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Abstract 

Machine learning research is great progress in many directions. This article summarizes these four directions and discusses 

some of them Current open issues. There are four directions (1) Improvement of classification accuracy by Methods of Learning 

Classmates Samples, (2) Augmenting supervised learning algorithms, (3) reinforcement learning and (4) learning of complex 

random samples. 

There has been an explosion of machine learning research over the past five years. There are many reasons for this explosion: 

first, different Symbolic machine learning, computational learning theory, neural networks, statistics, and research associations 

in pattern recognition have found and worked together. Second, machine learning techniques are being applied to a new type 

of problem, including database, language processing, robot control, and knowledge discovery. 

For traditional problems such as glowing optimization, as well as speech recognition, facial recognition, handwriting 

recognition, medical data analysis, and game play. In this article, I have chosen four topics in machine learning, where there 

has been a lot of activity recently. The purpose of the article is to outline the findings of some of the wider AI audiences in 

these areas and some open research issues. Topic areas include (1) classification classifiers, (2) methods of scaling up 

supervised learning algorithms, (3) reinforcement learning, and (4) learning of complex random models. The reader should be 

warned that this article is not a comprehensive review of everything Instead of this aspect, my aim is to provide a representative 

sample of research in each of these four fields. In each field, there are many other documents describing the relevant work. I 

apologize to the authors whose work it is Unable to add to the article. 
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1. Ensembles the classifier 

The first topic deals with methods for improving accuracy in 

supervised learning. I'll start with some marking. In 

supervised learning, a learning program y = f (x) is given a 

training example of the form {(X1, y1), ..., (xm, ym) for an 

unknown function. Zivulus is usually the vectors of the form 

<xi, 1, xi, 2, ..., xi, n> whose parts are discrete or true values 

such as height, weight, colour and age. They are also called 

the properties of xi. Uses notation xith to denote the jth 

attribute of xi. In some cases, I will drop the i subscription 

when indicated by reference. Y values are usually derived 

from discrete sets of {1, ..., K disc in terms of classification or 

regression. In this article, I mainly focus on classification. 

Some of the training examples may be contaminated by 

random noise. 

Given a set of training examples S, a learning algorithm 

generates classification. Classification is a hypothesis about 

the true function. Depending on the new x values, it ts the 

corresponding y values. I H1, ..., denotes classmates by HL. 

Classmates are a group of classifications whose individual 

decisions are combined into some form (usually without 

weight or voting) to classify new ones. One of the most active 

areas of research in supervised teaching is the study of 

methods for building good actors of classification. The main 

finding is that the ensemble is often more accurate than the 

individual classifiers that make them. If individual classifiers 

disagree with one another, the ensemble may be more accurate 

than its component classification (Hansen and Salamia 1990). 

To see why, imagine that we have a set of three classifiers: 

{h1, h2, h3}, and consider the new case x. If the three 

classifiers are identical, then h1 (x) is false, while h2 (x) and 

h3 (x) are also false. 
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However, if the classification errors are unrelated, then 

when h1 (x) is false, h2 (x) and h3 (x) may be correct, so that 

the majority vote correctly classifies x. More precisely, if the 

error rate of L hypothesis hl is equal to all p <1/2 If the errors 

are independent, then the probability that the majority vote is 

incorrect is the area under the binomial distribution, where 

hypotheses greater than L / 2 are incorrect. Figure 1 shows this 

region for the simulated ensemble of 21 Hypothesis, each error 

rate is 0.3. For 11 or more hypotheses, the area under the curve 

is simultaneously 0.026, which is much less than the error rate 

of the individual hypotheses. 

 

2. Methods for constructing Ensembles 

Several ways have been developed to create the ensemble. 

