

GSJ: Volume 9, Issue 2, February 2021, Online: ISSN 2320-9186 www.globalscientificjournal.com

MOBILE MONEY LAUNDERING USING DATA MINING ME-THODES: A REVIEW

Humaira Fatima, Dr. Hamid Ghous, Malik Mubashir Hussain

Humaira Fatima E-mail <u>humaira6082@gmail.com</u> doing m.phil in computer science Humaira fatima masters degree program in computer science in University institution of southern Punjab mulatan, Pakistan ph# 03376082377 E-mail: humaira6082@gmail. Malik mubashir is masters degree in computer science in University, BZU, pakistan ph#03018630005 E-mail: mubashee@isp.edu.pk.

KeyWords

Mobile money laundering, data mining supervised unsupervised methods.

ABSTRACT

Mobile money laundering has one of the main challenges for the world. Mobile money laundering is a process of sending money through illegal ways using mobile applications. In past, many researchers have worked on detection of the transactions involved in mobile money laundering using data mining techniques. In this review paper, we have analyzed the previous literature related to mobile money laundering using data mining methods. We have categorized the literature into supervised and unsupervised learning methods. After reviewing the literature, the limitations and future work is also suggested.

INTRODUCTION:

The process of mobile money laundering money is acquired through that even the investigated companies cannot find the important origin of prosperity. Mobile money laundering is method that used people for converting money that's acquired from illegaled ways. Mobile money laundering is illegald method that creating huge amounts of money bring about through criminal method. Mobile money laundering increases day by day, peoples used many process to acquire the mobile money laundering in different ways. Many researchers worked on the mobile money laundering to overcome this transaction and applied different methods to detect the mobile money laundering. Mobile money laundering is process that much utilize in Pakistan. This act exists treating with terrorism and terrorism financing through freezing mobile money laundering is the method to change illicit money into licit money. The financial action task force is an orginazation that helps the authorities to go after money criminals and stop the funds. . Money launderers almost consist of three steps:

1) **Placement**: The first step is placement linked to installments the money in external banks.

2) **Layering**: The second step is layering associates to implement money through, money take away. And not show the important secret of money.

3) Integration: The third step is integration relevant to help the money for funding and other organization.

BACKGROUND:

As describe above about the mobile money laundering, this part also defines the mobile money laundering reviews. FATF is global companies that managing the mobile money laundering. Mobile money laundering is the largest problem in the world. Many researchers' worked on the money laundering and used different methods such as hybrid methods and different datasets also used but some gaps are also left to overcome the mobile money laundering. Mobile money laundering is converting through illegal way. Money laundering started from frontage as he sets up launder mates across the city in order to disguise the front of money earn from alcohol sale. Some researchers worked on the cash withdrawals.

DATA MINING:

Data mining is the process which contains the deep learning and machine learning methods. Different techniques are used to data mining to convert the raw data into actionable data. Data mining methods are divided in two categorize supervised and unsupervised.

SUPERVISED MACHINE LEARNING METHOD:

Supervised is the machine learning method that survey data from input to output way.

- 1. Regression
- 2. Classification
- 3. Naïve bayes model
- 4. Random forest model
- 5. Neural network
- 6. Linear regression
- 7. Decision tree
- 8. Support vector machine

UNSUPERVISED MACHINE LEARNING METHOD:

Unsupervised learning is a type of algorithm that read patterns from unlabeled data.

K-means for clustering problems

- 1. Clustering algorithm
- 2. KNN
- 3. Neural network
- 4. K-means
- 5. Fizzy algorithm
- 6. Hierarchal
- 7. C-means
- 8. Gaussian mixture

LITERATURE REVIEW:

Literature review has been divided in two categories supervised and unsupervised.

SUPERVISED METHOD:

Francis et.al (2020) proposed prediction for mobile money fraud. They utilized gradient boosted tree, support vector machine and naïve byes. These methods were applied on imbalanced dataset from KAGGLE that contains 9 attributes and consists of 99% negative class and 0.14% positive class .They used pre-processing techniques random, under sampling and over sampling. The Methods support vector machine and naïve byes performed better than gradient boosted tree with the accuracy of 64%, precision 93% and f-1 score 40%. In future this exploration can be stretched out by focus on real time data for detecting transaction in mobile money detection.

Nit in et.al (2020) utilized imbalanced dataset from KAGGLE. They worked with methods of SVM, decision tree, logistic regression, Knearest and naïve byes .They used some preprocessing procedures hybrid, under sampling and hybrid sampling. The end result showed that RF, DT and logistic regression classifiers perform better than Naïve Bays and k- nearest neighbor. The random forest, decision tree and logistic regression better performance than Naïve Bays and k-nearest with the accuracy of 100%. In future work effectiveness of this innovative machine learning approach by considering scenario in other similar problem domain.

Martin et.al (2020) worked with methods of supervised machine learning naive bays, NN, SVM and neural network. They used some preprocessing techniques data sources data refinement training and test data. They used large dataset from largest Norway bank. The result showed that training and test data performed better than naïve bays random forest neural network and support vector machine with the accuracy of 95%. In future this research can be extended by how cash flow by the financial network around all system and party?

ALHANOUF et.al (2020) applied the imbalance dataset. They applied some preprocessing techniques is random sampling, over under sampling and cross validation. They utilized some methods support vector machine, decision tree, NN, multilayer preceptor, gradient boosted KNN. The possible outcome indicated that neural network method performed best with imbalance dataset in term of its accepter operating characteristics 76% and kappa statics 0.341%. In future work verify the reliability of the statistical approach.

HUYEN (2020) worked with some methods logistic regression, RF and SVM. They exercised synthetic financial dataset and elliptic dataset. They utilized some preprocessing technique data preprocessing, model building and model evaluation. The end result showed that random forest gave high accuracy 97.53% than logistic regression and support vector machine. In future work extend by look at the effectiveness of detecting money laundering cases through unsupervised machine learning.

Ana ISABLE CANHOTO (2020) applied the training dataset. They utilized some methods supervised machine learning, naïve Bayesian model, neural network, random forest and support vector machine. They made use of some preprocessing techniques Artifact features and system affordance. The end result showed that due to the lack of high quality large training dataset having money laundering methods have limited scope for using supervised machine learning method. In future work shows that system can add into the automated analysis system.

ABDALBASIT et.al (2020) utilized the large amount of diverse dataset. They utilized some preprocessing techniques link analysis and fraud detection. They utilized some methods support vector machine, decision tree, naïve bays classification, KNN neural network. The possible outcome showed that machine learning method will showed that this process dealing with a huge amount of data with a high level of accuracy and good quality.

FETHI et.al (2020) applied the large dataset. They utilized some preprocessing technique trading decision making and order execution management. They utilized some methods ANN and SVM. The possible outcome indicated that NN and SVM method ensuring that systematic coverage of all trading related actives from a practical perspective. In future work identifies the gap and opportunities for new expanding field.

JORGE IVAN et.al (2020) exercised withdrawal dataset, various dataset have 52512 records and 9 variables and the frequency of withdrawal dataset is 0.4286. They worked with method support vector machine, decision tree and prototype k. They made use of some preprocessing techniques link analysis, anomaly detection and risk scoring. Result showed that support vector machine trained the dataset to identify the outliers and frequency of support vector machine is 0.091852.

