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Abstract 

In this paper we develop a deterministic compartmental mathematical model for the spread of the 
Mumps virus disease in the community. We develop our model by modifying the model designed by 
Yong et al. (2017) by incorporating the isolation compartment as control strategies to control the 
transmission rate. An appropriate system of ordinary differential equations (ODE) was formulated for 
the transmission and the method of linearized stability approach was used to solve the equations. The 
Existence and uniqueness, Disease free equilibrium (DFE), positivity of the solution, Reproduction 
number and stability analysis were carried out. The equilibria state showed that the disease can easily 
by trigged off or reduced, so the need to be constantly alert and effective prevention measures put in 
place against its spread, in addition, numerical analyses were carried out with the model parameter 
assigned specific hypothetical values and graphs were plotted to investigate the effect of these 
parameters on the transmission of the disease. The result showed that, with the nature of the virus, 
uncontrolled transmittable contact between infected individuals and the susceptible can lead to a very 
serious outbreak with effective isolation structure put in place such situation can be better managed 
and outbreak controlled.  
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1. Introduction 
 Mumps is a contagious viral illness caused by the paramyxovirus. It is a human 

systemic disease that occurs worldwide but is highly preventable via the mumps vaccine. The mumps 
vaccine was introduced and licensed in United State in 1967 [4], and the disease became nationally 
reportable in 1968. The incidence has decreased substantially with vaccination, but periods of 
resurgence have occurred in recent years.Humans are the only known hosts for the virus that causes 
mumps and the causative agent of mumps infection, is an enveloped RNA virus [16]. Since the disease 
is generally benign and self- resolving, its mortality is rare, but aseptic meningitis can affect 10% of 
case-patients [7]. Although mumps incidence is highest in the winter and spring months, in warm 
climates it is present throughout the year, [3]. Initial signs and symptoms often include fever, muscles 
pain and headache, then usually followed by painful swelling of one or both parotid salivary glands. 
The virus is a significant cause of paediatric deafness, and up to 37% of post-pubertal males develop 
orchitis, 13% of whom have impaired fertility, [3]. 
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 The transmission of the virus is by direct physical contact, droplet spread, or contaminated 
fomites [6,8,9]. The incubation period is about 15 to 24 days (median is 19 days) [13]. Infected 
patients become the most contagious in 1-2 days before onset of clinical symptoms and continue so for 
a few days afterwards. Generally speaking, the infectious period is about eight days [5], and the 
patients will recover between 10 to 14 days [1,14]. It is often associated with some pain on 
swallowing, fever, which is usually mild and loss of appetite. Most of the symptoms are treatable with 
simple pain killers, bed rest and fluids. Oral fluids should be warm, which makes it easier to swallow, 
but sometimes, the symptoms are severe enough to make it practical to institute medical attention such 
as intravenous fluid therapy. [1]. 
 Unfortunately, the disease itself has no direct treatment in the same way as you might use a 
specific medication to achieve a cure of something like malaria; antibiotic prescriptions are often 
written out to deter any bacteria from seizing an opportunistic way of invade the person’s tissues. This 
is called a prophylactic drug treatment. In the end, the resolution of the infection has a lot more to do 
with the former range of therapies rather than the antibiotic measures taken, no matter how potent the 
drugs are.When mumps is suspected, a genuine effort needs to be made to confirm if indeed it is the 
disease being suspected. Many times, mumps does not really appear to be typical in the same way that 
conjunctivitis causes redness of the eyes. Swelling of the salivary glands occurs in just over a third of 
all cases. However, even this feature is seen in a variety of bacterial infections of the salivary glands, 
as well as in other viral infections affecting those glands such as in infectious mononucleosis and 
similar viruses. There are, thus, a fair number of copycat diseases and they can be frankly deceptive. It 
is important to note that other conditions may also look like mumps, as seen above. In nearly half of 
all patients, they would have symptoms as though they had a simple cold.  Many cases of this disease 
therefore escape notice, but it is one condition which spreads like wildfire in hostels and dormitories. 
This is where educators, healthcare professionals and parents should exercise maximum vigilance. [3]. 
 The spread of mumps through the saliva includes shared plates, cups and glasses. It is also 
spread through coughing, sneezing and kissing. It is thus able to spread rapidly among children and 
also from children to adults, thus demonstrating that no age group is immune except those who have 
had prior immunisation. It is therefore important to ensure that anyone in contact with a mumps patient 
should be up to date with their vaccines. Commonly, two doses are recommended for children at 12 to 
15 months of age and again at between four and six years of life. [7].The MMR vaccine which protects 
against mumps, measles and rubella is given in a wide spectrum of temperate countries but it is not 
incorporated in the National Programme on Immunisation in Nigeria where only the measles vaccine 
is given. However, a number of private hospitals avail their patients of this service. These two doses 
do not provide 100 per cent protection against mumps, but its routine use in the United States for one 
has reduced the incidence of mumps to less than one percentage point. That is the major reason why 
the debate over whether to add a third dose has not been widely received. [7]. 
 All these facts put together motivated us to study the dynamics of these diseases and contribute 
to the body of existing knowledge on it. Infectious disease are diseases caused by pathogenic 
microorganism such as bacteria, viruses, parasites, or fungi, the diseases can be spread, directly or 
indirectly from one person to another. And some of them are deadly diseases.Mumps is also known as 
common childhood viral disease and is highly contagious to human beings. It is a human system 
disease that occurs worldwide but is highly preventable via the mumps vaccine. 

The principal aim of modelling infectious diseases is to be able to make judicious decisions in the 
application of control interventions of the infection to eliminate and ideally to eradicate it from the 
population. Simulations and modelling can optimize control efforts such that limited resources are 
targeted to achieve the highest impact[2]. 

 Yong et al. (2017).  Designed and developed a dynamic transmission model of Mumps Virus 
in which they used SVEILR model (susceptible-vaccinated-exposed-severely infectious-mild 
infectious-recovered).  They consider the influence of vaccination but didn’t incorporate the isolation 
class. 

