameworks TensorFlow 2.14.0 was used 

in this experiment. 

Other Packages: Pandas, Numpy, Scikit-learn, Matplotlib, Seaborn was used in this 

experiment. 

4.1.3 Steps of the Experiments               

The experimental procedures adhered to a meticulously structured set of steps, as delineated 

in Table (4). The initial step involved defining the research objectives and formulating clear 

hypotheses to guide the experiments. Subsequently, a comprehensive literature review was 

conducted to ensure the experiments were grounded in existing knowledge and best practices. 

The third step encompassed the careful design of the experimental setup, considering the 

hardware and software resources detailed in Tables (2) and (3) This phase also involved the 

selection of appropriate datasets and the configuration of hyper-parameters for the deep learning 

models.These steps collectively form a comprehensive pipeline, starting from the initial data 

acquisition to the utilization of advanced deep learning techniques for HVAC system load 

prediction. Each step was carefully executed to ensure the reliability and effectiveness of the 

experimental outcomes. 

Table 4. Steps of the Experiment 

Step Description 

1 
Data Loading: Raw HVAC system data was acquired and loaded into the 

experimental environment, providing the foundation for subsequent analyses. 

2 

Data Pre-processing: The loaded data underwent a comprehensive pre-processing 

phase, including handling irrelevant and duplicate data, addressing noisy and 

incorrect data points, correcting data types, and addressing missing values. Multi 

col-linearity issues were also identified and resolved during this step. 

3 

Feature Scaling and Normalization: To ensure uniform contribution of features 

and prevent dominance due to scale differences, feature scaling and 

normalization techniques were applied. This involved methods such as Min-Max 

scaling and Z-score normalization. 

4 

RBM Feature Extraction: A Restricted Boltzmann Machine (RBM) was 

employed for feature extraction, capturing intricate patterns and hierarchical 

representations within the preprocessed data. The RBM trans-formed the input 

data into a compact set of representative features. 

6 

ANN Load Prediction: The preprocessed and RBM transformed features were 

utilized as input for an Artificial Neural Network (ANN). The ANN was trained 

to predict HVAC system load based on the learned features, leveraging its 

capacity for learning complex relationships within the data. 

7 Evaluation Matrices:MAE, MSE, RMSE, R2 
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4.2 Results 

In Figure (14), the graph illustrates the training and validation loss curves for models based 

on Restricted Boltzmann Machines (RBM) and Artificial Neural Networks (ANN). 

The smooth trajectories of both curves suggest effective learning and generalization during 

the training process. The training loss curve represents the evolution of the model’s 

performance on the training data over successive epochs, while the validation loss curve reflects 

its performance on a separate validation set. The consistent decline in both loss values indicates 

that the models are progressively optimizing and minimizing errors. The smoothness of the 

curves suggests that the models are learning efficiently without significant fluctuations, 

contributing to stable training and validation processes. This graph provides a visual 

confirmation of the models’ robustness and their ability to generalize well to new data beyond 

the training set. 

 
Figure 15. Training and Validation Loss 

In this section, the results obtained from the experiments. Table (5) summarizes the 

performance metrics for the proposed model and compares them with ANN and RBM model. 

Table 5. Evaluation Metrics Results of the Models 

Matric Proposed Model ANN RBM 

R2 1 0.8801 0.9154 

MAE 0.1541 0.2978 0.3312 

MSE 0.3405 0.4311 0.5714 

RMSE 0.5835 0.8872 0.9925 

Table (5) provides a comprehensive overview of the evaluation metrics results for the 

proposed model, as well as a comparative analysis with an Artificial Neural Network (ANN) 
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and a Restricted Boltzmann Machine (RBM). The proposed model showcases remarkable 

performance across various metrics, outperforming both the ANN and RBM. The Mean 

Absolute Error (MAE) for the proposed model is notably lower at 0.1541, compared to 0.2978 

for the ANN and 0.3312 for the RBM. In terms of Mean Squared Error (MSE), the proposed 

model achieves a substantially reduced value of 0.3405, outshining the ANN (0.4311) and the 

RBM (0.5714). The Root Mean Squared Error (RMSE) further highlights the accuracy of the 

proposed model with a value of 0.5835, in contrast to 0.8872 for the ANN and 0.9925 for the 

RBM. The R2 value, a measure of the model’s ability to explain variance, is a perfect 1 for the 

proposed model, indicating an exceptional fit to the data. In comparison, the ANN and RBM 

exhibit R2 values of 0.8801 and 0.9154, respectively. These results collectively underscore the 

effectiveness of the proposed model in achieving superior predictive accuracy compared to the 

alternative models. 

4.2.1 Model Prediction Vs Original Data 

In Table (6), a detailed examination of the model’s predictive accuracy in comparison to the 

original data is provided. The ”Test List” enumerates specific time steps, with each row 

presenting the actual values from the original dataset, the corresponding model predictions, and 

the calculated differences. For instance, at time step 1, the original data value is 1148, the model 

predicts 1148.0527, resulting in a difference of 0.0527. These values are indicative of the 

model’s performance across various instances, offering a granular understanding of its ability to 

capture and reproduce the underlying patterns within the dataset. The ”Difference” column 

quantifies the precision of the model predictions, emphasizing how closely they align with the 

observed data. 