MARK ESHWER (2019) proposed data mining for statistical analysis of money laundering transactions. The statistical methods: multiple regressions, logistic regression, clustering multiple, clustering hierarchal, and clustering particle were applied ondataset. They made use of some pre- processing techniques data selection, data preparation, data discovery, data evolution and data reporting. The consequences indicated that clustering method is more efficient and useful to detect the suspicious transaction than logistic regression. In future work differentiate between legitimate and suspicious transaction.

Kang (2019) used the synthetic dataset from KAGGLE. The machine learning methods gradient boosted and random forest was used for classification of fraud and non-fraud. The outcome indicated that both models accomplish high accuracy but boosted tree performed better than random forest with the accuracy of 0.99%. In future work focus on the real life transaction to test the tree models and adopt their methodology like k-means and logistic regression..

Ratha pecth (2019) proposed fraud detection in mobile money by machine learning methods support vector machine, multilayer preceptor and naïve byes. They applied PAYSIM data set based on public PAYSIM dataset contains no missing values and contained seven column step, type, name, and amount. They made use of pre-processing Techniques such as selecting data, sampling data, collecting data, features selection, testing and validating. The outcome demonstrated that support vector machine performed better than multilayer preceptor and naïve byes with the accuracy of 95%. In future work needs to developed the more methods to overcome the detection problem.

JOSE et.al (2017) proposed the imbalanced dataset from international transaction. They utilized methods logistic regression, DT, NN and RF. They made use of some pre-processing techniques smote algorithm, oversampling, correlation, own elaboration, and variables distribution. The end result showed that random forest get better result 96% negative true and 98% positive true than decision tree neural network and logistic regression. In future work centre around focus on limited police investigation resources for companies.

Stefan et.al (2016) worked with the method of decision tree and clustering. They made use of some preprocessing techniques data preprocessing and multi agent based simulation. They proposed synthetic dataset. The outcome demonstrated that decision tree and cluster are more understandable and useful than machine learning algorithm. In future work build a model for the reproduction of mobile money transaction that improves the result of realistic synthetic dataset.

MARINA SOLIN (2010) exercised dataset from World Bank. They utilized some preprocessing techniques innovation, occurring and regulation. They worked with methods support vector machine, decision tree and gradient boosted. The possible outcome showed that mobile money laundering silence or registered with competent authorities. In future work order to keep regulation to effective for future.

ZENGANG MAO YE (2007) utilized transaction dataset. They utilized some methods regression, decision tree, case based reasoning and support vector machine. They utilized some preprocessing techniques legitimacy legal, illegitimacy, data collection and database reconstruction. The possible outcome indicated that the proposed key of the frame work lies in money laundering network analysis include link analysis for community generation and network destabilization. In future work focus on improving money laundering network structure analysis in addition to visualization by more by used of more unsupervised techniques.

Ahmad salehi et.al (2017) worked with the methods NN, SVM, decision tree and social network. They made use of some preprocessing techniques placement, layering, integration and clustering. They exercised historical and operational dataset. The outcome demonstrated that neural network support vector machine decision tree will be very useful to increase the accuracy of best performance than social network. In future work increase the influencing factor and understand the situation of financial fraud.

XINGI et.al (2009) utilized financial dataset from real word. They made use of some preprocessing techniques covering, clustering and proportion of anomaly points. They utilized some methods neural network, SVM and DT. In future work extended by what method to set the parameters k effectively for best improvement of the algorithm and integrate with other classical data.

SUNAN et.al (2007) used sample and uniform data. They utilized drug traffickling and summgling techniques. They used decision tree methodes. The end result showed that 12% out of thousand customers are considered as AML.

NHIEN et.al (2011) utilized the some preprocessing technique data quality, data volume, and heterogeneity data. They applied large dataset. They worked with methods clustering and support vector machine. The end result showed that clustering is important method that can efficiently applied for anti money laundering than support vector machine. The future work showed that need an efficient framework for integrating data mining techniques that can deal with different level for anti money laundering from transaction to multi organization.

HOSSIEN et.al (2018) applied the large dataset. They utilized some preprocessing techniques variable future selection, complexity and difficulty of data quality assurance. They utilized some preprocessing methods k-means clustering, SVM, Decision tree and neural network. The possible outcome indicated that k-means clustering performed 60% classification than neural network, decision tree and SPM. In future work new technologies trend in the era of big data can also continuously alter the research direction.

JUN TANG et.al (2005) made use with the preprocessing technique data reporting and data filtering. They utilized heterogeneous dataset from Wuhan branch of agriculture bank. They utilized some methods support vector machine and pattern recognition. The possible outcome showed that support vector machine is efficient for anti money laundering data reporting system and reconstruction than pattern recognition.

MARIA et.al (2014) practiced the synthetic dataset. They employed some preprocessing technique fraud chain and fraud detection. They utilized some methods logistic regression, decision tree, neural network, SVM. The possible outcome showed that transaction log containing approximately 460000 transactions so 10000 for end user and compare with classical fraud detection 99.81% precision and 90.81% recall. In future work to detect other type of fraud detection in mobile money laundering services such as agent fraud.

BORIS et.al (2002) applied the temporal dataset. They made use of some preprocessing technique data selection, forecast horizon and hypothesis evaluation. They employed some methods decision tree and neural network. The outcome indicated that neural network explaining money laundering techniques using DT and relational data mining methodology. Future work showed that developing practice software tool that make easy to use in data mining application.

XINWEI et.al (2009) proposed real world banking data. They utilized some preprocessing techniques optimal design pool learning stochastic approximation threshold hyper plane. They worked with some methods logistic distribution and support vector machine. They consequence indicated that support vector machine preformed the best efficiency and accuracy than the logistic distribution. Future work showed that generalizing the active learning criterion for the non linear threshold surface.

ALXENDER et.al (2016) exercised the heterogeneous dataset. They employed some preprocessing techniques clustering evaluation, numeric attributes, rules evaluation and generation cluster assessment report. They utilized some methods SVM, NN and clustering. The possible consequences indicated that we obtained confusion matrix with accuracy 99% and classification rate is 0.0683%.

YAN et.al (2018) practiced the actual transaction dataset by U.S financial institution. They implemented sampling schemes preprocessing technique. They utilized some methods bays decision tree, LR, RF, SVM and artificial neural network. The possible outcome indicated that optimal value of bays logistic regression is 1 decision tree value is 0.85, random forest is 5000, support vector machine is 0.5 and neural network is 32. In the upcoming work ANN can be conducted allow to deep learning of the data.

LIU et.al (2011) applied heterogeneous data set. They utilized preprocessing technique cross validation. They utilized method support vector machine. The possible outcome indicated that the accuracy of support vector machine is 79.42%.

GAO ZENGAN (2009) utilized synthetic dataset. They utilized some preprocessing technique data collection, data analyze, suspicious modeling and system modeling. They utilized clustering method. The possible outcome indicated that clustering threshold value Alpha 75% beta 4% and gamma 0.15%. In future work related subjective character of the accounts admin always opens to our future research.