In this paper we aim to modify the model due to (Yong et al. 2017) by incorporating the 
isolation compartment considering the nature of the virus, isolation is of great important in controlling 
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the spread of the virus and the objectives is to Establish the disease free equilibrium state of the model, 
obtain reproduction number of the model and Analyse the global stability of the disease free 
equilibrium state of the model.  

The rest of our paper is organized as follows, second section will be best on formulation of the 
model, third section will be on model Analysis, the fourth on simulation and discussion and lastly we 
will wind up our work by conclusion and recommendations. 
 
2.0.  Model Formulation 
 In this paper we designed a deterministic compartmental mathematical model for Mumps Virus 
disease that captures isolation compartment as control strategies base on the following assumptions: 
(1). The total population is constant in a short period of time. 
(2). They assume that the birth rate equals to the natural death rate, denoted by 𝜇𝜇. 
(3). The population associated with Mumps is divided into seven epidemiological Sub-classes. 
(4). The proportion Susceptible to total population (s) 
(5). The proportion Mildly infectious to total population (L, Mild infections, including both 
asymptomatic and those with Mild symptoms and self-care). 
(6). The proportion recovered to the total population (R), subject to the restriction. 
(7). The proportion severely infectious to the total population (I, severely infectious requiring medical 
attention) 
(8). The proportion of vaccinated to the total population (V) 
(9). The proportion Exposed to the total population (E, infected but not infectious) 
(10). We assume the possibility of getting recovered from severe condition without been isolation. 
(11). The proportion isolation to the total population 

Based on the above mentioned assumptions and motivated by the work of [12,10] we designed a new 
deterministic model as follows 

Our model is designed base on the characteristic of mumps transmission; therefore, the model 
composed of seven sub – classes namely S(t), E(t), I(t), L(t), J(t), R(t) and V(t).𝑆𝑆(𝑡𝑡) is the number of 
susceptible individuals at a time t, 𝐸𝐸(𝑡𝑡) is the number of latent individuals at a time 𝑡𝑡, who are infected 
but not infectious yet, or individuals with symptoms but misdiagnosed by a doctor, I(t) is the number 
of  severe – infected individuals at a time whose require medical attention, L(t) is the number of  Mild 
– infected individuals at a time including both asymptomatic and those with mild symptoms and self - 
care, J(t) is the number of isolated individuals at a time, V(t) is the number of vaccine individuals at a 
time, and R(t) is the number of recovered individuals at a time subject to the restriction 𝑆𝑆 + 𝑉𝑉 + 𝐸𝐸 +
𝐼𝐼 + 𝐿𝐿 + 𝐽𝐽 + 𝑅𝑅 = 1. The transmission dynamics associated with these sub-classes are illustrated in 
Figure 1. 
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Figure 1:  Flowchart of mumps transmission in a population 

When susceptible people S(t) are infected, they progress to the exposed, but not infectious state (E) 
from there, they become infectious to the susceptible population. A mild – infectious peoples progress 
to recover class after self- medication. While severely – infectious progress to isolation class for 
medical attention as well as reducing the spread to the people than progress to recover class.  

Table 1: Detailed description of variables/parameters. 

Variables/ 
Parameters 

Description Assumed 
value for 
simulation 

S(t) The number of Susceptible individuals at a time t 800 
E(t) The number of Exposed individuals at a time t, 200 
I(t) The number of severe - infected individuals at time t, 50 
L(t) The number of Mild – infectious individuals at a time t, 100 
J(t) The number of Isolated individuals at a time t, 40 
R(t) The number of Recovered individuals at a time t 200 
V(t) The number of vaccinated individuals at a time t 500 
β The transmission rate 0.2 
μ Present the birth and natural mortality rate 500 
γ Proportion of  severe infectious seeking medical advice 0.6 
λ Loss of vaccination rate 0.4 
α Rate moving from Exposed to Severe or mild Infectious 

population 
0.4 

κ Invalid vaccination rate 0.6 
ε Vaccine coverage of the Susceptible 0.5 
δ1 Rate moving from severe Infectious to Isolation 

population 
0.8 

δ2 Rate moving from Mild Infectious to Recovered 
population 

1.0 

δ3 Rate moving from isolation to Recovered population 1.0 
ρ Fraction of the offspring from Exposed parent birth into 

Exposed population 
0.4 

ε1 Vaccine coverage of the Exposed population 0.3 
 
2.1  Model Equations 

 From the description of the dynamics of Mumps virus and with the aid of the compartmental 
diagram in Figure 1, the following set of non-linear ordinary differential equations can be derived: 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡

=  𝜇𝜇 −  𝜌𝜌𝜇𝜇𝐸𝐸 −  𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) +  𝜆𝜆𝑉𝑉 − (𝜀𝜀 +  𝜇𝜇)𝑆𝑆   … (1)  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

=  𝜀𝜀𝑆𝑆 +  𝜀𝜀1𝐸𝐸 −  𝜆𝜆𝑉𝑉 −  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿) −  𝜇𝜇𝑉𝑉    … (2) 

𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

=  𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) +  𝜌𝜌𝜇𝜇𝐸𝐸 +  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿) − (𝛼𝛼 +  𝜀𝜀1 +  𝜇𝜇)𝐸𝐸  … (3) 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

=  𝛼𝛼𝛼𝛼𝐸𝐸 − (𝛿𝛿1 +  𝜇𝜇)𝐼𝐼       …(4) 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡  

=  𝛼𝛼(1 −  𝛼𝛼)𝐸𝐸 − (𝛿𝛿2 +  𝜇𝜇)𝐿𝐿      … (5) 

𝑑𝑑𝐽𝐽
𝑑𝑑𝑡𝑡

=  𝛿𝛿1𝐼𝐼 − (𝜇𝜇 + 𝛿𝛿3)𝐽𝐽       … (6) 
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𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

=  𝛿𝛿2𝐿𝐿 + 𝛿𝛿3𝐽𝐽 −  𝜇𝜇𝑅𝑅       … (7) 

The validity and authenticity of any mathematical model depends on whether the given system of 
equation has a solution or not. And if model given monitor human population, it is significant to show 
that all the state variables in the model is non negative for all time. To achieve that we used the 
existences and uniqueness of the solution and positivity of solution of the model. 

