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Abstract 

We modelled simgle phase, two phase and three phase flow equations in a porous medium from 

first principle.    The model was developed using the principle of conservation of mass, Darcy 

law, saturation and capillary pressure relations.   Also we provided a modeling process for the 

pressure gradient in a hypothetical water flooding experiment.  Our modeled equations have 

the potentials to capture inherent flows scnarios in porous media.   
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1 INTRODUCTION 

Fluid transport modeling through porous media is essential to numerous environmental, 

biological and industrial systems.  Processes such as the movement of contaminants in the 

subsurface and their remediation, geologic nuclear waste disposal, medical application such as 

brain and liver cancer treatment and most notably in oil recovery from petroleum reservoirs 

Arezou et al. (2019) are some examples of porous media transport.  In petroleum reservoirs, 

the inherent heterogeneity of subsurface porous media, as well as the complexity involved in 

the multiphase physics, highlights some of the most important technological challenges of our 

time (Komal et.at, 2023; Vincent et.at 2022; Pan and Miller 2003; Nagi, 2009).  In order to 

understand the dynamics of porous media transport , we must have sufficient knowledge of the 

constitutive relationships between the macroscopic properties of the system such as relative 

permeabilities, capillary pressures and fluid saturations which are essential in the modeling of 
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the flow transport (Mohammed and Pramod, 2015).  The determination of these constitutive 

relationships are however not without challenge as they are dependent on the fluid properties, 

the pore space as well as the saturation history.  The inherent complexity of pore-scale 

displacement through the irregular geometry of natural porous media makes the prediction of 

multiphase flow mechanism in geological processes a very difficult task.  Therefore, any 

scientific approach to this problem does not only requires a detailed understanding of the 

multiphase displacement mechanisms at the micro scale level but must also understand the 

structure of the porous medium (Pereira et.al. 1996; Corey 1994; Helmig 1997).  Our current 

civilized world, will very likely continue to depend on petroleum products either as energy 

resource or as vital materials for consumer products in the near future.  The complexity in the 

understanding of the pore scale displacement mechanism in the petroleum  reservoir, has 

resulted to a decline in the production of conventional petroleum products Tore and Eyvind 

(2008), thereby mounting pressure on the discoveries of new oil wells as well as oil exploration 

in vulnerable areas such as the arctic regions.   In the petroleum industry, the economic value 

of a reservoir is determined by the amount of oil which can be produced from the reservoir, 

which is affected by either field-scale fluid flow behavior within the porous media as well as 

pore-scale behaviour of the flow. The pore-scale behaviour of the flow dictates the macroscopic 

(core-scale) properties of porous media, such as capillary pressure as well as the relative 

permeability.  In reality, due to the complicated transport phenomena involved, the multiphase 

flow and heat transfer remain poorly understood and analytically intractable (Starikovicius, 

2003, Zuonaki and Orukari 2021).  This can only be achieved if there is a robust mathematical 

model for multiphase flow phenomena; which this is the motivation behind this research 

 

2 MATHEMATICAL FORMULATION 

Our inability to predict accurately multiphase flow phenomena in porous media is simply 

because existing models fail to accurately capture the inherent transport processes in the 

medium.  This is because either there were over simplifying assumptions made during the 
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modeling process or some parameters which play significant role in the flow mechanisms are 

not captured in the model. We acknowledged that there are inherent challenges in subsurface 

flow modeling.  For example, in petroleum reservoir modeling, it is almost impossible to 

accurately predict the porosity and the permeability of the rock properties.  Another challenge 

is how the different fluid phases such as oil, gas and water interact as well as the rate of mass 

transfer.  Thus we develop an enhanced mathematical model which is not based on over 

simplifying assumptions but which captures sufficient parameters relevant to flow processes 

within the continuum scale. The mathematical model of this physical system is set by 

differential equations and some special boundary conditions. To this end, we will apply the 

fundamental rule of conservation of mass and Darcy equation for each phase as well as 

constitutive relations.   We start with the modeling of single phase mass conservation equation 

in a porous medium from the first principle. 