Title	Author/year	Dataset	preprocessing	Methods	Results	Future
						work
"Fraud Detection	"Kang, Haimeng	Synthetic dataset	correlation	Random forest	F1 score Precision	Focus on to find
in Mobile Money	Fall 2019"	from		and gradient	0.99487	the more life real
Transactions		Kaggle.com di-		boosting		transaction record
Using Machine		mensions				and other metho-
learning"		6362620 records				dologies
"fraud de-	"Ratha pech"	Paysim	Collecting data sampling	Support vector	Accuracy preci-	Need to More

tection in mobile	13 June 2019"	Dataset based on	data selecting features	machine	sion should be	advanced methods
money transfer as		public paysim	training model testing	Multilayer precep-	95% recall and f-	are to be devel-
binary classifica-		dataset and con-	and validating	tor on Naive bays	score.	oped to overcome
tion problem"		tains no missing				the detection
		values and con-				problem.
		tains seven col-				
		umn step ,type				
		name ,amount, old				
		balance ,new				
		balance etc.				
"Mobile Money	"Francis Effirim Bot-	Imbalanced data-	Random under sampling	Gradient boosted	Accuracy 64%	Focused on real
Fraud Prediction	chey	set from KAGLE	over sampling	tree	Precision 93% to	time data driven
A Cross-Case	Zhen Qin	generated from		Support vector	100%	to detect the mon-
Analysis on the	Kwesi Hughes-Lartey	transactional log		machine naïve	Recall	ey laundering.
Efficiency of	31 july 2020"	and contain 9		byes algorithm	F-1 score 40% to	
Support Vector		attributes. dataset			100%	
Machines, Gra-		consist of nega-				
dient Boosted		tive classes 99%				
Decision Trees,		and positive class				
and Naïve Bayes		0.129%				
Algorithms"						
"Detecting money	"23 January 2020	Large dataset	Data sources data re-	Supervised learn-	Test and train data	Future work
laundering trans-	Martin Jullum, Anders	from Norway	finement training and test	ing method	performed better	showed that how
actions with ma-	Løland and Ragnar	largest bank	data	Naive Bayesian	than supervised	the work of cash
chine learning"	Bang Huseby"	-		random forest	machine learning	flow around the
				Neural network.	with the transac-	financial account.
					tion of 95%.	
"Anti money	"james wishker Mark		Rapidity elusiveness	Support vector	Result shows that	Find the proba-
laundering and	Eshwer lokana		Anonymity	machine decision	AML most effec-	bility of initial
counter terrorists	23 January 2019"		Lack of oversight	tree gradient	tive and optimum	threats.
financing threats			Peer to peer transaction	boosted	efficiency miti-	
posed by mobile			Mobile to mobile trans-		gate the factors.	
money"			action			
"using machine	"jose A.Alvarez-	Unbalanced data-	Smote algorithm over-	DT ,LR	Random forest get	Future work focus
learning for fi-	Jareno	set from interna-	sampling sample de-	Random forest	better result 96%	on investigate
nancial fraud	Elena badal Valero 7	tional transac-	scription own elaboration	and neural net-	true negative and	limited resources
detection in the	2017"	tions.	variables distribution	work.	98% true positive	for companies.
accounts of com-			correlation		than logistic re-	
panies investi-					gression neural	
gated for money					network and deci-	
laundering"					sion tree	
"anti money	"ALHANOUF AB-	Imbalanced data-		Super vector	Result showed	Find the real
laundering system	DURAHMAN SA-	set		machine decision	that neural net-	ability of statis-
a systematic	LEH ALSUWAILEM			tree neural net-	work performed	tical approach.
literature review"	ABDUL KHADER			work multilayer	best accuracy	
	JILANI SAUDGAR			preceptor	with imbalance	
	25 MAY			Gradient boosted	dataset 0.76% .	
	2020"			KNN		

"money launder-	"Stefan Axelsson	Synthetic dataset	data pre-processing	decision tree	Result showed	focuses a model
ing detection	edgar alonoso 4 octo-		mobile money simulation	clustering	that decision tree	that improve the
using synthetic	ber 2016"			-	and cluster that	result of realistic
data"					are more unders-	synthetic dataset
uuu					tandable than	synthetic dataseti
					machine learning	
					algorithm.	
"machine learning	"HUYEN VU	Synthetic finan-	Data preprocessing	Random forest	Result shows that	Future work look
in money launder-	2020"	cial dataset ellip-	model building and mod-	logistic regression	the random forest	at the effective-
ing detection"		tic dataset	el evaluation	support vector	gave high accura-	ness of detecting
				machine	cy 97.53% than	money laundering
					logistic regression	cases through
					and support vector	unsupervised
					machine.	machine learning
						methods
"lavaraging ma	"And ISADLE CAN	Training dataget	Artifact factures system	Supervised me	Deput shows that	Enture work
	Alla ISADLE CAN-			Supervised me-	Result shows that	Future work
chine learning in	HOIO	available for	affordance	thod	deed to the Lack	snows that not all
the global fight	2020"	querying.		Naïve Bayesian	of best quality	illicit system feed
against money				model random	large training	into the automated
laundering and				forest model	dataset not use the	system.
terrorism financ-				neural network	supervised ma-	
ing				SPM	chine learning	
					method	
"methodology for	" Marina Solin ju-	Dataset from	Innovation occurring	Support vector	Result shows that	In future order to
assessing money	nary2010"	world bank	regulation techniques are	machine	mobile money	keep regulation to
laundering and			applied	Decision tree	laundering pro-	effective for fu-
terrorist fencing			uppned.	Gradient boosted	vides silence or	ture
winter				Gradient boosted	vides shence of	ture.
TISKS					registered with	
					competent author-	
					ities.	
"A frame work	"ZENGAN MAO YE	Transaction data-	Legitimacy illegitimacy	Decision tree	. Result shows	
for data mining	(2007)"	set	data collection database	regression case	that the describing	
based anti money			reconstruction data pre-	base reasoning	money laundering	
laundering based"			processing	Support vector	criminals is build	
				machine	on money laun-	
					dering network	
					generation which	
					include link	
					analysis commu-	
					nity generation	
					and data destabili	
					zation	
					zation.	
"prodicting from 1	"21 November 2017"	Sample data+	Case haged mass	SVM DT	Case based	Enturo mort-
in mobile area	A devintre - 1-1	Sample dataset	Case similarity	diant hoo-t-1	case based rea-	ducing
in mobile money	Adeyinka adedoyon		Case similarity	dient boosted	soning model	ducing computa-
transfer using	KAPETANAKIS			KNN	Accuracy 97%	tion cast to im-
case based rea-	SAMAKOVITIES				Recall and preci-	proved the scale
soning "					sion 93% positive	ability of CASE
					class 98% than	BASED reasoning
					kNN algorithm.	

