
GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

641

GSJ: Volume 7, Issue 12, December 2019, Online: ISSN 2320-9186

www.globalscientificjournal.com

IMPROVEMENTS TO THE CONFIDENTIALITY
AND INTEGRITY OF DATA STORED IN CLOUD

STORAGE

Dr. Amjad Farooq
1,

 Abdul Rehman
2

University of Engineering and Technology, Department of Computer Science & Engineering
Lahore Pakistan.

Contact: amjadfarooq@uet.edu.pk, phone +92-03004174386

Contact: mscsstudent417@gmail.com, phone +92-03214507593

Abstract— Cloud computing is a new computing

method, which is widely emerging technology in the
recent years is used by many of the IT companies and
other organizations. Cloud computing allows individuals
and companies to gain access to vast computing assets
without capital investment. It actually means that users
can use computing assets in pay per use manner. The cost
of storing huge amount of data in the local storage is
burdensome than cloud storage. However, the cloud
atmosphere is untrusted as it is accessed by Internet.
That’s why, people have security concerns on data stored
in cloud environment. We intend to propose a new
method for securely storing data in cloud and an integrity
checking method to verify data integrity and
confidentiality at the time of information retrieval.

I. INTRODUCTION

Cloud computing is a recent technology that uses the

Internet, central servers to organize the data and

applications, which the user can access. Cloud computing

allows individual users and other business peoples to use

application without the necessity to install in their

computer. They can access their files, which is located in

other computer using Internet. This technology allows for

more inefficient computing by centralizing storage,

processing memory, and bandwidth. Cloud computing

comes in three categories such as Software as a Service

(SaaS), Infrastructure as a service (IaaS), Platform as a

Service (PaaS). The SaaS provides application

software which the user can use. The Paas provides the
platform for the user to do his operation. The Iaas provide
physical or virtual devices for user.

As cloud computing is popular and in demand similarly

cloud storage technology has greater demand. Cloud

storage is a virtualized storage area over a network basis.

It provides services on the basis of QoS assured. Cloud

storage consist of many resources but yet act as single

system. It has greater fault tolerance by redundancy. As

the data generated by IT sectors are dramatically growing

one can’t just update the hardware frequently instead

cloud storage is adopted which is a better choice. We can

use cloud storage for different purpose just backing up our

home desktop data into cloud storage or as an archive to

maintain data for regulatory. Cloud storage allows user to

access broad range of application and resources

immediately, which are hosted by others. Fig 1 shows a

simple cloud storage architecture.

Fig. 1 Simple Cloud Storage [1]

Cloud storage architectures are mainly about

delivering storage on demand in a highly scalable and
multi-tenant way. Basically, cloud storage architectures
contain of a front end that exports an API to communicate
with the backend storage.

GSJ© 2019

www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

642

In traditional storage systems, this API is the SCSI
protocol; nonetheless in the cloud, these are evolving

protocols. At this layer, there are web service, file-based
Internet SCSI or iSCSI front ends. This layer is the first

communication point between the user and the service
provider. Users access the services using their credentials.

The midpoint component layer is called storage

controller that interconnects and communicates from the
front API to the backend storages. This layer has a variety

of features such as replication, traditional data placement
algorithms with geographical location. Finally, the back-

end consists of physical storage for data. This may be a
central protocol that runs dedicated programs or a

traditional back-end to the physical disks. Fig 2 shows the
relationship between the aforementioned layers.

Availability (CIA). These aspects are the topmost
considerations in designing a security measure to ensure
maximum protection. Fig 3 shows the relationship

between security aspects and security challenges.

 Fig.3 Cloud Storage Security Aspects and
Challenges [3][4]

In this research a methodology is proposed to enhance

the confidentiality and integrity of the data stored in cloud
storage. The proposed method aims to handle these issues

at application level, thus preventing unauthorized users
from accessing information.

Fig. 2 Generic Cloud Storage Architecture [2]
II. LITERATURE SURVEY

Security is the protection of information assets
through the use of technology, processes, and training.