2.1 Development Of Flow Equations In Porous Media  

2.1.1 Mass conservation 

The principle of conservation of mass discusses the balance between the rate of mass change 

in an arbitrary volume and the inflow of mass through the boundary surface area. In integral 

form, this can be expressed as follows: 

dV dS qdV
t

 


  
   u n        (2.1) 

The double and triple integrals in (2.1) are taken over the surface and volume respectively 

while the parameters , , , ,  u n  and q  represent the fluid density, the porosity the medium, the 

velocity vector, the unit outward normal vector and the external mass flow rate respectively.  

The second term on the right hand side of equation (2.1) can be converted into a volume integral 

form by using the Gauss’ divergence theorem such as: 

( )dS dV    u n u         (2.2) 
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Using equation (2.2) in (2.1) and for a fixed control volume, the integral form of the 

conservation law results to 

( )
( ) 0q dV

t




 
     

 u        (2.3) 

since 0dV   (i.e the control volume), it implies that  

( )
( ) 0q

t





  


u  or  

( )
( ) q

t





  


u                      (2.4) 

where   is the del operator defined as 

1 2 3

, ,
x x x

   
   

   
   

Equation (2.4) is known as the mass conservation equation  

We remark that q  by convention is negative for sinks and positive for sources.  Introducing 

the formation volume factor B  defined as  s sB
B

 



    where  

s  is the fluid density at 

standard conditions.  Substituting s

B


   into equation (2.4), we have 

1

s

q

t B B





    
     

    
u                (2.5) 

Equations (2.4) and (2.5) are equivalent mass conservation equations 

2.1.2 Darcy’s law 

This is an empirically observed law (Darcy; 1856) which states that the flow rate of a single 

phase fluid through a horizontal homogeneous porous medium is proportional to the pressure 
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gradient across the medium and inversely proportional to the viscosity of the fluid.  It is 

mathematically expressed as: 

KA P
Q

L


                                     (2.6) 

  where Q  and K  are the volumetric flow rate and permeability of the fluid respectively,   is 

the viscosity of the fluid, P  is the pressure gradient across the medium while A and L  are 

the cross sectional area and length of the system respectively while K  is the permeability of 

the porous.  A porous material will produce a permeability of one darcy if a pressure gradient 

of 1atmosphere applied across a sample of the material with a cross-sectional area of 1square 

cm and a length of 1 cm will produce a flow rate of 1 cubic cm per second when the fluid 

viscosity is 1 centipoise. 

The differential form of Darcy law (2.6) is given as: 

  
Q K P

A x


  


u                      (2.6*) 

  

 

  where u is the superficial Darcy velocity and the negative sign signifies that the fluid flows 

in the direction of decreasing pressure.  For multidimensional flow, Darcy law is given as:     

    

( )
K

P g D


    u                                                                                                    (2.7) 

where u    is the fluid flow velocity, P  , the fluid pressure is the unknown function to be 

determined by the flow model, K is the absolute permeability tensor and a parameter of the 

solid matrix only and may depend on position.    is the dynamic viscosity of the given fluid 

and is taken either as a constant or as a function of pressure. g  is the gravitational vector, 𝜌 is 

the fluid density and 𝐷, the physical depth.  Darcy’s law is valid for slow flow of a Newtonian 

fluid through porous medium with rigid solid matrix (Zhangxin et al. 2006; Zhangxin C. 2007).   

2.1.3  Single phase flow equation 
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By substituting equation (2.7) into equation (2.4) results to 

( )
( ( ))

K
P g D q

t

 





     


                                                   (2.8) 

where , , , , , , ,P g D q       as earlier defined represent the porosity, density, viscosity, 

permeability, pressure, gravity, physical depth and external mass flow rate respectively.  

