

GSJ: Volume 9, Issue 4, April 2021, Online: ISSN 2320-9186

www.globalscientificjournal.com

Message Passing: Survey on RPC, RMI, and
CORBA

Abdulrahman Osama Mustafa
Faculty of Computing and Information Technology

King Abdulaziz University
Jeddah, Saudi Arabia

ahelmymostafa@stu.kau.edu.sa

Muhamad Alamin Sayegh
Faculty of Computing and Information Technology

King Abdulaziz University
Jeddah, Saudi Arabia

mmohamadsayegh@stu.kau.edu.sa

Abdulmajeed Abdullah Abbas
Faculty of Computing and Information Technology

King Abdulaziz University
Jeddah, Saudi Arabia
aaabbas@kau.edu.sa

Prof. Mohammed Jaffer Alhaddad

Faculty of Computing and Information Technology
King Abdulaziz University

Jeddah, Saudi Arabia
malhaddad@kau.edu.sa

Abstract—Message passing is a critical part of any distributed
system. It allows the different components of a distributed
system to communicate with each other and allow clients to
use the services it provides, send commands, and receive results.
Many technologies implement message passing such as Remote
Procedure Call (RPC), Remote Method Invocation (RMI), and
Common Object Request Broker Architecture (CORBA). This
paper presents an overview of these technologies and a survey
on publications that are available on them.

Index Terms—Message Passing, Remote Procedure Call, RPC,
Remote Method Invocation, RMI, Common Object Request
Broker Architecture, CORBA.

I. INTRODUCTION

In distributed computing, a protocol for sending requests
and receiving a response is very important and it is often
referred to as message passing. When running an application
on a local computer, this application will call functions and
procedures and pass parameters around very easily using
memory by either copying the data from the caller’s memory
to the callee’s memory or by copying the address of the caller’s
memory. The callee, then, will operate on this data and return
results.

This is no longer possible in a distributed system because
each component is on a different computer and there is no
shared memory between them. The only way to communicate
with each other is by using a network protocol and request-
response-based communication.

There are many ways of implementing message passing.
One way is to extend the concept of calling functions and

procedures into the distributed world and this is where the
concept of Remote Procedure Call (RPC) comes from. It is a
protocol for message passing where clients invoke methods on
another computer as if they were on the same computer.

With the popularity of Object-Oriented Programming (OOP),
Oracle decided to design an RPC system that is based around
objects so they developed the Remote Method Invocation
(RMI) using Java language. RMI allows a client to invoke
remote object implementation using the network to the server
and invoke member methods on that object. RMI will take care
of serializing the object and sending the object byte code to the
server to run the code dynamically.

RMI is a Java-specific system it cannot run on other pro-
gramming languages and most RPC implementations are also
platform-dependent or OS-dependent. Object Management
Group (OMG) decided to design a standard for communication
between systems that are different using the distributed object
paradigm called Common Object Request Broker Architecture
(CORBA). CORBA is standard designed to provide inter-
operability among distributed objects independent from the
hardware, operating system, and programming language. One
object written in C++ for example can communicate with
an object written in java because they both use the CORBA
standard. One of the components in CORBA that allow it to
be language-independent is the Interface Definition Language
(IDL) which is used to define the interface of the object
without having to write it in a specific language. The IDL
is then converted by the CORBA implementation to the target
language for use.

In this paper, we present an overview of RPC, RMI,

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2966

GSJ© 2021
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
mailto:ahelmymostafa@stu.kau.edu.sa
mailto:ahelmymostafa@stu.kau.edu.sa
mailto:mmohamadsayegh@stu.kau.edu.sa
mailto:mmohamadsayegh@stu.kau.edu.sa
mailto:aaabbas@kau.edu.sa
mailto:malhaddad@kau.edu.sa

and CORBA from various perspectives, we analyze multiple
implementations of RPC and the difference between them,
and we show some of the features and characteristics of RMI
being an implementation of RPC. We also show an

Overview of CORBA and its components and the role
of each one, we review some of the publications on fault-
tolerant CORBA and how it is achieved, and we analyze the
Concurrency Control Service standard of CORBA that is
used for synchronization.