2.2. The Existence and Uniqueness of the Solution 

We use the theorem of existence and uniqueness of ode by Derrick and Grossman (1776), the 
existence and uniqueness of the model equation given byEqs(1 - 7). 

Theorem 1 

Consider the system of equation below 

�

𝑥𝑥1
1 =  𝑓𝑓1 (𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛), 𝑥𝑥1,(𝑡𝑡0) =  𝑥𝑥10

𝑥𝑥2
1 =  𝑓𝑓1 (𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛), 𝑥𝑥2,(𝑡𝑡0) =  𝑥𝑥20

.

.

.
𝑥𝑥𝑛𝑛

1 =  𝑓𝑓𝑛𝑛 (𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛), 𝑥𝑥𝑛𝑛,(𝑡𝑡0) =  𝑥𝑥𝑛𝑛0⎭
⎪⎪
⎬

⎪⎪
⎫

      … (8)  

     

We may write Eq (8) in compact form as  

𝑥𝑥1 =  𝑓𝑓1(𝑡𝑡, 𝑥𝑥), 𝑥𝑥1(𝑡𝑡0) =  𝑥𝑥0        … (9) 

Theorem 2  

Let D denote the region 

|𝑡𝑡 −  𝑡𝑡0|  ≤ 𝑎𝑎, ‖𝑥𝑥 −  𝑥𝑥0‖  ≤ 𝑏𝑏, 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ), 𝑥𝑥0 = (𝑥𝑥10, 𝑥𝑥20, … , 𝑥𝑥𝑛𝑛0)  … (10) 

And suppose that 𝐹𝐹(𝑡𝑡, 𝑥𝑥) satisfies the Lipchitz condition 

‖𝑓𝑓(𝑡𝑡, 𝑥𝑥1) − 𝑓𝑓(𝑡𝑡, 𝑥𝑥2)‖  ≤ 𝑘𝑘‖𝑥𝑥1 −  𝑥𝑥2‖       …(*) 

Whenever the pairs (t, 𝑥𝑥1) and (𝑡𝑡, 𝑥𝑥2) belong to 𝐷𝐷𝑙𝑙 . Where K is a positive constant. Then there is a 
constant δ > 0 such that there exist a unique continues vector solution of 𝑋𝑋(𝑡𝑡) of Eq (9) in the interval 
|𝑡𝑡 −  𝑡𝑡0|  ≤  𝛿𝛿. It is important to note that the condition (*) is satisfied by the requirement that 𝛿𝛿𝑓𝑓𝑖𝑖

𝛿𝛿𝑥𝑥𝑗𝑗
, 𝑖𝑖, 𝑗𝑗 =

1,2, … be continues and bounded in 𝐷𝐷1 

 

Theorem 3 

Let D denote the region defined in 1 ≤  𝜀𝜀 ≤ 𝑅𝑅, and 0 < 𝑅𝑅 <  ∞, hold then these exist a unique 
solution of Eqs  (1 - 7)  of the model equation which is bounded in the region D. 

Proof: Let  

𝑓𝑓1 =  𝜇𝜇 −  𝜌𝜌𝜇𝜇𝐸𝐸 −  𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) +  𝜆𝜆𝑉𝑉 − (𝜀𝜀 +  𝜇𝜇)𝑆𝑆      … (12) 

𝑓𝑓2 =  𝜀𝜀𝑆𝑆 +  𝜀𝜀1𝐸𝐸 −  𝜆𝜆𝑉𝑉 −  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿) −  𝜇𝜇𝑉𝑉      … (13) 

𝑓𝑓3 =  𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) +  𝜌𝜌𝜇𝜇𝐸𝐸 +  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿) − (𝛼𝛼 +  𝜀𝜀1 +  𝜇𝜇)𝐸𝐸    … (14) 

𝑓𝑓4 =  𝛼𝛼𝛼𝛼𝐸𝐸 − (𝛿𝛿1 +  𝜇𝜇)𝐼𝐼         … (15)  

𝑓𝑓5 =  𝛼𝛼(1 −  𝛼𝛼)𝐸𝐸 − (𝛿𝛿2 +  𝜇𝜇)𝐿𝐿        … (16)  
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𝑓𝑓6 =  𝛿𝛿1𝐼𝐼 − (𝜇𝜇 +  𝛿𝛿3)𝐻𝐻         … (17)  

𝑓𝑓7 =  𝛿𝛿2𝐿𝐿 +  𝛿𝛿3𝐻𝐻 −  𝜇𝜇𝑅𝑅         … (18)  

It is sufficient to show that 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

, 𝑖𝑖, 𝑗𝑗 = 1,2, … 7 are continuous. 

Let 𝑆𝑆 =  𝑥𝑥1, 𝑉𝑉 =  𝑥𝑥2, 𝐸𝐸 =  𝑥𝑥3, 𝐼𝐼 =  𝑥𝑥4, 𝐿𝐿 =  𝑥𝑥5, 𝐽𝐽 =  𝑥𝑥6, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑅𝑅 =  𝑥𝑥7, 