Cloud storage is a service that includes inherent
vulnerabilities, but these have never discouraged users

from taking advantage of its economies and flexibilities.
With adoption of a cloud model, users lose control over

physical security. Users raised concerns whether their
data are accessed by unauthorized person since there are

many user sharing the resources over the cloud.

Sharing the cloud with other users possesses risks
and concerns over security. Security overall covers
mainly three aspects: Confidentiality, Integrity and

In 2018 D. Hyseni and A. Luma proposed a method

for storing data in cloud storage. Proposed model deals

with different scenarios depending on the data sensitivity.

Model offers reliability of data by applying security

mechanism at application level. Method involves usage of

different cryptographic algorithms to enhance the security

of data. Security depends on file encryption and file

partitioning. To enhance the security, the proposed model

offers three encryption strategies named as symmetric

schema, asymmetric schema and hybrid schema. For
measurement three symmetric cryptographic algorithms

DES, TripleDES and

GSJ© 2019

www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

643

AES, asymmetric algorithms RSA, Deffi-Hellmen,

AlGamal were used. Hybrid Schema is the mixture of

symmetric and asymmetric algorithms. There could be

two approaches to achieve security: partition then encrypt

or encrypt then partition, author have preferred

partitioned then encrypt. A file is partitioned into fixed

sized blocks after that encryption is performed for each

block individually by using either symmetric, asymmetric

or hybrid schema. These file blocks are then uploaded to

the cloud and their mapping information is stored in local

cloud. From proposed encryption strategies symmetric

encryption is proved to be more efficient. The method
aims to enhance the confidentiality of the data. [5]

Vijayalakshmi and N. Veeraragavan focuses on the

confidentiality of data by proposing a secure unified

model for data confidentiality. The systems consider the

cloud storage untrusted as to be owned by the third party.

The communication between cloud service provider and

the client is bound to application which is responsible for

providing the confidentiality from untrusted user and also

from the third party cloud service provider. By hiding the

details of file storage (location, cryptographic algorithm

used etc.) the application makes the underlying storage

details vague to the user. The approach classifies data into

two groups numeric data and alphanumeric data. The

heart of the approach is encryption and obfuscation

function. If data is alphanumeric then AES encryption is

applied followed by obfuscation function. If the data is

numeric then only obfuscation function is applied. The

results are referred to as encrypted an obfuscated data

which is then stored in cloud storage. For retrieval same

sequence of operations are applied in reverse order. The

resulting model has benefits over the previous work as

client has no control over the data as all the storage details

are hidden. Furthermore, the proposed model uses AES

encryption algorithm. [6]

Geethamani and Ranjani proposed a method which

consists of five modules namely registration, upload file,
admin, download and key generation. Registration

module use to register a particular user. Upload file
module is used to upload file and its relevant meta data in

encrypted form. Admin module is responsible for
managing application

level issues such as resolving password recovery, key

distribution, maintaining and sending auditing

information etc. Download module is used to download

file and its meta data to verify its integrity. Key generation

module is responsible for generating the key. The

working of the system starts with the user registration,

which is preceded by the key generation to make user able

to save files in cloud storage. User can request key,

password recovery and auditing information through

admin module. Upload module is responsible for

uploading file and its meta data to the cloud storage and

archive storage (third party dedicated storage service).
Download modules downloads a file and compare its

meta data if it is correct file is delivered to the user. In

case of modifications the file is retrieved from the archive

(dedicated third party storage). [7]

A Valerian and C. Nadunagyu delivered an approach to
enhance the confidentiality of cloud data storage. The

methodology focuses on the development of application

following a strategy to store data in cloud. The resulting

algorithm starts by taking a salt value from the user. The

target file is encrypted using the salt-key mixture. Where

the key is generated randomly for the encryption

algorithms. By generating separate key-salt pair for each

file randomly increases confidentiality of user data. The

final cipher text is further reversed to further enhance the

security of the data. Author prefers AES encryption

schemes for proposed systems due to is strength and

efficiency as reported by the author to be more than the

other symmetric and asymmetric cryptographic schemes.