Some methods are common, and they can be applied to any 

learning algorithm. Other methods are specific to specific 

algorithms. I will start by reviewing the general methods 

The first approach turns training examples into making 

multiple hypotheses. Learning algorithms can be implemented 

multiple times, each time with a different subset of training 

examples. This technique works especially for volatile 

learning algorithms - output classifiers undergo large changes 

in response to small changes in training data. Decision trees, 

neural networks and rule-learning algorithms are all 

inconsistent. Linear-regression, near-neighbour and 

nonlinear-threshold algorithms are generally stable. Bagging 

is the most direct way to change a training set. In each run, the 

bagging learning algorithm is combined with a set of M 

training sets, with a sample of M training examples randomly 

drawn from the original training set of M objects. This type of 

training set is called bootstrap. 

A replica of the original training set, and the technique is 

called bootstrap aggregation (Breiman 1996a). Each bootstrap 

replicate averages 63.2 percent of the original training set, 

with multiple training scenarios appearing multiple times. 

Another training-set model method is to construct training sets 

by ignoring unrelated subsets of the training data. For 

example, the training set can be randomly divided into 10 

dismount subsets. Then, 10 overlapping training sets can be 

constructed by separating one of these 10 subsets. The same 

approach can be used to create training sets for ten-fold cross 

validation; Therefore, groups created in this way are 

sometimes called cross-validated committees (Permanento, 

Munro, and Doyle 1996). 

The third method for transforming the training set is described 

by the ADABOOST algorithm, developed by Freund and 

Shepaire (1996, 1995) and shown in Figure 2. ADABOOST 

puts probability distribution pl (x) on training examples. In 

each iteration l, it draws a training set of size m by sampling 

with the substitution according to the probability distribution 

pl (x). The learning algorithm is implemented to generate the 

classification HL. The error rate (weighted according to pl (x)) 

of this classification on training examples is calculated and 

used to adjust the probability distribution in the training 

context. (Note that, in Fig. 2) 

 

 
 

The probability distribution is obtained by generalizing the set 

of weights (W) over the training examples.) 

A change in weight can have an impact Put more weight on 

training examples that are misconfigured by HL and less on 

properly classified examples. In subsequent iterations, 

ADABOOST makes learning progressively more difficult 

Problem. 

 (I). Critical training scenario errors cause larger gradient-

descending steps than trivial (underweight) example errors. 

However, if the algorithm cannot use the probability 

distribution pl, the training model can be constructed by 

constructing a random sample proportional to the probability 

pl. This process makes ADABOOST more random, but 

experiments have shown that it is still effective. (Figure 3) 

compares the performance of C4.5 was compared with 

AD4OOST.M1 (using random samples). One point is made 

for each of the 27 test domains taken from the Irwin repository 

of machine learning databases (Merz and Murphy 1996). We 
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can see that most points are above the y = x line, which 

indicates that the error rate of ADABOOST is less than the 

error rate of C4.5. (Figure 4) compares the performance of 

bagging (with C4.5) to C4.5 only. Then, we see that bagging 

leads to large size reductions in the error rate of C4.5 for many 

problems. Finally, Figure 5 compares with Boosting (both use 

C4.5 as the underlying algorithm). The results suggest that the 

two methods are comparable, although the boosting is still 

visible there is an advantage over bagging.  

 

 
 

 
 

3. Scaling up in Machine Learning Algorithm 

The second major research area has explored millions of 

training examples, thousands of features, and methods of 

scaling learning algorithms to apply them to hundreds of 

classroom problems. Database-mining applications cause 

major machine learning problems, where millions of 

transactions occur every day and It is advisable to have a 

machine learning algorithm that can set such large data within 

a few hours of a computer. Another area where major learning 

problems arise is the retrieval of information from the full-text 

database and the World Wide Web. In information retrieval, 

every word of a document can be considered an input attribute; 

Therefore, every training example can be explained by 

thousands of features. Finally, the application of speech 

recognition, object recognition, and letter recognition to 

Chinese and Japanese current conditions that require 

discrimination in hundreds or thousands of classes. 

5. Scaling up learning Algorithm 

Scale learning algorithms applicable to very large problems. 

With the methods described here, problems with a million 

training examples can be solved in a reasonable amount of 

time in a computer. However, it is unclear whether the current 

stack of ideas permits solving problems with billions of 

training examples. Gathering more practical experience with 

very large problems is an important open-ended problem so 

that we can understand their characteristics and determine 

where these algorithms fail. 