Taken the partial derivative of Eqs (12-18) separately, we have 

𝑓𝑓1 ⇒ �𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥6

� =  �𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥7

� = 0 <  ∞,  𝑓𝑓2 ⇒ �𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥6

� =  �𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥7

� = 0 <  ∞, 

𝑓𝑓3 ⇒ �𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥6

� =  �𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥7

� = 0 <  ∞,  𝑓𝑓4 ⇒ �𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥1

� =  �𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥2

� =  �𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥5

� =  �𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥6

� =  �𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥7

� = 0 <  ∞, 

𝑓𝑓5 ⇒ �𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥1

� =  �𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥2

� =  �𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥4

� =  �𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥6

� =  �𝜕𝜕𝑓𝑓5
𝜕𝜕𝑥𝑥7

� = 0 <  ∞, 

𝑓𝑓6 ⇒ �𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥1

� =  �𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥2

� =  �𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥3

� =  �𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥5

� =  �𝜕𝜕𝑓𝑓6
𝜕𝜕𝑥𝑥7

� = 0 <  ∞, 

𝑓𝑓7 ⇒ �
𝜕𝜕𝑓𝑓7

𝜕𝜕𝑥𝑥1
� =  �

𝜕𝜕𝑓𝑓7

𝜕𝜕𝑥𝑥2
� =  �

𝜕𝜕𝑓𝑓7

𝜕𝜕𝑥𝑥3
� =  �

𝜕𝜕𝑓𝑓7

𝜕𝜕𝑥𝑥4
� =  0 <  ∞ 

Clearly all these partial derivatives are continuous and bounded. Hence by Theorem 2, these exist a 
unique solution of Eq (12 – 18) in the region D. 

2.3  Positivity of Solution of the Model 

Since the model equations given by Eqs(1 – 7) monitors human population, it is significant to show 
that all the state variables in the model is non negative for all time. 

Theorem 4 

For non-negative initial conditions of the model equations given by Eqs (12 – 18), the solution 
(S,V,E,I,L,J,R) of the model Eqs (12 – 18) are all non-negative for all time 𝑡𝑡 ≥ 0. 

Proof:  

Eq (12-18) can be rewritten as  
𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡

 ≥  −(𝜛𝜛 +  𝑘𝑘1)𝑆𝑆         … (19) 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

 ≥  −(𝑘𝑘2 +  𝜑𝜑)𝑉𝑉         … (20)  

𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

 ≥  (𝜁𝜁 −  𝑘𝑘3)𝐸𝐸         … (21)  

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

 ≥  −𝑘𝑘4          … (22)  

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

 ≥  − 𝑘𝑘5          … (23)  

𝑑𝑑𝐽𝐽
𝑑𝑑𝑡𝑡

 ≥  −𝑘𝑘6          … (24)  

𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

 ≥  −𝑘𝑘7          … (25)  

Integrating both side of Eq (19-25) separately and set 𝑡𝑡 = 0. We have 

𝑆𝑆(0) ≥ 0, 𝑉𝑉(0) ≥ 0, 𝐸𝐸(0)  ≥ 0,  𝐼𝐼(0)  ≥ 0, 𝐿𝐿(0)  ≥ 0,  𝐽𝐽(0)  ≥ 0,and 𝑅𝑅(0)  ≥ 0. 

Which proof that all the variables in the model are non-negative for all time. 

 

GSJ: Volume 8, Issue 11, November 2020 
ISSN 2320-9186 71

GSJ© 2020 
www.globalscientificjournal.com



 

3. Model Analysis 

The model Eqs (1-7) is analyzed qualitatively to get insights into its dynamical features which give 
better understanding of the impact control strategies on the transmission dynamics of Mumps virus 

3.1 Disease free equilibrium state 

Consider the system of Eqs (1 - 7). In order to obtain the equilibrium, point we set the right hand sides 
of the Eqs (1 - 7) to zero (0) that is  

i.e. 𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡

=  𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

=  𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

=  𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

=  𝑑𝑑𝐽𝐽
𝑑𝑑𝑡𝑡

=  𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

=  𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 0 

At disease free, all the compartments are zero except that of Susceptible and Vaccination. 

Eqs (1 – 7) reduced to  

𝜇𝜇 +  𝜆𝜆𝑉𝑉∗ − (𝜀𝜀 + 𝜇𝜇)𝑆𝑆∗ = 0        … (26) 

𝜀𝜀𝑆𝑆∗ −  𝜆𝜆𝑉𝑉∗ −  𝜇𝜇𝑉𝑉∗ = 0         … (27) 

From Eq (27) 

𝑉𝑉∗ = 𝜀𝜀𝑆𝑆∗

(𝜆𝜆+ 𝜇𝜇)
          … (28) 

Putting Eq(28) in Eq(26) 

⟹  𝑆𝑆∗ =  𝜇𝜇 (𝜇𝜇+ 𝜆𝜆)
((𝜆𝜆+ 𝜇𝜇 )(𝜀𝜀+ 𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )

        … (29) 

Putting Eq(29) in Eq(28) 

⟹𝑉𝑉∗ =  𝜀𝜀𝜇𝜇
((𝜆𝜆+ 𝜇𝜇 )(𝜀𝜀+ 𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )

        … (30) 

Therefore the disease free equilibrium state is  𝐸𝐸0 = (𝑆𝑆, 𝑉𝑉, 𝐸𝐸, 𝐼𝐼, 𝐿𝐿, 𝐽𝐽, 𝑅𝑅) 

⟹𝐸𝐸0 = � 𝜇𝜇(𝜇𝜇+ 𝜆𝜆)
((𝜆𝜆+ 𝜇𝜇 )(𝜀𝜀+ 𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )

, 𝜀𝜀𝜇𝜇
((𝜆𝜆+ 𝜇𝜇 )(𝜀𝜀+ 𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )

, 0,0,0,0,0� 

3.2. Basic reproduction number 𝑹𝑹0 
The basic reproduction number denoted by 𝑅𝑅0  is the average number of secondary infections caused 
by an infectious individual during his or her entire period of infectiousness [16]. The basic 
reproduction number is an important non-dimensional quantity in epidemiology as it sets the threshold 
in the study of a disease both for predicting its outbreak and for evaluating its control strategies. Thus, 
whether a disease becomes persistent or dies out in a community depends on the value of the 
reproduction number, 𝑅𝑅0. Furthermore, stability of equilibria can be analyzed using𝑅𝑅0; if 𝑅𝑅0<1 it 
means that every infectious individual will cause less than one secondary infection and hence the 
disease will die out and when 𝑅𝑅0>1, every infectious individual will cause more than one secondary 
infection and hence the disease will invade the population. A large number of 𝑅𝑅0 may indicate the 
possibility of a major epidemic. For the case of a model with a single infected class, 𝑅𝑅0  is simply the 
product of the infection rate and the mean duration of the infection. 