[8]

R. Kulkarni and V. Waghmare proposed an entirely

different technique for securing data over the cloud using
behaviour profile and decoy technology. By monitoring

abnormal access pattern to the cloud. In this system

whenever a user tries to get a legitimate users data a decoy

file viewer is created that looks the similar like the

original file viewer. The system works by presenting a

user with application interface. Whenever an intruder tries

to reach a user’s account and tries to login to the system

by using hit and trial username-password combination a

decoy view is generated which looks similar to the users

account. For every attempt there exists a decoy view. This

technique not only keeps

GSJ© 2019

www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

644

the intruders busy but also makes it difficult to identify
the original user’s account. [9]

In 2017 E. Agrawal and P. Ram proposed an

encryption algorithm to enhance the security of the data

stored in cloud. The technique is symmetric substitution

which uses a random number. The proposed algorithm

starts by reading the input text. The key value is appended

in front of the file. After finding the ASCII code for each

text character it is converted into its corresponding binary

value which is then complemented. The complemented

binary is then converted into its corresponding decimal

number. The decimal value is then divided by 4 and after

finding the equivalent ASCII code for quotient. Finally,

quotient is merged with remainder to get the cipher text.

Finally cipher text is stored in cloud.

dividing each byte into two halves as shown in Fig
5. The first half of each byte remains unchanged whereas
the NOT of second part is taken. The encryption is
performed by merging these two parts again. The
decryption is the reverse of the encryption process.

The figure 3 shows the working of the algorithm.

The decryption of the proposed algorithm is slightly

different than the encryption process. First the algorithm
takes the cipher text and splits the two-digit cipher text

into single - single digit. After multiplying first digit with
4 and adding the second digit into the multiplication

result. After performing complement operation on the
results the decimal value is obtained, which is then

converted into its corresponding ASCII value. Added key
value is removed to get the plaintext. The efficiency of the

above approach was tested by implementation in C#
.NET environment. Amazon s3 services were used as
cloud storage. The technique proved to be efficient for
symmetric encryption. [10]

In 2016 S. Ksasy and E. Takieldeen works to enhance

the security of the data by offering cryptographic

algorithm known as cryptobin. The algorithm starts by
taking a byte from the message. After taking the input

from user for key generation the following equation is
applied to get the key

(Any number) MOD 8…………(I)

Equation (I) generates a number from 0 to 7. The output
of the equation will be used to allocate which bit of each

byte the system will swap (1 to 0 and vice versa). Another
number is used to determine the interval length. Message
encryption starts by

Fig. 3 Advanced Cryptographic System for Binary

Codes [11]

M. Naik and P. Tungare proposed color cryptography

using substitution method. The system is based on

symmetric encryption which is based on encrypting text

into colour images. Each character of the message is

encrypted into a colour block. The user enters a message

which is the actual plaintext. The channel is used from

three colours red, green and blue(RGB). All the characters

are converted into colour blocks. Each character present

in the plaintext is replaced with one decillions colours in

the world. This technique prevents from birthday

paradox, meet-in-the-middle and brute force attack. Fig 4

shows the working of colour cryptography.

Fig. 4 Working of Colour Cryptography [12]

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

P. Sonia and S. Grewal proposed a methodology to
validate the integrity of the transmitted data. At the
receiving end the message is converted into cryptographic
hash code by using SHA-1 or SHA-
256. The hashing code length (24, 32, 40 and 64 bits) is
taken. The hash code is converted into polynomial
function by using two variable hashing function as shown
in equation (II).

…………(II)

At the end polynomial based code is transmitted to the

receiver. At the receiving end the message is retrieved in

original plaintext form using polynomial verification

method. Each receiving systems is assigned an

identification number which authorize message reception.

The proposed method not only provides security but also

provides the comparative analysis SHA-1 and SHA-

256.Further comparative analysis can be performed on the

basis of processing gain, delivery ratio, energy consumed

and duty cycle.

Processing gain is the amount of time it takes to convert a
message from normal form to the polynomial form.