GSJ: Volume 9, Issue 2, February 2021 ISSN 2320-9186

"data mining	"Ahmad salehi mehdi	Historical dataset	Placement layering	Neural network	Result showed	increase the
techniques for	ghanzanfari and Mo-		integration clustering	SPM	that neural net-	inflecting factor
anti money laun-	hammad Fatian"			decision tree	work support	and simply under-
dering"	"2017"			social network	vector machine	stand the process
					and decision tree	of financial fraud.
					perform best	
					accuracy than	
					social network	

"Developing an	"JUN TANG	Heterogeneous	Data reporting	Support vec-	Result shows that	
intelligent data	JIYAN YIN 21	dataset from	data filtering	tor machine	support vector ma-	
discriminating	AUGUST 2005"	agriculture		pattern rec-	chine is efficient for	
system of anti		bank.		ognition	Anti money launder-	
money launder-					ing data reporting	
ing based on					system and recon-	
SVM "					struction than pattern	
					recognition.	
(D) 1' (1	(Q.A. ' 1.1		F 1 1 1			
"Revealing fraud	Maria zhdanova	Synthetic data-	Fraud chain	Decision tree	Result shows that	To detect remain-
chains in mobile	jurgen repp Rol-	set	fraud detection	logistic re-	transaction log con-	ing types of
money transfer"	and Rieke 2014"			gression	taining approximately	fraud detection in
				neural net-	460000 transactions	mobile money
				work SPM	for 10000 end users	laundering ser-
					and classical fraud	vices such as
					detection is 99.81%	servant fraud.
					precision 90.18%	
					recall.	
"A hybrid ap-	"May 2016	Synthetic	Placement inte-	Hybrid ap-	Result show that	Developed a
proach for detect-	Ch.suresh	Transactional	gration layering	proach me-	accuracy of the anti	system which can
ing suspicious	Dr.k.thammi	data set from		thod is used	money laundering	identify the best
0 1						
accounts in mon-	reddy"	multiple bank			describing the suspi-	relation between
accounts in mon- ey laundering	reddy"	multiple bank			describing the suspi- cious account is	relation between suspicious ac-
accounts in mon- ey laundering using data mining	reddy"	multiple bank			describing the suspi- cious account is placed in the layering	relation between suspicious ac- counts those
accounts in mon- ey laundering using data mining techniques"	reddy"	multiple bank			describing the suspi- cious account is placed in the layering stage of data mining	relation between suspicious ac- counts those using concept like
accounts in mon- ey laundering using data mining techniques"	reddy"	multiple bank			describing the suspi- cious account is placed in the layering stage of data mining	relation between suspicious ac- counts those using concept like ontology.
accounts in mon- ey laundering using data mining techniques"	reddy"	multiple bank	<u> </u>		describing the suspi- cious account is placed in the layering stage of data mining	relation between suspicious ac- counts those using concept like ontology.
accounts in mon- ey laundering using data mining techniques"	reddy" "XINGQI WANG	multiple bank	Covering cluster	SPM neural	describing the suspi- cious account is placed in the layering stage of data mining Result shows that	relation between suspicious ac- counts those using concept like ontology.
accounts in mon- ey laundering using data mining techniques" "research on money laundering	reddy" "XINGQI WANG GUANG DONG	multiple bank FINANCIAL DATASET from	Covering cluster and proportion	SPM neural network	describing the suspi- cious account is placed in the layering stage of data mining Result shows that money laundering	relation between suspicious ac- counts those using concept like ontology. In future work focus we will
accounts in mon- ey laundering using data mining techniques" "research on money laundering detection based	reddy" "XINGQI WANG GUANG DONG 2009"	multiple bank FINANCIAL DATASET from real word	Covering cluster and proportion of anomaly	SPM neural network decision tree	describing the suspi- cious account is placed in the layering stage of data mining Result shows that money laundering transaction detect	relation between suspicious ac- counts those using concept like ontology. In future work focus we will improve our
accounts in mon- ey laundering using data mining techniques" "research on money laundering detection based on improved	reddy" "XINGQI WANG GUANG DONG 2009"	multiple bank FINANCIAL DATASET from real word	Covering cluster and proportion of anomaly points.	SPM neural network decision tree	describing the suspi- cious account is placed in the layering stage of data mining Result shows that money laundering transaction detect experiments those	relation between suspicious ac- counts those using concept like ontology. In future work focus we will improve our algorithm into
accounts in mon- ey laundering using data mining techniques" "research on money laundering detection based on improved minimum span-	reddy" "XINGQI WANG GUANG DONG 2009"	multiple bank FINANCIAL DATASET from real word	Covering cluster and proportion of anomaly points.	SPM neural network decision tree	describing the suspi- cious account is placed in the layering stage of data mining Result shows that money laundering transaction detect experiments those apply on financial	relation between suspicious ac- counts those using concept like ontology. In future work focus we will improve our algorithm into real word finan-
accounts in mon- ey laundering using data mining techniques" "research on money laundering detection based on improved minimum span- ning tree cluster-	reddy" "XINGQI WANG GUANG DONG 2009"	multiple bank FINANCIAL DATASET from real word	Covering cluster and proportion of anomaly points.	SPM neural network decision tree	describing the suspi- cious account is placed in the layering stage of data mining Result shows that money laundering transaction detect experiments those apply on financial data from real world	relation between suspicious ac- counts those using concept like ontology. In future work focus we will improve our algorithm into real word finan- cial data ware
accounts in mon- ey laundering using data mining techniques" "research on money laundering detection based on improved minimum span- ning tree cluster- ing and its appli-	reddy" "XINGQI WANG GUANG DONG 2009"	multiple bank FINANCIAL DATASET from real word	Covering cluster and proportion of anomaly points.	SPM neural network decision tree	describing the suspi- cious account is placed in the layering stage of data mining Result shows that money laundering transaction detect experiments those apply on financial data from real world showed the effective	relation between suspicious ac- counts those using concept like ontology. In future work focus we will improve our algorithm into real word finan- cial data ware- house system to
accounts in mon- ey laundering using data mining techniques" "research on money laundering detection based on improved minimum span- ning tree cluster- ing and its appli- cation"	reddy" "XINGQI WANG GUANG DONG 2009"	multiple bank FINANCIAL DATASET from real word	Covering cluster and proportion of anomaly points.	SPM neural network decision tree	describing the suspi- cious account is placed in the layering stage of data mining Result shows that money laundering transaction detect experiments those apply on financial data from real world showed the effective performance	relation between suspicious ac- counts those using concept like ontology. In future work focus we will improve our algorithm into real word finan- cial data ware- house system to assist financial

						money launder-
						ing.
22.4	"OTT NIANT	Coursels data		De sisien tras	120/t .f 160 th	
A money laun-	SU NAN	Sample data		Decision tree	12% out of 160 thou-	
dering risk evalu-	WANG JIAN	uniform ruled	smuggling brib-		sand customers are	
ation method	GANG YANG	data	ing		considered as AML.	
based on decision	2007**					
tree						
"A RBF neural	"LIN TAO LV	Financial trans-	Lest square	Neural net-	Result shows that	
network model	NAJI JIU LONG	action record	algorithm re-	work	neural network pro-	
for anti money	ZHANG AUG	dataset acquire	cursive cluster-	Support vec-	posed method have	
laundering"	2008"	from commer-	ing	tor machine	been the highest	
		cial bank.			detection rate and the	
					lowest false positive	
					rate than SPM.	
		T 1 1 1	D.(11)			
an investigation	NHIEN AN LE	Large dataset	Data quanty	Clustering	Result shows that	Future work
into data mining	KHAC SAMMER		hata volume and	support vec-	clustering are impor-	snows that need
approaches for	MARKOS M.O		data	tor machine	afficiently applied for	work for data
ann money faun-	NELLI 2011		uata		AML then menerat	work for data
dering					AML than support	mining tech-
					vector machine.	inques that can
						use with different
						from transition
						to multi-
						to mutu organiza-
225	(DODIG VOV)			NT 1 .		uon.
Data mining for	BORIS KOVA-	Temporal data-	Data selection	Neural net-	Result shows that	Future work
financial applica-	LERCHUK EV-	set	torecast horizon	work decision	neural network dis-	snows that devel-
tions	GENII VITYAE		hypothesis	tree	covering money	oping practical
	2002~		evolution		laundering techniques	software tool that
					using decision rules	make easy to
					and relational data	operate in data
					mining methods	mining applica-
						tion.