 Due to complicated epidemics in our model, we compute the reproduction number, 𝑅𝑅0 using 
the next generation operator approach by [11]. 

 Firstly, we arrange the system to get group of infections classes only that is (E, I, L, J). Let 
𝑓𝑓𝑖𝑖 (𝑥𝑥) be the rate of appearance of new infections (transmission) in compartment 𝑖𝑖, 𝑉𝑉𝑖𝑖

+(𝑥𝑥) be the rate of 
transmission after new infections (transmission rate by all other means) and 𝑉𝑉𝑖𝑖

−(𝑥𝑥) be the rate of 
transfer of individuals out of compartment 𝑖𝑖. 
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Consider the system of equation for the infected population given by below 

�

𝜕𝜕𝐸𝐸
𝜕𝜕𝑡𝑡

=  𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) +  𝜌𝜌𝜇𝜇𝐸𝐸 +  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿) − (𝛼𝛼 +  𝜀𝜀1 +  𝜇𝜇)𝐸𝐸
𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡

=  𝛼𝛼𝛼𝛼𝐸𝐸 − (𝛿𝛿1 +  𝜇𝜇)𝐼𝐼
𝜕𝜕𝐿𝐿
𝜕𝜕𝑡𝑡

=  𝛼𝛼(1 −  𝛼𝛼)𝐸𝐸 − (𝛿𝛿2 +  𝜇𝜇)𝐿𝐿
𝜕𝜕𝐽𝐽
𝜕𝜕𝑡𝑡

=  𝛿𝛿1𝐼𝐼 − (𝜇𝜇 + 𝛿𝛿3)𝐽𝐽 ⎭
⎪⎪
⎬

⎪⎪
⎫

   … (31) 

From Eq (31) we have 

𝐹𝐹𝑖𝑖 �

𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
𝐹𝐹4

� =  �
𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) + 𝜌𝜌𝜇𝜇𝐸𝐸 +  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿)

0
0
0

�     … (32) 

From Eq (31) we consider those terms that does not have new infection and multiply by (-1) 

That is, we have 

𝑉𝑉𝑖𝑖 =  �

𝑉𝑉1
𝑉𝑉2
𝑉𝑉3
𝑉𝑉4

� =  

⎣
⎢
⎢
⎡

(𝛼𝛼 +  𝜀𝜀1 +  𝜇𝜇)𝐸𝐸
(𝛿𝛿1 +  𝜇𝜇)𝐼𝐼 −  𝛼𝛼𝛼𝛼𝐸𝐸

(𝛿𝛿2 +  𝜇𝜇)𝐿𝐿 −  𝛼𝛼(1 −  𝛼𝛼)𝐸𝐸
(𝜇𝜇 +  𝛿𝛿3)𝐽𝐽 −  𝛿𝛿1𝐽𝐽 ⎦

⎥
⎥
⎤
      … (33) 

Now, taken 𝛿𝛿𝑓𝑓𝑖𝑖
𝛿𝛿𝑥𝑥𝑖𝑖

 of Eq (32) and evaluate at disease free state. We have 

𝐹𝐹 =  �
𝐴𝐴1 𝐴𝐴2
0 0

𝐴𝐴3 0
0 0

0 0
0 0

0 0
0 0

�        … (34) 

Similarly, taken  𝛿𝛿𝑉𝑉𝑖𝑖
𝛿𝛿𝑥𝑥𝑖𝑖

 of Eq (33). We have 

⟹ 𝑉𝑉 =  �

 𝐵𝐵1
𝐵𝐵2
𝐵𝐵4
0

0
𝐵𝐵3
 0
𝐵𝐵6

0
0

  𝐵𝐵5
0

        0
        0
        0

𝐵𝐵7

�        … (35) 

Taken inverse of Eq (35) and multiply by Eq (35) gives. 

𝑉𝑉−1 =  �

𝐶𝐶1 0
𝐶𝐶2 𝐶𝐶3

0 0
0 0

0 0
𝐶𝐶5 𝐶𝐶6

𝐶𝐶4 0
0 𝐶𝐶7

�        … (38) 

𝐹𝐹𝑉𝑉−1 =  �
𝐷𝐷1 𝐷𝐷2
0 0

𝐷𝐷3 0
0 0

0  0
0  0

0  0
0  0

�        … (39) 

Finding |𝐹𝐹𝑉𝑉−1 −  𝜆𝜆| = 0. Of Eq (39). We have 

𝜆𝜆1 =  𝐷𝐷1,     𝜆𝜆2 = 0 , 𝜆𝜆3 =  +0 𝑎𝑎𝑛𝑛𝑑𝑑  𝜆𝜆4 =  −0  

⟹ Our 𝑅𝑅0 =  𝐷𝐷1 Because 𝐷𝐷1 is the largest eigenvalue. 

⟹ 𝑅𝑅0 =  𝑅𝑅1 +  𝑅𝑅2𝑅𝑅3. Where 𝑅𝑅1 =  𝜌𝜌𝜇𝜇
(𝛼𝛼+ 𝜀𝜀1+ 𝜇𝜇 )

 𝑅𝑅2 =  𝛽𝛽𝜇𝜇 (𝜆𝜆+𝜇𝜇 )
((𝜆𝜆+𝜇𝜇 )(𝜀𝜀+𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )

 𝑅𝑅3 =  𝛼𝛼𝛼𝛼
(𝛼𝛼+𝜀𝜀1+𝜇𝜇)(𝛿𝛿1+ 𝜇𝜇 )
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3.3. Global stability of disease free equilibrium (DFE) 

 To establish the global stability of the disease free equilibrium of the model using the 
theorem by (Castillo – Chavez et al., 2002). the conditions 𝐻𝐻1and 𝐻𝐻2 must be satisfied. 