II. REMOTE PROCEDURE CALL (RPC)
RPC (Remote Procedure Call) is a simple and commonly

used paradigm for building distributed applications. The Net-
work Computing Architecture (NCA) [8] is an example of a
distributed system that uses it as a means of communication.
Despite the fact that RPC is a clear and straightforward
definition, there are many subtle and challenging problems
[9]. In the design of various RPCs, some device parameters
have to be traded off against other parameters. As a result,
there are various RPC implementations available in both the
research and industrial settings.

The main aim of this section is to compare and contrast
a few different RPC implementations, including their design
focus, strategies, strengths, and weaknesses.
A. RPC design

The RPC work in two processes:
1) The process of doing the call (the invoker or client).
2) The process created to service the call (the server).
The client-server paradigm is used in RPC. The client is the

program that makes the order, and the server is the program
that provides service. An RPC is a synchronous process that
requires requesting software to paused before results of the
remote procedure were returned, similar to a normal or a local
procedure call. Many RPCs can be executed simultaneously by
using lightweight processes or threads that occupy the same
address space [28] [29].

These processes are usually contained in various objects,
and they may even be located on diverse virtual or physical
machines. The invoking method waits for the call’s results to
be returned. As a result, from the client’s viewpoint, a remote
procedure call is synchronous as shown in Fig. 1.

Fig. 1: RPC design and integration

B. Interface definition language (IDL)

Remote Procedure Call software often employs the interface
description language, is a specification language for describing a
software components application programming interface (API).
In this case, IDL acts as a connection between machines at each
end of the link, which could be running various operating
systems and programming languages.

C. RPC message procedure

When function statements that use the RPC specification
are compiled into a runnable program, a stub that represents
remote procedure code is included in compiled code. The
stub collects requests and directs them into the client runtime
program in a local machine until the program is executed and
the procedure call is released. When the database stub is called
for the first time, It interacts with a name server to decide the
server’s transport address [28] [30].

The client runtime program knows how to handle the remote
machine and server application and transfers the order for the
remote process through the network. A runtime software and
stub that communicate with the remote procedure are also
included on the server. The same is true for response-request
protocols.

D. RPC Synchronous/Asynchronous
RPC operations such as sending, receiving, and replying can

be synchronous or asynchronous, or a combination of both. A
synchronous operation prevents process from continuing until
operation is completed. Asynchronous operations do not block
and only start the process. [10]

Understanding what it means for an operation to complete
required for synchronous operations. When a message is
delivered to receiver via remote assignment, both the send and
receive processes are completed. If there is a return value, the
send, receive, and reply completely when the result is delivered
to the sender in the case of a remote procedure call. In any
case, when the procedure is finished, the send and receive are
complete. As previously stated, the sender and receiver are in
a rendezvous during the procedure’s execution. [11] [12]

E. RPC Performance
Many distributed systems rely on the RPC for communi-

cation. As such, the component’s performance is crucial. As
a result, a great deal of research has been done to improve
the RPC implementations. Many studies have been performed.
Declarative, uninteresting arguments, phrases, error handling,
casts and stage of a function call are omitted from code listings
for clarification. they usually result in the use of modern
protocols that are incompatible with existing specifications like
the Sun RPC. [32].

F. RPC Optimization
RPC has gone through a lot of research and improvements

A direct derivation of an improved version from existing
code is an alternative to re-implementing a device feature
for performance reasons. Starting with existing code has
the advantage of having the derived version consistent with
existing standards. The systematic derivation method can also

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2967

GSJ© 2021
www.globalscientificjournal.com

be replicated for various machines and systems, which is an
added benefit.

The obvious question at this point is whether there are
substantial opportunities to derive dramatically improved ver-
sions of existing system components. Many current system

components, in reality, are known to be generic and organized
in layers and modules.

This results in different ways of interpretation, which are
significant sources of overhead. for example, HP-UX file
systems [31], and optimization in Sun RPC by several layers
of functions that interpret descriptors to decide communication
parameters: Protocol (TCP or UDP), encoding or decoding,
and buffer management are all options [32].