"Active learning	"XINWEI DENG	Real word		Logistic	Result shows that the	Future work
through sequen-	V.ROSHAN JO-	banking data		distribution	support vector ma-	shows that gene-
tial design with	SEPH AGUS	_		Support vec-	chine performance	ralizing the active
applications to	SUDJIANTO			tor machine	shows the efficiency	learning criterion
detection of mon-	2009"				and accuracy than the	for the non linear
ey laundering"					logistic distribution is	threshold surface.
					better.	
"client profiling	"ALXENDER	Heterogeneous	Clustering eval-	Support vec-	Result shows that we	
for an anti money	Claudio Balsa joao	dataset	uation numeric	tor machine	obtained a confusion	
laundering sys-	11 January 2016"		attributes rules	neural net-	matrix with accuracy	
tem"			evaluation and	work cluster-	99% and classifica-	
			generation clus-	ing	tion rate is 0.0683% .	
			ter assessment			
			report			
" MACHINE	"YAN ZHANG	Actual Transac-	Sampling	Bays logistic	Result showed that	Future work
LEARNING	PETER TURBY	tion data by U.S.	schemes	regression	the optimal value of	multilaver ANN
AND SAM-	12 OCTOBER	financial institu-	Senemes	DT	bayes logistic is 1 and	can be conducted
PLING SCHEME	2018"	tion		random	decision tree value is	allow to deep
AN EMPIRICAL	2010			forest SVM	0.85 and random	learning of the
STUDY OF				ANN	forest is 5000 support	data
MONEY					vector machine is 0.5	untu.
LAUNDERING		(\cap)			and neural network is	
DETECTION"		()			32	
"sequence match	"YUAN LIU	Peal financial	Normal transac	SVM DT	Besult showed that	Influence of
ing for suspicious	PENGZHU DA-	dataset from	tion suspicious	5 V WI ,D I	by selecting different	different features
activity detection	IUN ZENG 2008"	Chinese finan-	transaction		detecting feature we	on suspicious
in anti money	JUN ZENG 2008	cial institution	transaction		achieve highest sensi	activity detection
loundering"		cial institution.			tivity 0.088 and spa	activity detection.
laundering					aify 0.442	
					city 0.442.	
"An improved	"Liu Keyan Yu	Heterogeneous	Cross validation	Support vec-	Result showed that	
support network	Tingting 2011"	data set		tor machine	the accuracy of sup-	
model for anti					port vector machine	
money launder-					is 79.42%.	
ing"						
					1	

"Machine learn-	"FETHI A. RAB-	Large dataset	Trading decision	SVM	Result showed that	Identifies the gap
ing applications	HI NIKOLAY		making order	ANN	support vector and	and opportunities
in trading and	MEHANDJIEV		execution man-		neural network me-	for new expand-
financial Mar-	ALI BAGHDADI		agement		thod ensuring syste-	ing field.
kets"	2020"				matic coverage of al	
					trading related activi-	
					ties from a practical	
					perspective.	
"machine learn-	"JORGE IVAN	Withdrawal	Link analysis	SUPPORT	Result showed that	
ing methodolo-	OLMER GARCIA	dataset various	anomaly detec-	VECTOR	support vector ma-	
gies against mon-	BEDOYA OC-	dataset have	tion risk scoring	MACHINE	chine trains a dataset	
ey laundering in	TOBER 2020"	52512 records		decision tree	to identify the out-	
non banking		and 9 variables		k prototype	liers and support	
correspondents"		and withdrawal			vector machine fre-	
		frequency is			quency is 0.91825	
		0.4286.				

UNSUPERVISED METHOD:

Joana et.al (2020) practiced the bit coin transactional dataset from belli. Dataset consists of 203 and 769 transactions. Transactions 21% as licit and 2% illicit. They utilized supervised method logistic regression and unsupervised method anomaly detection. They made use of some pre-processing techniques random sampling and isolation forest. The consequence indicated that supervised method logistic regression performed better by using a just 5% label than unsupervised method. In future this examination can be expanded focus on the unsupervised illicit activity.

DR.G KARISHANPARIYA (2020) utilized transactional dataset. They employed some preprocessing techniques correlation, data cleaning, transactional log, generation relational, link weight computation and decision cluster. They worked with method regression and decision tree. The end result showed that regression performed 90% accuracy than decision tree. In future work can be extended that classifier the resultant data under cleaning and data mining process.

XUAN et.al (2020) proposed real financial data from commercial bank. They made use of some preprocessing techniques normal transaction and suspicious transaction. They employed methods transaction recognition, pattern recognition, time series recognition. They outcome indicated that sensitivity of scan statics is 0.516% and the specify of 0.949. Future work showed that increase the sensitivity of our scars algorithm.

JOSE DE et.al (2020) utilized some preprocessing techniques own elaboration. They utilized some methods unsupervised clustering self organization, strict competitive and neural gas. The outcome indicated that c- means algorithm based on the compactness and separation used for the clustering process than the strict competitive, organization map and neural gas. Future work shows that applying the model in European countries to analyze detecting real cases of terrorism financing.

FLORIS et.al (2020) applied the training and test dataset which is 80% training dataset and 20% test dataset. They utilized some preprocessing techniques own elaboration. They used some methods decision tree, CIT, RF and neural network. The outcome indicated that random forest performing better with the precision of 0.984% than DT and NN. In future work the model will be trained and tested on real data to

> GSJ© 2021 www.globalscientificjournal.com

compare the performance on real life process.

IBRAR HUSSAIN et.al (2020) proposed the synthetic dataset by the PAYSIM simulator. The utilized some preprocessing techniques clustering is used to detect the financial fraud and statistically technique are used to detect fraud in different field. They utilized some methods decision tree, decision table, naïve byes k-nearest and neural network. The possible consequence that decision tree and naïve byes gives the lowest accuracy precision, recall, F-score than the neural network and k-nearest. In future work deep learning can be applied to identifying the evolving fraudulent patterns in mobile system.

Leno UUSKULA (2019) proposed imbalanced dataset from MONESE LTD and dataset split into training dataset and test dataset random 70% to train set and 30% test set . They made use of some preprocessing technique oversampling and under sampling. They utilized methods logistic regression, random forest and k means clustering. The outcome indicated that accuracy of logistic regression is 0.0431 and random forest accuracy is 0.1128.

Adeyinka et.al (2017) proposed predicting fraud in mobile money transfer using case based reasoning on dataset. They made use of some preprocessing techniques case based reasoning and case based similarity. They utilized KNN algorithms. The end result showed that case based reasoning model achieved accuracy 97%, recall and precision 93%. In future work will be spotlight on reducing computation cast to improve the scale ability of case based reasoning.