𝐻𝐻1 : 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝐻𝐻(𝑥𝑥, 0), 𝑥𝑥0is globally asymptotically stable (GAS) 

𝐻𝐻2: 𝐺𝐺(𝑥𝑥, 𝑧𝑧) = 𝑝𝑝𝑧𝑧 −  𝐺𝐺�(𝑥𝑥, 𝑧𝑧), 𝐺𝐺�(𝑥𝑥, 𝑧𝑧) ≥ 0  for (𝑥𝑥, 𝑧𝑧)  ∈  Ω, where 𝑃𝑃 = △𝑧𝑧 𝐺𝐺(𝑥𝑥0, 0) is an M- matrix 
(the off diagonal elements of p are non-negative) and is also jacobain of 𝐺𝐺(𝑥𝑥, 𝑧𝑧) 

We write the model equation given by (1 – 7) as  
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝐻𝐻(𝑋𝑋, 𝑍𝑍),    
𝑑𝑑𝑧𝑧
𝑑𝑑𝑡𝑡

= 𝐺𝐺(𝑋𝑋, 𝑍𝑍), 𝐺𝐺(𝑋𝑋. 0) = 0 

𝐸𝐸0(𝑋𝑋0, 0) =  �
𝜇𝜇(𝜇𝜇 +  𝜆𝜆)

((𝜆𝜆 +  𝜇𝜇)(𝜀𝜀 +  𝜇𝜇) −  𝜆𝜆𝜀𝜀)
,

𝜀𝜀𝜇𝜇
((𝜆𝜆 +  𝜇𝜇)(𝜀𝜀 +  𝜇𝜇) −  𝜆𝜆𝜀𝜀)

, � 

Where 𝑋𝑋 = (𝑆𝑆, 𝑉𝑉, 𝑅𝑅) ∈  ℝ3 denotes the number of un- infected individuals and  
𝑍𝑍 = (𝐸𝐸, 𝐼𝐼, 𝐿𝐿, 𝐽𝐽) ∈  ℝ4 denotes the number of infected individuals. 
𝐸𝐸0 = (𝑋𝑋0, 0) denotes the DFE of the system. 
Take (𝐸𝐸, 𝐼𝐼, 𝐿𝐿, 𝐽𝐽) and evaluated at  
𝐸𝐸0(𝑆𝑆, 𝑉𝑉) =  � 𝜇𝜇 (𝜇𝜇 + 𝜆𝜆)

((𝜆𝜆+ 𝜇𝜇 )(𝜀𝜀+ 𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )
, 𝜀𝜀𝜇𝜇

((𝜆𝜆+ 𝜇𝜇 )(𝜀𝜀+ 𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )
, �.  

If the system satisfies the condition 𝐻𝐻1and 𝐻𝐻2 above, then according to Castillo – Chavez et.al (2002), 
the following theorems holds. 

Theorem 4.5  
The fixed point 𝐸𝐸0(𝑥𝑥0, 0) is a globally asymptotic stable (GAS) provided that  
𝑅𝑅0 < 1 (𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑑𝑑 𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑝𝑝𝑡𝑡𝐿𝐿𝑡𝑡𝑖𝑖𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑑𝑑 𝑎𝑎𝑡𝑡𝑎𝑎𝑏𝑏𝑙𝑙𝑠𝑠 (𝐿𝐿. 𝐴𝐴. 𝑆𝑆)) and that assumptions 𝐻𝐻1and 𝐻𝐻2 are statisfied. 

Proof: from, the two functions 𝐻𝐻(𝑥𝑥, 𝑧𝑧) and 𝐺𝐺(𝑥𝑥, 𝑧𝑧) are given by 

𝐻𝐻(𝑥𝑥, 𝑧𝑧) =  �
 𝜇𝜇 −  𝜌𝜌𝜇𝜇𝐸𝐸 −  𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) +  𝜆𝜆𝑉𝑉 − (𝜀𝜀 +  𝜇𝜇)𝑆𝑆

𝜀𝜀𝑆𝑆 +  𝜀𝜀1𝐸𝐸 −  𝜆𝜆𝑉𝑉 −  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿) −  𝜇𝜇𝑉𝑉
𝛿𝛿2𝐿𝐿 +  𝛿𝛿3𝐽𝐽 −  𝜇𝜇𝑅𝑅

�    … (40) 

𝐺𝐺(𝑥𝑥, 𝑧𝑧) =  

⎣
⎢
⎢
⎡
𝛽𝛽𝑆𝑆(𝐼𝐼 + 𝐿𝐿) +  𝜌𝜌𝜇𝜇𝐸𝐸 +  𝜅𝜅𝛽𝛽𝑉𝑉(𝐼𝐼 + 𝐿𝐿) − (𝛼𝛼 +  𝜀𝜀1 +  𝜇𝜇)𝐸𝐸

𝛼𝛼𝛼𝛼𝐸𝐸 − (𝛿𝛿1 +  𝜇𝜇)𝐼𝐼
𝛼𝛼(1 −  𝛼𝛼)𝐸𝐸 − (𝛿𝛿2 +  𝜇𝜇)𝐿𝐿

𝛿𝛿1𝐼𝐼 − (𝜇𝜇 +  𝛿𝛿3)𝐽𝐽 ⎦
⎥
⎥
⎤
   … (41)  

Consider the reduced system 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝐻𝐻(𝑥𝑥. 0) from condition (1) 

𝐻𝐻(𝑥𝑥, 0) =  �
 𝜇𝜇 +  𝜆𝜆𝑉𝑉 − (𝜀𝜀 +  𝜇𝜇)𝑆𝑆

𝜀𝜀𝑆𝑆 −  𝜆𝜆𝑉𝑉 −  𝜇𝜇𝑉𝑉
0

�       … (42) 