Equation (3.8) is a single-phase flow equation in porous media. In most practical applications, 

substituting equation (3.7) into equation (3.5) we have an alternative form of the single phase 

flow equation as 

( )
s

K q
P g D

t B B




 

   
         

    
             (2.9) 

The new parameter in equation (2.9) is the formation volume factor B    

2.1.4  Two -phase immiscible flow equation 

In any petroleum reservoir, there exists at least two different fluid phases.  The single phase 

scenario seldom occurs.  Here, we develop the model for the displacement of oil by either water 

or gas.  The challenge is that this happens in a simultaneous flow and not with a sharp edge.  

To circumvent this challenge, we assume that there is no mass transfer between the two fluids.  

We consider two-phase flow where the fluids are immiscible and one fluid phase is considered 

a wetting phase (the phase which wets the porous medium more) while the other is considered 

non-wetting. In a water – oil system, water is considered the wetting phase while oil is regarded 

as the non-wetting phase but in an oil – gas system, oil is referred to as the wetting phase while 

the gas is the non-wetting phase.  We refer to the wetting phase by the subscript w  and to the 

non-wetting phase by the subscript n .  Thus we have 

1w ns s                                       (2.10) 

where ,w ns s  are the saturations of the wetting and non-wetting phase respectively.  Also, due 

to the curvature and surface tension of the interface between the two phases, the pressure in the 
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wetting fluid is less than that in the non-wetting fluid as mention by Held and Celia (2001). 

The pressure difference is given by the capillary pressure.  As an empirical fact, the capillary 

pressure is a function of the saturation and the wetting phase Mohammad and Pramod (2015) 

and is defined by 

w(s )cnw n wp p p                                             (2.11) 

At this point, we extend Darcy’s law from single phase flow to two-phase flow by assuming 

that the phase pressure forces for each phase to flow.  Thus equation (2.8) can be written as  

  

( )rn
n n n

n

Kk
P G


   u                                      (2.12) 

( )rw
w w w

w

Kk
P G


   u                                     (2.13) 

Where    represents the phase (wetting and non-wetting), , ,rKk P     are the phase 

permeability, phase pressure and phase viscosity respectively and G g D  .  Except for the 

accumulation term, the same derivation that led to (2.4) also applies to the mass conservation 

equation for each fluid phase.  To obtain the rate of accumulation, we multiply the differential 

volume by the phase saturation , ( , )s w n    Zhangxin et.al (2006). Thus the mass 

accumulation in a differential volume per unit time is represented as 

( )s

t

 


  

Considering this and with the assumption that there is no mass transfer between phases 

in the immiscible flow, mass is conserved within each phase. Thus we obtain: 

( )
( ) n n

n n n

s
q

t





  


u                                  (2.14) 

 
( )

( ) w w
w w w

s
q

t





  


u                                 (2.15) 
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for the non-wetting phase and wetting phase respectively.  Again, applying Darcy’s law in 

equations (2.14) and (2.15) results to  

( )
( )n rn n n

n n n

n

Kk s
p G q

t

 




  
     

 
                    (2.16) 

( )
( )w rw w w

w w w

w

Kk s
p G q

t

 




  
     

 
                    (2.17) 

Equations (2.16) and (2.17) represent the mathematical model describing the flow of two phase 

immiscible fluids in porous media. 

2.1.5 Three-phase immiscible flow equation 

Consider a system which involves three immiscible fluids such as gas, oil and water ( , )g o w .  

We assume that no mass transfer between the three fluids.  The derivation of three phase flow 

equation is analogous to that of two phase flow equations with slight modifications of the 

saturation and capillary pressure relations. 