Ch.suresh et.al (2016) exercised the synthetic transactional dataset from multiple banks. They made use of preprocessing techniques placement, integration, and layering. They worked with hybrid approach method. The end result showed that efficiency of the money laundering describing that the suspicious account is placed in the layering stage of data mining. In future work focus on develop a system which identify the relation between suspicious accounts using concept like ontology.

RUI et.al (2011) made use of some methods clustering, k-means algorithm core and decision tree. They applied large dataset. They utilized some preprocessing method leaves connection mode. The result shows that core decision tree performed better than k-means clustering. In future work measure to wider the range of application.

BY JHOON et.al (2004) utilized the merchandise dataset from U.S. They exercised some preprocessing technique overvaluing and undervaluing. They possible outcome indicated that obvious information be sent to the U.S custom agency in 24 hours in advance the shipment from a foreign part. Future work showed that increasing the quality of intelligence information.

SU NAN et.al (2007) utilized method decision tree. They utilized sample dataset and uniform ruled data. The utilized some preprocessing techniques drug trafficking, smuggling, bribing. The end result showed that 12% cutomers out of 160 thousands considered for AML.

NHIEN et.al (2010) utilized transaction data from multinational bank. They made use of some methods neural network and k-means clustering. They utilized some preprocessing techniques customer identification and transaction analysis. The end result showed that k-means clustering performed 65% detection than neural network. In future work extended by improving the learning process to Handel the problem of very large dataset.

R.CORY et.al (2010) utilized the large dataset. They utilized some preprocessing techniques placement, integration, layering, detection and avoidance. They utilized some methods logistic regression, linear regression, cluster analysis and NN. The end result showed that use of new methodologies that could increase the peace enforcement ability to detect reduces and prevent money laundering activities.

NIHA et.al (2015) utilized the historical dataset. They made use of some preprocessing technique crime detection link, analysis financial, crime reporting system discovering and discrimination. They worked with some methods case based reasoning, decision tree, neighbor retrieval, artificial intelligence and neural network. The outcome demonstrated that data mining could potentially be used to lessen and even prevent crime for the forth coming year. In future work shows that increasing the effectiveness and efficiency of criminal and intelligence analysis.

LIN TAO et.al (2008) practiced the financial transaction dataset acquire from commercial bank. They worked with methods neural network and support vector machine. They made use of some preprocessing technique least square algorithm technology and clustering algorithm technique. The possible outcomes indicated that neural network proposed method have the high detection rate and the low false positive rate than support vector machine.

MAHESH et.al (2014) utilized the some preprocessing techniques data importer, data visualization, profile generation, suspected sequence sets. They utilized some preprocessing methods k-means clustering. They used dataset consist of no of objects used in the algorithm. The possible outcome showed that k-means clustering extract pattern from record and learn user decision pattern frequent pattern from association.

SERGIO et.al (2021) proposed the training and validation dataset gives similar mean square. They brought into play some preprocessing techniques own elaboration and non uniform distribution of data. They utilized methods k-means clustering, neural network and artificial intelligence. The possible outcome indicated that (Mean absolute error) in training dataset is 0.3317 and validation set 0.4059 and (Mean square error) in training data is 0.5577 and validation set 1.4602. In future work showed that the appropriate level of detail for the definition of preventive and detection measure in the different communes where the city is organized.

ZHONGEFIE et.al (2003) proposed data mining investigating money laundering crimes utilized the Bi-part dataset here we do not have explicit and direct access to the communicate information between data items. They utilized some preprocessing technique correlation analysis, community generation, local correlation, global correlation, identification and link hypothesis. They utilized some methods k-means algorithm, clustering algorithm and pattern recognition. The possible outcome indicated that collection of 332 documents in 20 minutes completed the model generation on a PIII-800 with 512 MB memory running windows 2000.

Victoria et.al (2014) applied the wine dataset. They utilized proximity based technique for the data distribution model. They utilized some methods support vector machine, neural network, KNN, linear regression and clustering. The possible outcome indicated that support vector machine covers minimal dataset which effectively covers the data distribution through a small subset and neural showed the classification accuracy and regression combines the multiple attribute into single attribute.

Title	Author/year	Dataset	preprocessing	Methods	Results	Future
						work
"machine learning	"joana lorezn maria	Real bit coin	Random sampling isola-	Supervised	Result showed	Focus the
methods to detect	ines silva 29 May	transactional	tion forest	method Logistic	that supervised	Unsupervised
money laundering	2020"	dataset taken		regression	method logistic	illicit activity
in the bit coin		from Bellei		Anomaly detec-	regression	
block chain in the		database con-		tion unsuper-	performed	
in the presence of		sist of 203,769		vised	better by using	
label scarcity"		transaction			a just few	
		21% are la-			5%labeld than	
		beled and as			unsupervised	
		licit and as 2%				

		illicit.				
"detecting money	"Lenno UUSKULA	Imbalanced	Oversampling under	Logistic regres-	Result shows	
laundering with	2019"	dataset from	sampling	sion random	that logistic	
benford 's law and		MONESE Ltd		forest k-means	regression	
machine learning"		and dataset		clustering	accuracy is	
		split into train			0.0431 and	
		and test dataset			random forest	
		random 70% to			accuracy is	
		train set and			0.1128.	
		30% test set.				
"identifying suspi-	"DR.G KARISHNA-	Transactional	Correlation Data clean-	Regression	Result shows	Future work
cious money laun-	PARIYA 27-02-2020"	dataset	ing transactional log	decision tree	that regression	shows that
dering transaction			generation relational link		perform 97%	classifier the
based on collabora-			weight computation		accuracy than	resultant data
tive relational data			decision from cluster		decision clas-	under cleaning
screening model					sifier	and data min-
using decision						ing process.
classifier in trans-						
actional database"						
"research on anti	"RUI LIU XIA	Large dataset	Leaves connection	Clustering k-	Core decision	Future work
money laundering	LONG QIAN SHU		modes.	means algorithm	tree perform	measure to
based on core	MAO SHUAI			core decision	better than k-	wider the
decision tree algo-	ZHENG ZHU 2011"			tree	means cluster-	range of appli-
rithm"		\sim			ing.	cation.
"detecting money	"By JHON	Merchandise	Overvaluing undervalua-	KNN	Result showed	Increasing the
laundering and	S.ZDANOWICZ	trade database	tion		that important	quality of
terrorists financing	2004"	from U.S			information	intelligence
via data mining"					sent to the U.S	information.
					agency in 24	
					hours advance	
					to the shipment	
					from other	
					country port.	
"Towards a new	" NHIEN AN LE	Transaction	Customer identification	k-means cluster-	Result showed	Future work
data mining based	KHAC SAMMER	dataset from	Transaction analysis	ing neural net-	that k-means	focus on im-
approach for anti	MARKOS MOHAND	multinational		work	clustering	prove the
money laundering	TAHAR KECHADI				65% detection	learning
in an international	2010"				than neural	process to
investment bank"					network	handle the
						problem of
						very huge
						dataset.
"Data mining for	"Mark ESHWER	Training data-	Understanding data	Multiple regres-	Result showed	Future work
statistical analysis	LOKANAN	set	Data selection data prep-	sion	that statistical	differentiate
of money launder-	3 March 2019"		aration data discovery	Logistic regres-	methods clus-	between legi-
ing transaction"			data evolution data re-	sion	tering very	timate and
			porting	Clustering mul-	efficient and	suspicious
				tiple clustering	useful for de-	transaction
				hierarchical	tecting suspi-	
				clustering parti-	cious transac-	