Integrate the first equationof Eq (42), we have 

𝑆𝑆(𝑡𝑡) =  (𝜇𝜇 + 𝜆𝜆𝑉𝑉 )
(𝜀𝜀+ 𝜇𝜇 )

+ 𝐶𝐶𝑠𝑠−(𝜀𝜀+ 𝜇𝜇 )𝑡𝑡         … (43) 

At 𝑡𝑡 → 0,Eq (43) becomes 

𝐶𝐶 = 𝑆𝑆(0) −  (𝜇𝜇 + 𝜆𝜆𝑉𝑉 )
(𝜀𝜀+ 𝜇𝜇 )

         … (44) 

Putting Eq (44) in  Eq(43) and evaluate at 𝑡𝑡 →  ∞, we have 
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𝑆𝑆(𝑡𝑡) =  (𝜇𝜇 + 𝜆𝜆𝑉𝑉 )
(𝜀𝜀+ 𝜇𝜇 )           … (45) 

Putting the value of 𝑉𝑉∗ in Eq (30) in Eq (45). We have 

𝑆𝑆(𝑡𝑡) =  𝜇𝜇 [((𝜆𝜆+ 𝜇𝜇 )(𝜀𝜀+ 𝜇𝜇 )− 𝜆𝜆𝜀𝜀 )] + 𝜆𝜆𝜀𝜀𝜇𝜇
(𝜇𝜇 + 𝜆𝜆)(𝜀𝜀+ 𝜇𝜇 )2− (𝜀𝜀+ 𝜇𝜇 )𝜆𝜆𝜀𝜀

       … (46) 

Apply the same process for the second equation of Eq (42), we have 

𝑉𝑉(𝑡𝑡) =  𝜀𝜀𝜇𝜇 (𝜆𝜆+𝜇𝜇 )
(𝜆𝜆+𝜇𝜇 )2(𝜀𝜀+𝜇𝜇 )−(𝜆𝜆+𝜇𝜇 )𝜆𝜆𝜀𝜀

  

Convergence of 𝑋𝑋0 is therefore globally in Ω 

𝑋𝑋0 = �
𝜇𝜇[((𝜆𝜆 +  𝜇𝜇)(𝜀𝜀 +  𝜇𝜇) −  𝜆𝜆𝜀𝜀)]  +  𝜆𝜆𝜀𝜀𝜇𝜇

(𝜇𝜇 +  𝜆𝜆)(𝜀𝜀 +  𝜇𝜇)2 −  (𝜀𝜀 +  𝜇𝜇)𝜆𝜆𝜀𝜀
,

𝜀𝜀𝜇𝜇(𝜆𝜆 + 𝜇𝜇)
(𝜆𝜆 + 𝜇𝜇)2(𝜀𝜀 + 𝜇𝜇) − (𝜆𝜆 + 𝜇𝜇)𝜆𝜆𝜀𝜀

� 

is globally asymptotically stable equilibrium of 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝐻𝐻(𝑥𝑥, 0). 

Next we compute 𝐻𝐻(𝑥𝑥, 𝑧𝑧) = 𝑝𝑝𝑧𝑧 − 𝐺𝐺(𝑥𝑥, 𝑧𝑧) and show that 𝐺𝐺(𝑥𝑥, 𝑧𝑧) ≥ 0 

∴ 𝐽𝐽  [𝐺𝐺(𝑋𝑋, 𝑍𝑍)] = 𝑝𝑝         … (47) 

Where j is the jacobain of 𝐺𝐺(𝑥𝑥, 𝑧𝑧) taken in (𝐸𝐸, 𝐼𝐼, 𝐿𝐿, 𝐽𝐽)and evaluate  at  

𝐸𝐸0 = (𝑆𝑆, 𝑉𝑉, 𝐸𝐸, 𝐼𝐼, 𝐿𝐿, 𝐽𝐽, 𝑅𝑅) 

𝐸𝐸0 =  �
𝜇𝜇(𝜇𝜇 +  𝜆𝜆)

((𝜆𝜆 +  𝜇𝜇)(𝜀𝜀 +  𝜇𝜇) −  𝜆𝜆𝜀𝜀)
,

𝜀𝜀𝜇𝜇
((𝜆𝜆 +  𝜇𝜇)(𝜀𝜀 +  𝜇𝜇) −  𝜆𝜆𝜀𝜀)

, 0,0,0,0,0� 

Therefore, Eq (47) gives 

  E   I  L    J 

𝑃𝑃 =  �

   𝜌𝜌𝜇𝜇 − (𝛼𝛼 + 𝜀𝜀1 + 𝜇𝜇)
𝛼𝛼𝛼𝛼

𝛼𝛼(1 − 𝛼𝛼)
0

   𝛽𝛽𝑆𝑆 +  𝜅𝜅𝛽𝛽𝑉𝑉      
   −(𝛿𝛿1 + 𝜇𝜇)

0
𝛿𝛿1

𝛽𝛽𝑆𝑆 +  𝜅𝜅𝛽𝛽𝑉𝑉
0

−(𝛿𝛿2 + 𝜇𝜇)
0

            0
            0
            0

             −(𝜇𝜇 + 𝛿𝛿3)
� 

 
     E   I   L   J 

𝑃𝑃𝑍𝑍 = �

   𝜌𝜌𝜇𝜇 − (𝛼𝛼 + 𝜀𝜀1 + 𝜇𝜇)
𝛼𝛼𝛼𝛼

𝛼𝛼(1 − 𝛼𝛼)
0

   𝛽𝛽𝑆𝑆 +  𝜅𝜅𝛽𝛽𝑉𝑉      
   −(𝛿𝛿1 + 𝜇𝜇)

0
𝛿𝛿1

𝛽𝛽𝑆𝑆 +  𝜅𝜅𝛽𝛽𝑉𝑉
0

−(𝛿𝛿2 + 𝜇𝜇)
0

        0
        0
        0

       −(𝜇𝜇 + 𝛿𝛿3)
� �

𝐸𝐸
𝐼𝐼
𝐿𝐿
𝐽𝐽

� 

 