Delivery ratio is the probability of message successful
transmission and reception. Energy consumed in

converting a message from normal form to the polynomial
form. Duty cycle is the ratio between the time it takes to

convert a message over the total time takes the process.
After a keen analysis SHA-256 is found to be more

efficient. [13]

By the same year J. Puranik and A. Giri works on two tear

model of cloud, which consists of client and server. A
semaphore based solution is proposed which allows data

sharing in multi- user environment. When a client
requests a server authentication is invoked at both ends.

A semaphore is set at server side for each unique user id.
Fig 5 Shows the working mechanism of semaphores.

645

Fig 5 Working of Semaphore

A semaphore could be a variable or an abstract data

type which is used by multi user operating system to

provide controlled access to the shared data. A semaphore

has a lock facility which is used to provide only single

access to a shared resource. When one user acquires the

lock other cannot access that particular shared data,

whereas on releasing the lock that shared piece of data can

be accessed by other users by acquiring the lock through

semaphore. [14]

S. Banu and N. Deepa proposed a time based sharing

scheme in cloud.in traditional client server module, an

owner sends data to the cloud, the clients can get that data

any time anywhere. This may result in the wastage of

storage space and can cause security threats because of all

time availability of data. In Data Self-Slaughter technique

an owner only sends data when it Is requested by the

client. While uploading the data owner can specify the

time of uploading and time when that particular data can

be accessed. After the completion of time data is self-

destructed at cloud side. This method not only save the

precious cloud storage space but also provide secure

access to cloud through application.

Fig 6 Working of Protected Data

Self-Slaughter [15]

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

646

III. PROPOSED METHODOLOGY

A. High Level Working of Application

1. User sends request to TPA (Permission Manager) to

atomically gain the access to the file.

2. After getting permission user can send the request to

the cloud storage provider to upload and download

file.

3. At a given time, a file can be manipulated by or can

be the property of only one user.

4. After updating file user again release the lock on file

through TPA (Permission Manager) making it

available for other users.

Fig. 7 High Level Working of Application

B. Storing File, File Meta-Data and Hash of File

1. Against each data file say F a log file LF is generate.

The purpose of log file is to keep track of the users who

have accessed data, which is used later for auditing

purpose.

2. The compression and encryption is performed on data

file F using 7zip compression and AES-128 to reduce

the size of the data file and to put the data into a form

that cannot be easily understand.

3. The hash of the data file F is generated using SHA-256

to later validate the integrity of the data.

4. A meta- file is generated which stores:

• Data File Name (to hide the data file name).

• File Size (used later to check the file originality or

any modification).

• Last Modified Date (to catch any unauthorized

modification).

5. Meta-file is compressed and encrypted to reduce the

size of its contents and for data unpredictability.

6. Using SHA-256 hash of the meta-file is generated

which is later used to check the integrity.

7. In the same way the compressed encrypted version of

log file LF is generated using 7zip and AES-128.

8. Hash of the log file is generated using SHA-256 The

corresponding six files generated against a data file are

uploaded to the cloud storage in packaged form. Fig 8

shows the working of methodology.

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186 647

Fig. 8 Uploading File in Cloud Storage

GSJ© 2019

www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

648

C. Retrieving File, File Meta-Data and Hash of File

1. Download the file package from cloud storage.

2. Decrypt and Un-compress data file, meta-file and log file.

3. After generating hash of meta-file using SHA-256 compare it with the stored hash of meta file.

4. Generate the hash of data file F and compare it with the stored hash.

5. Compare data file with meta-file contents (File Name, File Size, Last Modified Date).

6. Generate the hash of log file and compare it with the stored hash.

7. If steps 1-7 succeeds file integrity is preserved.

8. In case of failure at any step send a request to the admin for file and stop.

Fig 9 shows the flow of file retrieval

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

649

Fig 9. File Retrieval from Drop Box Storage

GSJ© 2019

www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

650

A. Experimental Setup

The proposed methodology has been implemented by

using drop box. There are many experiments that have
been carried out in past on this machine which have 8GB

DDR4 RAM Intel(R) Core(TM) i7-2120M processor.

Internet connection used is Wi-Tribe 4G LTE Advanced.
The machine is armed with Windows 10 Pro 64-bit

operating system. The software which is used for the
development purposes is Visual Studio 2015. The

implementation is done in C# programming language.