				tion	tion than logis-	
					tic regression.	
"Exploring data	"R.CORY WATKINS	Large dataset	Placement integration	Logistic regres-	Result showed	
mining technolo-	K.MICHAEL REY-		layering detection avoid-	sion cluster	that use new	
gies as tool to	NOLDS RON DE-		ance	logistic regres-	data mining	
investigate money	MARA 27 OCT 2010"			sion, ANN	methodologies	
laundering"					that could	
6					increase the	
					peace enforce-	
					ment's ability	
					to detect reduce	
					and prevent	
					money launder	
					ing activities	
	WIOGGERI HAGGA	T 1.4 4		12 1	Ing activities.	
DIGITILAZITON	"HOSSEIN HASSA-	Large dataset	Data pre-processing	K-means cluster-	Result snows	Future work
AND BIG DAIA	NI XU HUANG		variable future selection	ing neural net-	that k-means	shows that new
MINING IN	EMMANUEL SILVA		complexity and difficulty	work.	clustering	technologies in
BANKING"	20 JULY 2018"		of data quality assurance.		perform 60%	the area of big
					classification	data can also
					than DT, NN	change the
					and SVM.	direction of
					_	research.
"detection of ano-	"IBRAR HUSSAIN	Synthetic data-	Clustering technique is	Decision tree	Result shows	Future work
malous transaction	MUHAAMAD ASIF	set generated	used to detect the finan-	decision table	that decision	shows that
in mobile payment	DECEMBER 2020"	by the paysim	cial fraud. Statistically	naïve Bays K-	tree and naïve	deep learning
system"		simulator.	based techniques are used	NEAREST	bays gives the	can be applied
			to detect fraud in differ-	neural network	low accuracy	to identify the
			ent field.		precision and	evolving frau-
					recall F score	dulent patterns
					than the neural	in mobile
					network and k-	system.
					nearest.	
"money laundering	"jose de jesus rocha		Own elaboration	Unsupervised	Result shows	Future work
and terrorism	Salazar maria jesus			clustering strict	that c-means	shows that
financing detection	Segovia –vargas			competitive	algorithm	apply the
using neural net-	Maria del mar Cama-			learning self	based on the	model in Eu-
works and an ab-	cho minano 5 decem-			organizing maps	compactness	rope eastern
normality indicato	ber 2020"			c-means neural	and separation	countries to
				gas.	used for the	detect real
					clustering	cases of terror-
					process than	ism financing
					the harsh ag-	as it does in
					gressive learn-	proxy cases.
					ing self organi-	
					zation and	
					neural gas.	
"Data mining	"NIHA MISHRA	Historical	Crime detection Link	Case based	Result shows	Future work
necessity for crime	POOJA SHELKE	dataset	analysis financial crime	reasoning deci-	that data min-	shows that
detection"	FEBRARURY 2015"		reporting system disco-	sion tree nearest	ing could be	increasing the
			vering discrimination	neighbor retriev-	possibly used	accuracy and
			g allocation		r soorer j ased	arearacy und

				al artificial intel-	to minimize the	efficiency of
				ligence neural	crime for the	criminal and
				network	forth coming	intelligence
				notroni	vear	analysis
"the set of see	"Al-1-11:-	Tt	Linta materia frond	4	Percelt shares	Entres much to
the role of ma-	Addaldasit monam-	Large amount	Link analysis fraud	decision tree	Result shows	Future work to
chine learning in	mad qadir Asaf varol	of diver's	detection	naive Bays	that machine	predict crimi-
digital forensics"	june 19 2020"	dataset.		classification	learning use	nal in beha-
				KNN neural	this process	vior.
				network	with large	
					amount of data	
					with a highest	
					level of accura-	
					cy and better	
					quality result.	
"A scan statics	"XUAN Liu Penghzhu	Real financial	Normal transaction	Transaction	Result shows	Future work
hased suspicious	Zhang 2010 "	data from	suspicious transaction	recognition	that the sensi-	shows that
transaction detec-	Zhang 2010	commercial	suspicious transaction	nattern recogni-	tivity of scan	increase the
tion model for anti		bonk		tion time series	station in 0.516	sonsitivity of
		Ualik		uon unie series	statics is 0.510	SADC1
				recognition	and the speci-	SARSS algo-
in financial insti-					ficity 0.949.	rithm.
tute"						
"applied machine	"SERGIO Luis Nanez	Training and	Non uniform distribution	k-means cluster-	Result showed	The appropri-
learning in social	Alonso Javier Jorge	validation	of data	ing neural net-	that mean	ate level of
sciences neural	Vazquez 2021"	dataset gives	own elaboration	work artificial	absolute error	detail for the
network and crime		similar mean		intelligence	0.3317 in train-	definition of
prediction"		square error		-	ing data and	preventive and
					0.4095in vali-	detection
					dation data.	measure in the
					Mean square	different
					error 0.5577 in	communes
					training and	where the city
					1.4602 in vali-	is organized.
					dation.	-
"Applying data	"Zhongfei MARK	Bi party dataset	Community generation	k-means algo-	Result showed	
mining in investi-	ZHANG IHON I	1	correlation analysis link	rithm clustering	that collection	
gating money	SALENRO PHILIP		local correlation global	algorithm pat-	of 332 docu-	
laundaring arimas"	S VI 2002"		actual contraction identification	torm recognition	monte for the	
aundering critics	5.10 2005		link hypothesis	tern recognition	complete the	
			link hypothesis			
					model genera-	
					tion on a PIII-	
					800 with 512	
					MB running	
					windows 2000.	
"application of	"Gao zengan 2009"	Synthetic data-	Data collection data	Clustering	Result showed	Future work
cluster based local		set	analyze suspicious mod-		that clustering	showed that
outlier local algo-			eling system modeling		threshold alpha	relative subjec-
rithm in anti mon-					75% beta 4%	tive character
ey laundering."					and gamma	of the account
					0.15%.	admin remains
						open to our

						future	re-
						search.	
"A survey of out-	"VICTORIA J.	Wine data set	Proximity based tech-	k-NN neural	Result showed		
lier detection me-	HODE JIM AUSTIN		nique for the data distri-	network linear	that neural and		
thodologies"	17 MAY 2014"		bution model.	regression clus-	support vector		
				tering	machine which		
					covers the		
					minimal dataset		
					which most		
					effectively		
					covers the data		
					distribution		
					through small		
					subset. And		
					neural network		
					showed the		
					classification		
					accuracy. Re-		
					gression com-		
					bines the mul-		
					tiple attributes		
	~				into single		
					attribute.		

LIMITATIONS:

The use of supervised and unsupervised methods will help to detect the money laundering from the huge datasets. Some limitations were also found in above literature review such as applying on real time datasets, lack of hybrid models and use of feature selection methods.