Table 6. Comparison of Model Prediction and Original Data 

Test List Original Data Model Prediction Difference 

1 1148 1148.0527 0.0527 

2 813 813.06629 0.06629 

3 1363 1363.0729 0.0729 

4.2.2  Analysis 

In Figure (15), the plot visually represents the close alignment between the actual data and 

the model’s predictions during the test phase. The x-axis likely denotes individual test cases, 

while the y-axis represents the corresponding values of the observed and predicted data. The 

blue line depicts the actual data, showcasing the ground truth or real-world outcomes. 

Simultaneously, the red line illustrates the model’s predictions, indicating the values anticipated 

by the model. The proximity and almost perfect overlap between these two lines suggest a high 

level of accuracy in the model’s predictions, signifying its ability to effectively capture and 

replicate the underlying patterns within the test data. This visual observation serves as 
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compelling evidence of the model’s accuracy in predicting real-world outcomes, providing a 

clear and intuitive representation of its performance on the test dataset. 

 
Figure 16. Actual and Prediction Data Test 

The analysis of the results from Table (5) and Figure (15) provides valuable insights into 

the performance of the proposed model. The key observation is the significant reduction in 

Mean Absolute Error (MAE) and Mean Squared Error (MSE) compared to other models. This 

suggests that the integrated RBM and ANN approach effectively captures complex patterns 

and dependencies in the HVAC system load data.  

Additionally, the Root Mean Squared Error (RMSE) and R2 values further support the 

model’s accuracy and ability to explain the variance in the data. The analysis emphasizes the 

robustness of the proposed model in delivering precise predictions for HVAC system loads. 

4.2.3 Discussion 

The discussion revolves around the implications of the observed results and their 

significance in the context of HVAC system load prediction. 
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Figure 17. Evaluation Metric Results of the Models 

The superior performance of the proposed model can be seen in (16), as evidenced by the 

lower MAE, MSE, and RMSE, suggests its potential for practical applications in optimizing 

HVAC system operations. The integrated RBM and ANN approach demonstrates a holistic 

understanding of the intricate relationships within the data, showcasing its adaptability to 

diverse HVAC system scenarios. Moreover, the high R2 value indicates the model’s capability 

to provide reliable predictions, crucial for decision-making in HVAC system management. 

Overall, the discussion underscores the proposed model’s contribution to advancing the 

accuracy and efficiency of HVAC system load prediction methodologies.
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CHAPTER 5  Conclusion And Future Work 

5.1 Conclusions 

 In conclusion, this thesis has proposed and implemented a hybrid model combining 

Restricted Boltzmann Machine (RBM) for feature extraction and Artificial Neural Network 

(ANN) for HVAC system load prediction. The model has shown promising results in 

accurately forecasting the HVAC system load based on the selected input parameters, 

including outdoor and indoor temperatures, atmospheric pressure, relative humidity, cloud 

state, wind speed, intensity of solar radiation, supply and return water temperatures, and the 

system load itself. 

The key findings and contributions of this work are as follows: 

The RBM successfully extracts relevant features from the input data, providing a compact 

and meaningful representation for the ANN. 

The integrated RBMs-ANNs model demonstrates superior performance, achieving a high 

R2 , low MAE, MSE, and RMSE in HVAC system load prediction. 

The selected input parameters, play a crucial role in influencing the HVAC system load, as 

evidenced by their impact on the model’s predictions. 

5.2 Future Work 

The load prediction for HVAC systems, the future trajectory of research, combining RBMs 

for feature extraction and ANNs for load prediction, presents a compelling avenue for trans 

formative advancements in building automation and energy management. As the global focus 

intensifies on sustainable practices and energy efficiency, there exists a crucial impetus to 

delve deeper into these models and explore their untapped potential. Future investigations 

should concentrate on enhancing the precision and adaptability of load prediction models by 

incorporating dynamic and context aware parameters. This entails exploring the integration of 

sophisticated data sources such as real time weather data, occupancy patterns, and behavioral 

aspects of building occupants, aiming for more nuanced and accurate load predictions. The 

development of real time prediction capabilities is a promising prospect, allowing proactive 

adjustments to HVAC systems based on immediate changes in environmental conditions and 

occupant activities. This breakthrough promises a more responsive and agile approach to 

energy management, ensuring optimal comfort levels while minimizing energy wastage. 

Additionally, the integration of predictive control mechanisms into HVAC systems holds the 

potential for seamless optimization and proactive energy consumption management. 

Implementing intelligent algorithms that anticipate load variations and dynamically adjust 

system parameters could usher in an unprecedented era of energy efficiency and sustainability 

in building environments. This integration might also encompass adaptive learning 

mechanisms, enabling HVAC systems to continuously refine operational strategies based on 

evolving usage patterns and environmental dynamics. 
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