1w o gs s s                                   

(2.18) 

In this case we have three capillary pressures in which two are independent and defined as 

follows: 

cow o wp p p                                    (2.19) 

cgo g op p p                                         (2.20) 

cgw g w cgo cowp p p p p                                  (2.21) 

Now the conservation equation for each of the three phases results to the following: 

g

( )
( ) q

g g

g g

s

t





  


u                                            (2.22) 

( )
( ) q w w

w w w

s

t





  


u                                          (2.23) 
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( )
( ) q o o

o o o

s

t





  


u                                 (2.24) 

Next, we apply Darcy’s law to equations (2.22) – (2.24) which results to the following set of 

equations: 

( )
( )

g rg g g

g g g

g

Kk s
p G q

t

 




  
     

  

                                      (2.25) 

( )
( )w rw w w

w w w

w

Kk s
p G q

t

 




  
     

 
                            (2.26) 

( )
( )

o goo ro
o o o

o

sKk
p G q

t






 
     

 
                          (2.27) 

As in the case of two phase flow equations, equations (2.25) - (2.27) represent the mathematical 

model describing the flow of three phase immiscible fluids in porous media.  In order to solve 

equations (2.16), (2.17), (2.25), (2.26) and (2.27) for the transient pressure and saturation of 

each phase, the following additional information are required: 

(i) appropriate boundary and initial conditions 

(ii) capillary pressure and relative permeabilities as functions of saturation and 

(iii)  the porosity and fluid properties such as phase densities and viscosities as functions of 

pressure.  

2.1.6  Initial and boundary conditions 

Since our flow equations describe the changes of the function values in space and in time; to 

get their values at any given time and location, an initial condition as well as boundary 

conditions have to be defined.  In practical applications, the processes to be investigated take 

place in a concrete geometry (e.g., in turbines, car engines, heat exchangers, chemical reactors, 

soil etc.) during a finite interval of time. The choice of the domain and of the time interval to 

be considered is dictated by the nature of the problem at hand, the objectives of the analytical 

or numerical study, and by the available resources. Furthermore, the choice of initial and/or 

boundary conditions that lead to a well-posed problem is of great importance.  
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2.1.6.1 Definition: Let 
d  be a bounded domain and (0,T)  be a time interval of interest.  

In general, the boundary   of   may consists of an inflow part { | 0}x    u n , the 

outflow part { | 0}x    u n   and a solid wall 
0 { | 0}x    u n   where n   denotes 

the unit outward normal to the boundary at the point x .   

Remarks: Since our flow equations contain time derivative, we must therefore include an 

initial condition that defines the distribution of mass at 0t    

                0( ,0) ( )  u x u x x                                        (2.28) 

Furthermore, since the fluid inside   interacts with the surrounding medium, it is therefore, 

necessary to prescribe suitable boundary conditions on   .   If the values of u  are known on 

D    , they can be imposed as Dirichlet boundary conditions (boundary condition which 

specifies the value(s) of the unknown along the boundary of the 

domain)                                      ( , t) ( , ) , (0, )D Dt t T    u x u x x                
(2.29) 

As a rule, this boundary condition is used at the inlet 
  and/or on the solid wall 

0 . 

Alternatively, a given normal flux may be prescribed on the complementary 

boundary part \N D    . This is referred to as Neumann boundary condition defined as 

               
( , ) , (0, )Ng t t T     f n x x                                                           (2.30) 

The flux f   may consist of a convective and/or a diffusive part, depending 

on the information available.  If 
Cf = f  (the convective flux) or the diffusive flux 

Df  is 

required to vanish, then the right-hand side of (2.30) is given by  

  
( ) ug  u n  on 

  and 0g   on 
0                               (2.31) 

 

2.1.7 Example of physical modeling approach: Two phase water flooding problem 
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Consider a petroleum reservoir of two dimensions.  This is not out of place since the areal 

dimensions in petroleum reservoirs are usually much greater than the thickness, and since 

petroleum reservoirs are usually more permeable in the horizontal direction than the vertical 

direction, (ie 
H V    ) many reservoirs are modeled as two-dimensional reservoirs.  The 

injection and production wells would be considered as point sources or sinks in the continuity 

equation.  The two fluid phases oil and water would be denoted by the subscripts o  and w  

respectively.  For the present illustration, we would neglect the effect of capillary pressure.  