In future recommendation, we suggest of developing hybrid models based on feature selection methods to handle this huge transactional datasets. We recommend of using more real-time with deep learning methods. :

Conclusion

Mobile money laundering increasing with the passage of time, we need an automated system to detect the money laundering at the real-time. Money related transactional data is a huge dataset. Bundle of interest from previous researcher have been effective to deal with this huge amount of data using data mining methods. This review paper is structured based on supervised and unsupervised learning methods of data mining. The limitations show that there is a very limited work on real-time money laundering detection and lack of hybrid models. There is a need of hybrid models to predict money laundering at real-time.

References

- Cao, D. and Do, P. (2012), "Applying data mining in money laundering detection for the Vietnamese banking industry", in Pan, J. S., Chen, S. M., Nguyen, N.T. (Eds), Intelligent Information and Database Systems. ACIIDS 2012. Lecture Notes in Computer Science, Vol. 7197, Springer, Berlin, Heidelberg.
- Salehi, A., Ghazanfari, M. and Fathead, M. (2017), "Data mining techniques for anti money laundering", International Journal of Applied Engineering Research, Vol. 12No. 20, pp. 10084-10094.
- Zdanowicz John S. Detecting Money Laundering and Terrorist Financing Via Data Mining [J]. Communications of the ACM, 2004, pp.53-55.
- 4. Alexander, C. and Balsa, J. (2015), "Client profiling for an anti-money laundering system", arXivpreprint arXiv:1510.00878
- 5. Demotes, D.S. (2018), "Fighting money laundering with technology: a case study of bank x in the UK",
- 6. Decision Support Systems, Vol. 105, pp. 96-107.Gao, Z. and Ye, M. (2007), "A framework for data mining-based anti-money laundering research",
- 7. Journal of Money Laundering Control, Vol. 10No. 2, pp. 170-179
- Lopez-Rojas, E.A. and Axels son, S. (2012), Money Laundering Detection Using Synthetic Data, the 27th
- 9. Annual Workshop of the Swedish Artificial Intelligence Society (SAIS), 14-15 May 2012,
- Linkoping University Electronic Press, Orebro, pp. 33-40 Savage, D. Wang, Q. Chou, P. Zhang, X. and Yu, X. (2016),
- 11. "Detection of money laundering groups using supervised learning in networks", arXiv preprint ar-Xiv:1608.00708.
- 12. Schott, P.A. (2006),Reference Guide to anti-Money Laundering and Combating the Financing of Terrorism, TheWorldBank,Washington, DC.
- The Norwegian Money Laundering Act, Chapter 3 (2009), "The Norwegian money laundering act, chapter 3", In Norwegian, available at: https://lovdata.no/dokument/NL/lov/2009-03-06-11#KAPITTEL_3(accessed 15 January 2018)
- 14. Gao, Z., & Ye, M. (2007). A framework for data mining- based anti-money laundering research. Journal of Money Laundering Control, 10(2), 170–179.
- 15. Goo, S., & Xu, D. (2010). Real-Time Exception Management Decision Model (RTEMDM): Applications in Intelligent Agent-Assisted Decision Support in Logistics and Anti-Money Laundering Domains.

- Proceedings of the 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 2010, 1–10 Drezewski, R., Sepielak, J., & Filipkowski, W. (2015).
- 17. The application of social network analysis algorithms in a system supporting money laundering detection. Information Science, 295, 18–32.
- 18. Ehsan, U., Harrison, B., Chan, L. & Riled, M.O. (2018). Rationalization: a neural machine translation
- 19. approach to generating natural language explanations. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (AIES'18), New Orleans, LA, USA, 2–3 February 2018, 81–87.
- 20. hang, Cheng-wei, and Yu-bo Wang. 2010. "Research on application of distributed data mining in antimoney laundering monitoring system." In 2010 2nd International Conference on Advanced Computer Controls.
- Ravisankar, P., Ravi, V., Raghava Rao, G., Bose, I.: Detection of financial statement fraud and feature selection using data mining techniques. Decius. Support Syst.50. 491–500 (2011). Science Direct.
- 22. Bekirev, A.S., Klimov, V.V., Kuzin, M.V., Shchukin, B.A.: Payment card fraud detection using neural network committee and clustering. Optical Memory and Neural Networks (Information Optics) (2015).
- 23. Gao, Z. and Ye, M. (2007), "A framework for data mining-based anti-money laundering research", Journal of Money Laundering Control, Vol. 10No. 2, pp. 170-179.
- 24. Lopez-Rojas, E.A. and Axels son, S. (2012), Money Laundering Detection Using Synthetic Data, the 27th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS), 14-15 May 2012, Link oping University Electronic Press. Orebro, pp. 33-40.
- 25. arandela, R., Valdovinos, R., Sanchez, J., & Ferri, F. (2004). The imbalanced training sample problem:Under or over sampling? InJoint IAPR international workshops on statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR)(pp. 806–814).
- 26. Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science, 17,235–249.
- 27. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2,27.
- 28. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20,273–297.
- 29. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control.
- 30. Larose, D. T., & Larose, C. D. (2015).Data mining and predictive analytics. New York: Wiley.Le-Khac, N. A.,Markos, S., &Kechadi,M. T. (2010). Adatamining-based solution for detecting suspicious money laundering cases in an investment bank. InSecond international conference on advances in databases, knowledge ,and data application.
- Choi, Dane and Lee, Kyungho. Machine Learning based Approach to Financial Fraud Detection Process in Mobile Payment System. IT Convergence Practices (INPRA), vol. (5) 4, 12-24, (2017).

- 32. Watkins, R.C., et al.: Exploring Data Mining technologies as Tool to Investigate Money Laundering. Journal of Policing Practice and Research: An International Journal 4(2), 163–178 (2003).
- 33. L. Lv, N. Ji, J. Zhang, "A RBF Neural Network Model for Anti-money Laundering," Proc. 2008 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR 2008), 2008, pp. 209-215.
- 34. Demetis, D.S. (2018), "Fighting money laundering with technology: a case study of bank x in the UK", Decision Support Systems, Vol. 105, pp. 96-107.
- 35. Lopez-Rojas, E.A. and Axelsson, S. (2012), Money Laundering Detection Using Synthetic Data, the 27th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS), 14-15 May 2012, Link«opingUniversity Electronic Press Orebro, pp. 33-40.
- 36. Savage, D. Wang, Q. Chou, P. Zhang, X. and Yu, X. (2016), "Detection of money laundering groups using supervised learning in networks", arXiv preprint arXiv:1608.00708.
- 37. iyuan Chen, Amril Nazir, Ee Na Teoh, Ettikan Kandasamy Karupiah, et al.2014. Exploration of the effectiveness of expectation maximization algorithm for suspicious transaction detection in anti-money laundering. In 2014 IEEE.
- 38. European Union. 2018. Directive (EU) 2018/843 of the European Parliament and of the Council of 30 May 2018 amending Directive (EU) 2015/849 on the prevention of the use of the financial system for the purposes of money laundering or terrorist financing, and amending Directives 2009/138/EC and 2013/36/EU.
- 39. The People's Bank of China, China anti-money laundering report 2005[R], China Financial Publishing House, Beijing, 2006.6. (In chinese) [9] Zhiyuan Chen, Le Dinh Van Khoa, Ee Na Teoh, Amril.