𝑃𝑃𝑍𝑍 =  

⎣
⎢
⎢
⎡
 𝜌𝜌𝜇𝜇𝐸𝐸 − (𝛼𝛼 + 𝜀𝜀1 + 𝜇𝜇)𝐸𝐸 +   𝛽𝛽𝑆𝑆𝐼𝐼 +  𝜅𝜅𝛽𝛽𝑉𝑉𝐼𝐼 +  𝛽𝛽𝑆𝑆𝐿𝐿 +  𝜅𝜅𝛽𝛽𝑉𝑉𝐿𝐿 + 0

𝛼𝛼𝛼𝛼𝐸𝐸 −  (𝛿𝛿1 + 𝜇𝜇)𝐼𝐼 + 0 + 0
𝛼𝛼(1 − 𝛼𝛼)𝐸𝐸 + 0 −  (𝛿𝛿2 + 𝜇𝜇)𝐿𝐿 + 0

0 +  𝛿𝛿1𝐼𝐼 −  (𝜇𝜇 + 𝛿𝛿3)𝐻𝐻 ⎦
⎥
⎥
⎤
 

Evaluating 𝑃𝑃𝑍𝑍 − 𝐺𝐺(𝑋𝑋, 𝑍𝑍), we have 

𝑃𝑃𝑍𝑍 − 𝐺𝐺(𝑋𝑋, 𝑍𝑍), = [0 0 0 0]𝑇𝑇 .    

∴𝐺𝐺�(𝑋𝑋, 𝑍𝑍) = 𝑃𝑃𝑍𝑍 − 𝐺𝐺(𝑋𝑋, 𝑍𝑍) =  [0 0 0 0]𝑇𝑇. 

i.e. 𝐺𝐺(𝑋𝑋, 𝑍𝑍) =  [0 0 0 0]𝑇𝑇 .   

This shows that 𝐺𝐺(𝑋𝑋, 𝑍𝑍) = 0. Hence, the model is globally asymptotically stable. 
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4. Simulation and Discussion 
 The main objective of this paper was to model the transmission dynamic of Mumps Virus 
disease with isolation as control strategies. In order to support the analytical results, numerical result 
was presented with the aid of MATLAB programming language, we present graphical representation 
showing the variation in parameters with respect to effective reproduction number. 

4.1.1 Effect of vaccine on infected population 

 

Figure 2: The simulation result of infected population without vaccination rate (𝜀𝜀 = 0.0) 

 

Figure 3: The simulation result of infected population with vaccination rate of  (𝜀𝜀 = 0.2) 
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Figure 4: The simulation result of infected population with vaccination rate of  (𝜀𝜀 = 0.6) 

 

Figure 5: The simulation result of infected population with vaccination rate of  (𝜀𝜀 = 0.9) 

4.1.2 Effect of Isolation on infected population 

 

 Figure 6: The simulation result of infected population without isolation rate of  (𝛿𝛿1 = 0.0) 
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Figure 7: The simulation result of infected population with isolation rate of  (𝛿𝛿1 = 0.2) 

 

Figure 8: The simulation result of infected population with isolation rate of  (𝛿𝛿1 = 0.6) 

 

Figure 9: The simulation result of infected population with isolation rate of  (𝛿𝛿1 = 0.9) 

4.2 Discussion of analytical Results 
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 We established the existence and uniqueness of the solution. Positivity of solution and disease 
free equilibrium for Mumps disease dynamics model. We also obtained the model’s basic reproduction 
using the next generation matrix technique. Lastly, we obtained the global stability of the disease free 
equilibrium using the method of Castillo-Chavez et, al., and is found to be globally asymptotically 
stable. This means the disease can be eradicated in a stable equilibrium. 

4.3. Discussion of Simulation Results 

 Figures (2 – 5) show the effects of vaccination rate on infected population. The population of 
the infected individual is reducing when the vaccination rate is increase, in figure (2) the vaccination 
rate is 0 and the population of the infected individual is 650, in figure (3) the vaccination rate is 0.2 
and the population of the infected individual is 250, in figure (4) the vaccination rate is 0.6 and the 
population of the infected individual is 86 and in figure (5) the vaccination rate is 0.9 and the 
population of the infected individual is 60. Figures (6– 9) show the effects of isolation on infected 
population. The infected population grows rapidly with no treatment. But as a result of increment of 
isolation/treatment you can see that the infected class is reducing. in figure (6) the isolation rate is 0 
and the population of the infected individual is 1200, in figure (7) the isolation rate is 0.2 and the 
population of the infected individual is 1100, in figure (8) the isolation rate is 0.6 and the population of 
the infected individual is 750 and in figure (9) the isolation rate is 0.9 and the population of the 
infected individual is 560. 

 The simulation result indicated that the both vaccine and isolation are inversely proportional to 
the infected population. 

5.1 Conclusion and Recommendation 
This research work is a modification of the spread and control of Mumps virus disease models. The 
model subdivides the population into seven (7) compartments namely; Susceptible class𝑆𝑆(𝑡𝑡), 
Vaccination class𝑉𝑉(𝑡𝑡), Exposed class𝐸𝐸(𝑡𝑡), severely-infectiousclass 𝐼𝐼(𝑡𝑡), mild-infectious class 𝐿𝐿(𝑡𝑡), 
Isolation 𝐽𝐽(𝑡𝑡), and Recovered 𝑅𝑅(𝑡𝑡). The analytical studies were carried out which revealed that the 
disease free equilibrium of the model,  model is locally asymptotically stable if𝑅𝑅0 < 0. We obtained 
Endemic equilibrium and Global stability of disease free equilibrium. The numerical simulation 
carried out shows that treatment of Mumps virus diseases increases the population.  

5.2 Recommendations 
 In view of the findings of this study, we recommend that Authorities concern should shade 
more light on the control strategies that will help to reduce the effect of Mumps virus diseases 
especially on the importance of vaccine and isolation. 
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