A recurring theme is the use of a subgroup of training data to 

make important intermediate decisions (such as the selection 

of relevant attributes). Another aspect is the development of 

efficient online algorithms such as WinNOW. These are 

always algorithms that can provide a useful answer no matter 

how long they last. The longer they last, the better the results. 

The problem of managing thousands of output classes is an 

important public factor. Class enablers of classification have 

already described two methods that are well suited for this 

case: error-correction output coding and ADABOOST.OC. 

These two methods should be well measured with the number 

of classes. Error-correction output coding has been tested on 

126 classes of problems, but tests on very large problems with 

thousands of classes have not yet been performed. 

6. Reinforcement Learning 

The previous two sections discussed problems in supervised 

learning from examples. This section addresses problems of 

sequential deciding and control that come under the heading 

of reinforcement learning. 

Work in reinforcement learning dates back to earliest days of 

AI when Arthur Samuel (1959) developed his famous 

checkers program. 

More recently, there are several important advances within the 

practice and theory of reinforcement learning. Perhaps the 

foremost famous work is Gerry Tesauro’s (1992) TD-

GAMMON program, which has learned to play backgammon 

better than the other computer virus and almost also because 

the best human players. Two 

other interesting applications are the work of Zhang and 

Dietterich (1995) on job-shop scheduling and Crites and Barto 

(1995) on real-time scheduling of passenger elevators. 

Kaelbling, Littman, and Moore (1996) published a superb 

survey of reinforcement learning, and Mahadevan and 

Kaelbling (1996) report on a recent National Science 
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Foundation–sponsored workshop on the topic. Two new 

books (Barto and Sutton 1997; Bertsekas and Tsitskilis 1996) 

describe the newly developed reinforcement learning 

algorithms and therefore the theory behind them. I summarize 

these developments here. 

7. Open problems in Reinforcement Learning 

Many important problems remain unsolved in reinforcement 

learning, which reflects the relative youth of the sector. I 

discuss a couple of of those problems here. First, the 

utilization of multilayer sigmoidal neural networks for value-

function approximation has worked, but there's no reason to 

believe that such networks are compatible to reinforcement 

learning. First, they have a tendency to forget episodes (both 

good and bad) unless they're retrained on the episodes 

frequently. Second, the necessity to form small gradient-

descent steps makes learning slow, particularly within the 

early stages. a crucial open problem is to clarify what 

properties a perfect value-function approximator would 

possess and develop function approximators with these 

properties. Initial research suggests that value-function 

approximators should be local averagers that compute the 

worth of a replacement state by interpolating among the values 

of previously visited states (Gordon 1995). 

A second key problem is to develop reinforcement methods 

for hierarchical problem solving. For very large search spaces, 

where the space to the goal and therefore the branching factor 

are big, no search method can work well. Often such large 

search spaces have a hierarchical (or approximately 

hierarchical) structure which will be exploited to scale back 

the value of search. There are several studies of ideas for 

hierarchical reinforcement learning (for example, Dayan and 

Hinton [1993], Kaelbling [1993], and Singh [1992]). 

The third key problem is to develop intelligent exploration 

methods. Weak exploration methods that believe random or 

biased random choice of actions can't be expected to scale well 

to large, complex spaces. A property of the successful 

applications shown previously (particularly, backgammon and 

job-shop scheduling) is that even random search reaches a 

goal state and receives a gift. In domains where success is 

contingent an extended sequence of successful choices, 

random search features a low probability of receiving any 

reward. More intelligent search methods, like means-ends 

analysis, got to be integrated into reinforcement learning 

systems as they need been integrated into other learning 

architectures like SOAR (Laird, Newell, and Rosenbloom 

1987) and PRODIGY (Minton et al. 1989). 

A fourth problem is that optimizing cumulative discounted 

reward isn't always appropriate. In problems where the system 

must operate continuously, a far better goal is to maximise the 

typical reward per unit time. However, algorithms for this 

criterion are more complex and not also behaved. Several new 

methods are suggests recently (Mahadevan 1996; Ok and 

Tadepalli 1996; Schwartz 1993). 