Now from the above information, the equations describing the system are as follows: 

1

( )
( ) q ( ) ( )

m

NW
w w

w w w m m

m

s
x x y y

t


  




     


u                  (2.32) 

1

( )
( ) q ( ) ( )

m

NW
o o

o o o m m

m

s
x x y y

t


  




     


u                  (2.33) 

rw
w w

w

k
P




  u                              (2.34) 

ro
o o

o

k
P




  u                              (2.35) 

1o ws s                                (2.36) 

where ( )mx x   is the Dirac delta function, NW  is the number of wells while 
mx  and 

my   

denote the location of a single well.  A positive value of 
mwq  or   

moq  implies injection of water 

or oil while a negative value stands for production.  For impermeable boundary, the appropriate 

boundary and initial conditions are follows: 

0
P


n
  on               (2.37) 

( 0) inP t P                (2.38) 

in( 0)ws t s                (3.39) 
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Where n is the outward unit normal vector on the reservoir boundary   while 
inP  and 

ins  

represent the specified initial pressure and saturation.  Rather than no-flux boundary condition 

on pressure, values of pressure can be specified over some or entire reservoir boundary.  The 

following relations are adopted to represent the fluid densities and the reservoir porosity as 

functions of pressure: 

1 w
w

w

d
c

dP




                                                   (2.40) 

1 o
o

o

d
c

dP




                                                   (2.41) 

1
r

d
c

dP




                                                  (2.42) 

where ,w oc c  and 
rc  are the compressibilities of water, oil and the porous space respectively.  

Equations (3.32-3.42) constitute the reservoir model which can be solved for the transient 

pressure and saturation when the reservoir properties such as , , rwk   and 
rok  and the well 

rates 
wq  and 

oq  are specified.   

2.1.8  Generalized model for multiphase immiscible flow equations 

In this section, we investigate further on the structure of the coupled partial differential 

equations: (2.16), (2.17), (2.25) – (2.27) by deriving a single partial differential equation 

involving pressure and saturation only for both the two phase and three phase flows 

respectively.  This formulation is amenable to practical applications. 

2.1.9 Pressure equation for two phase immiscible flow 

By expanding the time derivatives of equations (2.14) and (2.15); we have: 

( ) n n n
n n n n n n

n

d p s
q s s

t dp t t


   

  
     

   
nu                     (2.43) 
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( ) w w w
w w w w w w

w

d p s
q s s

t dp t t


   

  
     

   
wu          (2.44) 

Now we divide (2.43) by 
n  and (2.44) by 

w  result to 

( )n n n n n n n
n

n n n n

u q s d p s
s

t dp t t

  


  

   
    

   
                    (2.45) 

( )w w w w w w w
w

w w w w

u q s d p s
s

t dp t t

  


  

   
    

   
         (2.46) 

 adding equations (2.45) and (2.46) gives 

( ) ( )
( ) ( )n n w w n w n n n w w w

n w n w

n w n w n n w w

u u q q s d p s d p
s s s s

t dp t dp t t

     


     

     
          

        

(2.47) 

 using the two phase saturation relation; equation (2.10),  phase compressibility 
1 i

i

i i

d
c

dp




   and 

letting n w

n w

q q
Q

 
    equation (2.47) becomes 

( ) ( )n n w w n w
n n w w

n w

u u p p
Q s c s c

t t t

  
 

 

     
     

  
                               (2.48) 

Equation (2.48) is the pressure equation for two phase immiscible flow in a porous medium; where 

Q is the total volumetric injection rate, 
nc  and 

wc  are the respective phase compresibilities, 
n  

and 
w  are the respective phase densities while 

nP  and 
wP  are the respective phase pressures. 

n

, 
w , 

ns , 
ws , represent phase viscosities and phase saturations respectively while   is the rock 

porosity. 