Dropbox is a simple storage service provider over
internet, where we can store our data via internet.

Dropbox provides humble interface using which we can
upload and retrieve our file at anytime, anywhere.

Dropbox provides reliable, highly scalable, fast and cheap
data storage substructure to the users. It provides free trial

base access to the developers, after that they can renew it.

Important Concepts of Drop Box

APP: APP is a logical connection between dropbox

storage and your application.

AppFolder: Use to connect an application to specific
folder (AppFolder). An AppFolder is an object of
container which is stored in Dropbox.
images/imagename.jpeg is stored in the AppFolder,
then it is addressable using the
URL:http://AppFolder.dropBox.dropboxws.com/im
ages/file.txt.

Object: Objects are the entities (.txt, xlxs. docx, jpg) etc.
which are stored in Dropbox

APPKey: A key for an APP has a unique identifier for
APPFolder.

Regions: Data stored in drop box is visible to all regions
you need not to worry about settings like in other service
providers Amazon or 4Shared we need to specify the
regions explicitly etc.

Fig. 10 Uploading File to Cloud Storage

Fig.11 Corresponding Six Files in Cloud Storage

Fig 10 and Fig 11 shows the file uploading using the

proposed methodology and the six corresponding files in

the cloud storage respectively.

GSJ© 2019
www.globalscientificjournal.com

http://appfolder.dropbox.dropboxws.com/images/file.txt
http://appfolder.dropbox.dropboxws.com/images/file.txt

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

651

IV. RESULT AND DISCUSSIONS

A. RESULTS

File MD4 MD5 SHA-256
SHA- SHA-

512 192
Size (Millis) (Millis) (Millis)

(Millis) (Milli)

1 MB 2.01 2.00 1.32 1.40 1.47

2 MB 2.35 2.40 1.41 1.50 1.51

3 MB 2.39 2.60 1.59 1.60 1.65

4 MB 2.41 2.90 1.71 1.80 1.85

5 MB 2.52 3.00 1.92 2.00 2.02

Table 1 Time to Calculate Hash for Different File

Sizes with Different Hashing Algorithms

From Table 1 comparison SHA-256 was found to be more
efficient in generating the file hash as shown in Fig 12.

Fig 12. Performance Analysis for Different Hashing

Algorithms in Generating File Hash

Symmetric Encryption

Asymmetric

Encryption

Execution Time in

File
Execution Time in

Milliseconds
Milliseconds

Size

AES

DES

Triple
RSA

Deffie-

DES Hellmen

1 MB 1.32 1.58 1.89 1.50 1.59

2 MB 1.41 1.69 1.97 1.65 1.67

3 MB 1.52 1.90 2.20 1.89 1.90

4 MB 1.67 2.05 2.31 1.90 2.00

5 MB 1.89 2.03 2.42 2.00 2.32

Table 2 Comparison of Various Encryption

Algorithms for Different File Sizes

From Table 2 comparison AES was found to be more
efficient in encryption from symmetric cryptography as
shown in Fig 13.

Fig 13. Performance Analysis for Different

Hashing Algorithms in Generating File Hash

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

652

File Huffman 7 Zip G Zip
Size

 Time Size Time Size Time Size

 (Mil) (KB) (Mil) (KB) (Mil) (KB)

1

1.16 1.26 1.02 1.12 1.17 1.21
MB

2

1.18 1.39 1.08 1.33 1.25 1.40
MB

3

2.00 2.65 1.16 2.59 1.29 2.69
MB

4

2.05 3.26 1.95 3.19 2.32 3.42
MB

5

2.31 4.02 2.23 3.75 2.39 3.96
MB

Table 3 Time to Compress Different File Size with

 Different Compression Algorithms

From Table 3 comparison 7 Zip was found to be more
efficient in terms of compression and execution time as
shown in Fig 14 and Fig 15 respectively.