The fifth, and maybe most difficult, problem is that existing 

reinforcement learning algorithms assume that the whole state 

of the environment is visible at whenever step. This 

assumption isn't true in many applications, such as robot 

navigation or factory control, where the available sensors 

provide only partial information about the environment. a 

couple of algorithms for the answer of hidden-state 

reinforcement learning problems are developed (Littman, 

Cassandra, and Kaelbling 1995; McCallum 1995; Parr and 

Russell 1995; Cassandra, Kaelbling, and Littman 1994). Exact 

solution appears to be difficult. The challenge is to seek out 

approximate methods that scale well to large hidden-state 

applications. Despite these substantial open problems, 

reinforcement learning methods are already being applied to a 

good range of commercial problems where traditional 

dynamic programming methods are infeasible. Researchers 

within the area are optimistic that reinforcement learning 

algorithms can solve many problems that have resisted 

solution by machine-learning methods within the past. Indeed, 

the overall problem of selecting actions to optimize expected 

utility is exactly the matter faced by general intelligent agents. 

Reinforcement learning provides one approach to attacking 

these problems. 

8. Learning Stochastic Model 

The final topic that I discuss is that the area of learning 

stochastic models. Traditionally, researchers in machine 

learning have sought general-purpose learning algorithms—

such because the decision tree, rule, neural network, and 

nearest-neighbor algorithms—that could efficiently search an 

outsized and versatile space of classifiers for an honest fit 

training data. Although these algorithms are general, they need 

a serious drawback, during a practical problem where there's 

extensive prior knowledge, it is often difficult to include this 

prior knowledge into these general algorithms. A secondary 

problem is that the classifiers constructed by these general 

learning algorithms are often difficult to interpret—their 

internal structure won't have any correspondence to the real-

world process that's generating the training data over the past 

five years approximately , there has been tremendous interest 

during a more knowledge based approach supported stochastic 

modeling. 

A stochastic model describes the real-world process by which 

the observed data are generated. Sometimes, the terms 

generative stochastic model and causal model are wont to 

emphasize this attitude. The stochastic model is usually 

represented as a probabilistic network—a graph structure that 

captures the probabilistic dependencies (and independencies) 

among a group of random variables. Each node within the 

graph has an associated probability distribution, and from 

these individual distributions, the joint distribution of the 
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observed data is often computed. to unravel a learning 

problem, the programmer designs the structure of the 

graphand chooses the sorts of the probability distributions, 

yielding a stochastic model with many free parameters (that 

is, the parameters of the node-probability distributions). Given 

a training sample, learning algorithms are often applied to 

work out the values of the free parameters, thereby fitting the 

model to the info. Once a stochastic model has been learned, 

probabilistic inference are often administered to support tasks 

like classification, diagnosis, and prediction. More details on 

probabilistic networks are given in two recent textbooks: 

Jensen (1996) and Castillo, Gutierrez, and Hadi (1997). 

9. Conclusion 

Any survey should select specific areas and leave it to others. 

I should briefly mention some other active areas. The central 

theme in the machine learning control learning. There have 

been many developments in this area. Researcher’s explore 

different punishment functions and redesign methods 

(including crossvalidation) to prevent overuse. Be aware of 

the over-fitting process obtained by the statistical concepts of 

bias and discrimination, and most authors have developed a 

bias-based critique for classification problems. Another active 

case study was conducted  algorithms for learned relationships 

the Horn-Clause Program. This area is also known as like 

inductive logic programming, and many algorithms and 

theoretical results have been developed in this area. 

Finally, many applications address practical problems that 

arise in such applications. Methods of learned knowledge and 

methods  algorithms for extracting semantic rules and noise 

detection from neural network and data to learn outliers in 

easy-to-understand classifiers and algorithms.There have been 

many exciting developments in the last five years, and they 

are relevant. The literature on machine learning is growing 

rapidly. Apply AI and science learning techniques to more 

areas of computer science I hope the flow, to attack their  

Interesting problems and practical solutions continues. This is 

an exciting time to work in machine learning 
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