2.2.3  Pressure equation for three phase immiscible flow  

Similar to the two phase immiscible flow equations; we expand the time derivatives of equations 

(2.22, 2.23 and 2.24).  This gives: 
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g( ) q
g g g

g g g g g g

g

d p s
s s

t dp t t


   

  
     

    

u                    (2.49) 

( ) q w w w
w w w w w w w

w

d p s
s s

t dp t t


   

  
     

   
u         (2.50) 

( ) q o o o
o o o o o o o

o

d p s
s s

t dp t t


   

  
     

   
u          (2.51) 

Now divide through equation (2.49) by 
g , equation (2.50) by 

w  and equation (2.51) by 
o  we 

have, 

   
g( ) qg g g g g g

g

g g g g

s d p s
s

t dp t t

 
 

  

   
    

    

u
                    (2.52) 

( ) qw w w w w w w
w

w w w w

s d p s
s

t dp t t

 
 

  

   
    

   

u
        (2.53) 

( ) qo o o o o o o
o

o o o o

s d p s
s

t dp t t

 
 

  

   
    

   

u
       (2.54) 

Adding equations (2.52) – (2.54) results to 

g( ) q( ) ( ) q q
( )

( ) (2.55)

g g g g gw w o o w o w w w
g w o

g w o g w o g g w w

o o o
g w o

o o

s d p s d p
s s s

t dp t dp t

s d p
s s s

dp t t

   
 

       


 


   
       

  

 
   

 

u u u

 now using the three phase saturation relation in equation (2.18)  and the phase compressibility 

1 i
i

i i

d
c

dp




  and letting 

g w o

g w o

q q q
Q

  
    equation (2.55) becomes 

( ) ( ) ( )
(2.56)

g g gw w o o w o
g g w w o o

g w o

p p p
Q s c s c s c

t t t t

   
  

  

    
    

   

u u u
  

In the above equation. 
iQ  is the total volumetric injection rate,   is the rock porosity while ,g wc c

and 
oc  are the phase compressibilities of  gas, water and oil respectively.  Others parameters are as 

defined above.   

3. Results 
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In this section, we present the model equations of two phase and three phase equations 

respectively as well as their pressure formulations.  For easy identification, we maintained the 

equation numbers as formulated in section two 

(i) Two phase flow equation 

( )
( )n rn n n

n n n

n

Kk s
p G q

t

 




  
     

 
                    (2.16) 

( )
( )w rw w w

w w w

w

Kk s
p G q

t

 




  
     

 
                    (2.17) 

( ) ( )n n w w n w
n n w w

n w

u u p p
Q s c s c

t t t

  
 

 

     
     

  
                               (2.48) 

Equations (2.16) and (2.17) are two phase equation while equation (2.48) is the pressure 

equation for two phase immiscible flow in a porous medium. 

(ii) Three phase flow equation 

( )
( )

g rg g g

g g g

g

Kk s
p G q

t

 




  
     

  

                                      (2.25) 

( )
( )w rw w w

w w w

w

Kk s
p G q

t

 




  
     

 
                            (2.26) 

( )
( )

o goo ro
o o o

o

sKk
p G q

t






 
     

 
                          (2.27) 

( ) ( ) ( )
(2.56)

g g gw w o o w o
g g w w o o

g w o

p p p
Q s c s c s c

t t t t

   
  

  

    
    

   

u u u

 

Equations (2.25) - (2.27) represent the mathematical model describing the flow of three phase 

immiscible fluids in porous media while equation (2.56) is the pressure equation for three phase 

immiscible flow equation in a poruous medium. 

4. Conclusion 
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In this research, we have developed single phase, two phase and three phase flow equations in 

a porous medium.  The mass balance equation for each fluid phase, darcy’s  law was modified 

to accommodate the different fluid phases as well as  the constitutive relations for pore fluids 

and solid skeleton formed the basis of the multiphase formulation.  Our flow equations were 

transform into pressure and saturation formulations and by rigorous mathematical applications, 

we are able to develop reservoir flow equations for two phase and three phase flows which 

have more essential parameters ever reported in literature.  We hope that simulation results of 

these equations would capture the inherent flow scenarios observed in the laboratory and in the 

field.  
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