Fig 15 Performance Analysis of Different Compression

Algorithms in Terms of Execution Time for Different File

Sizes

 Original File

Compressed File

Package

File
Upload Download

File
Upload Download

Time Time Time Time
Size Size

(Mil) (Mil) (Mil) (Mil)

1

2.32 2.20

1.32

1.10 1.01
MB KB

2

2.39 2.31

1.53

1.22 1.12
MB KB

3

2.41 2.32

2.79

1.25 1.15
MB KB

4

3.45 3.30

3.39

1.28 1.18
MB KB

5

3.53 3.12

3.96

1.31 1.22
MB KB

Fig 14 Performance Analysis of Different Compression

Algorithms in Terms of Compression for Different

File Sizes.

 Table 4 Comparison of Uploading and Downloading

Time for Original File and Compressed Package

Table 4 shows the comparison between uploading and
downloading time of the original and compressed
packaged file. From Fig 16 it can be easily seen.

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

653

Fig 16 Performance Analysis Uploading and Downloading Time

 of Original and Compressed Encrypted Package

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

 654

Fig. 17 Comparison of the Original File Size with its Corresponding
Compressed Encrypted Package Size

Table 5 Comparison of Original and Compressed Encrypted Package Size

From Table 5 it can be clearly seen that proposed methodology not only improves the confidentiality and

integrity of data but also reduce the storage cost. Fig 17 clearly shows the fact.

GSJ© 2019
www.globalscientificjournal.com

 Compressed

File Size Encrypted Package

 Size

1 MB 1.32 KB

2 MB 1.53 KB

3 MB 2.79 KB

4 MB 3.39 KB

5 MB 3.96 KB

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

655

Fig. 18 Performance Analysis Application Running Time

for Different File Sizes

Table 6 Application Execution Time for Different File

Sizes

Table 6 is the summary of application execution time for different file sizes if n is file size in bytes

then the application execution time is estimated to be T(n) ≈ (log (n)). Fig 18 is the analysis of

application execution time for different file sizes.

GSJ© 2019
www.globalscientificjournal.com

File

Size

Time to Compress

(Milliseconds)

Time To Encrypt

(Milliseconds)

Time To Generate

Hash (Milliseconds) Time to

Upload

Package

(Millis)

Total

Execution

Time

(Millis)

7 Zip AES SHA-256

Data

File

Meta

File

Log

File

Data

File

Meta

File

Log

File

Data

File

Meta

File

Log

File

1 MB 1.21 0.10 0.12 1.25 0.13 0.13 1.22 0.15 0.16 1.10 5.57

2 MB 1.25 0.15 0.19 1.26 0.15 0.16 1.24 0.12 0.19 1.22 5.93

3 MB 1.27 0.17 0.20 1.28 0.18 0.19 1.28 0.15 0.21 1.25 6.18

4 MB 1.31 0.19 0.22 1.30 0.19 0.21 1.32 0.18 0.25 1.28 6.45

5 MB 1.41 0.22 0.25 1.32 0.22 0.25 1.35 0.22 0.28 1.31 6.83

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

655

B. DISCUSSIONS

The proposed methodology not only aims to provide the confidentiality and integrity to the data but

also aims to provide an auditing mechanism. The purpose of this research is not only to propose a

methodology not also aims to enhance the performance of the approach by using efficient sub-components

(Hashing algorithm, cryptographic algorithm and compressor).

Table 1 is concerned with finding the efficient hashing algorithm to generate the hash of the file from

comparison SHA-256 was found to be most suitable.

Table 2 is concerned with cryptography, different symmetric and asymmetric cryptographic algorithms

were compared AES-128 was found to be more efficient from symmetric cryptography.

Table 3 is concerned with finding the most suitable compressor in terms of compression and

efficiency.7 Zip compression was found to be more suitable.

 Table 4 is the comparison of uploading and downloading time of various file size with their compressed

encrypted version. From analysis compressed encrypted version of original file has least uploading and

downloading time for each for different file sizes.

Table 5 shows the optimization of the proposed methodology in terms of space although six files are

generated from a single one but the collective size of six files is even less than 10% of the original file size.

 Table 6 summarizes execution time of proposed methodology for different files which is T(n) ≈ (log (n))

where n is file size in bytes.

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

656

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

In this research a methodology is presented to enhance the confidentiality and integrity of

the data at application level. Furthermore, an auditing mechanism is also presented to avoid

third party solutions. The efficiency of the proposed approach is also focused. The proposed

methodology will enhance the file confidentiality and integrity by handling these aspects at

application level and not relying on the third party provided solutions.

B. FUTURE WORK

In future work same approach can be applied to the multimedia objects (pictures, graphics,

video and audio…etc.).

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

657

V. REFERENCES

[1]. N. Samreen and N. Khatri, “Introduction to Cloud Computing”, in IRJET, Vol.5, pp. 2395-

 2405, 2019.

[2]. V. Suresh and M. Kumar, “An Efficient and Secure Data Storage Operations in Mobile

Cloud Computing”, in IJSRSET, Vol. 4, pp. 1385-1390, 2018.

[3]. A. Venkatesh, M. Eastaff, “A Study of Data Storage Security Issues in Cloud Computing”,

 in IJSRCSEIT, Vol. 3, pp. 1741-1745, 2018.

[4]. N.Chong, “Cloud Computing Challenges in a General Perspective”, in JCMS, Vol. 3, pp.

 06-15, 2019.

[5]. D. Hyseni and A. Luma, “The Proposed Model to Increase Security of Sensitive Data in

 Cloud Computing’, in IJACSA, Vol. 9, pp. 203-210, in 2018.

[6]. Vijayalakshmi and N. Veeraragavan, “A Unified Model for Cloud Data Confidentiality’, in

 AJSAT, Vol. 7, pp. 23-27, in 2018.

[7]. Geethamani and Ranjani, “Preserving Privacy in Public Auditing for Data Storage Security

 in Cloud Computing”, in IJSRCSEIT, Vol. 3, pp.1757-1762, in 2018.

[8] A Valerian and C. Nadunagyu, “Improvement to the Confidentiality of Cloud Data”, in

 IJRSC,Vol 3, pp. 156-169,2018.

[9]. T. Kulkarni andV. Waghmare,” Security Implementation in Cloud Computing using

 Behavior Profiling and Decoy Technology” in WJTER, Vol. 3, pp. 108-113, 2018.

[10] E. Agrawal and P. Ram, “Cryptography Based Security for Cloud Computing System”, in

 IJARC,Vol. 8, pp. 2193-2197, 2017.

GSJ© 2019
www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019
ISSN 2320-9186

658

[11]. S. Ksasy and E. Takieldeen, “Advanced Cryptographic Algorithm System for Binary

 Codes by Means ofMathematical Equation”, in ICIC International, Vol.10, pp. 1-8, 2016.

[12]. M. Naik and P. Tungare, “Color Cryptography using Substitution method”, in IRJET, Vol.

 3. pp. 941-944, in 2016.

[13] P. Sonia and S. Grewal, “Hashing Key Based Analysis of Polynomial Encryption

 Standard”, in IJCNIS, Vol. 11, pp. 44-51, 2016.

[14] J. Puranik and A. Giri, “Security in Data Storage in Cloud Computing”, in IRJET, Vol. 3,

 pp.1899-1902, in 2016.

[15] P. Sonia and S. Grewal, “Hashing Key Based Analysis of Polynomial Encryption

 Standard”, in IJCNIS, Vol. 11, pp. 44-51, 2016.

[16] J. Puranik and A. Giri, “Security in Data Storage in Cloud Computing”, in IRJET, Vol. 3,

 pp.1899-1902, in 2016.

GSJ© 2019

www.globalscientificjournal.com

GSJ: Volume 7, Issue 12, December 2019

ISSN 2320-9186
659

VI. AUTHORS

A. Dr. Amjad Farooq: Dr. Amjad Farooq is working as Associate Professor Department of

Computer Science and Engineering University of Engineering and Technologies, Lahore. He has

done Phd. From UET Lahore. His area of research is Software Engineering, Semantic Web, Bio

Informatics, Image processing and Cloud computing. He has published more than 50 research

papers.

B. Abdul Rehman: is student in UET Lahore Department of Computer Science. He is

working as Software Engineer in InvoCode. Inc.

GSJ© 2019

www.globalscientificjournal.com