G. RPC Latency
When RPC is used to link processes over a wide-area

network, the protocol must support location services as well as
direct communication between the processes. Since wide-area
networks have such a high latency rate, an acceptable protocol
for local-area networks will be ineffective.

To facilitate the interconnection of local-area networks, the
Amoeba distributed operating system [33] added a session
layer gateway. Target servers export their port and wide-area
network address to other Amoeba sites using the publish
feature. Each site installs a server agent after receiving this
information.

For wide-area communication, it uses whatever protocol is
available and without the client and server processes knowing
about it. For local communication, it uses protocols optimized
for local networks. The error recovery is very powerful in this
model because the client agent notifies the server agent and
the reverse when a shut-down of the client occurs.

H. RPC Security
The provision of data privacy and authentication in such an

open communication network is a big challenge introduced
by an external communication network. There are some
concerns about security in an RPC mechanism [35]:

• Authentication: To verify the identity of each caller.
• Availability: To ensure that callee access cannot be

maliciously interrupted.
• Secrecy: To ensure that callee information n is disclosed

only to authorized callers.
• Integrity: To ensure that callee information is not de-

stroyed.

Systems address these topics in various ways, giving more
insight or prioritizing them depending on their most relevant
implementations. The Cedar RPC Facility [34] Distributed
Database serves as a data encryption authentication tool or
key delivery center.

Protection is supported by Andrew’s RPC process [36]. A
connect procedure is used when a caller needs to coordinate
with a callee. The linking creates a conceptual relation at one
of the system’s four levels:

• OpenKimono: the information is neither authenticated

nor encrypted.
• AuthOnly: the information is authenticated, but not en-

crypted.

• HeadersOnly: the information is authenticated, and the

RPC packet headers, but not bodies, are encrypted.
• Secure: the information is authenticated, and each RPC

packet is fully encrypted.

III. REMOTE METHOD INVOCATION (RMI)
As defined by [1], Java Remote Method Invocation (RMI) is

a sort of mechanism that allows a Java virtual machine (JVM)
to invoke methods located in a remote server or another JVM
by calling its object method. RMI is known as a fundamental
concept in the world of distributed systems. [2] claimed that
RMI allows distributed objects to easily implemented using its
architecture that based on two essential separated programs:

A. RMI Design
• Server: creates various remote objects assigned to refer-

ences and makes them accessible by these remote object
references, then waits for clients calls to methods on these
remote objects, (see Fig. 2).

• Client: gets remote references to remote objects in the
server and invokes their methods.

• Stub: is an image of the remote object at the client side.
It operates as an entryway.

• Transport Layer: this layer is the link between the server
and the client for the current and new connections.

• Skeleton: the object which exist in in server side. Client-
side stub communicates with this skeleton in order to
deliver request to the remote object.

• Remote Reference Layer (RRL): a managing layer that
panels references made by client to the remote object.

Fig. 2: RMI Architecture

B. RMI Advantage

While RMI is one of three key standards of distributed
object technology besides DCOM (Distributed Component
Object Model), and CORBA (Common Object Request Broker
Architecture), as it surpasses the other two by defeating some
limitations in platform and realization complexity. Because

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2968

GSJ© 2021
www.globalscientificjournal.com

RMI is a pure Java distributed solution, JVM objects can com-
municate to each other on different machines and memories,
and via other physical devices.

C. RMI Optimization
For the purposes of optimizing the performance level of

this architecture over TCP in procedural communication mech-
anism, a study [3] has been made of how this architecture
works and how it behaves in different programming models.
The result showed that the possibility of converting RMI
into a form that allows it to be used in the client’s side
asynchronously with an obvious increase in performance.

D. RMI Latency
One of the issues of RMI in wide environment use is the

high latency which can be noticed in the performance of Java
applications. The most-common simple solution for this issue
is cashing objects at the client-side, which, in turn, could
lead to further issues such as distortion of consistency. From
this point, [4] proposed two technicians for managing the
consistency of the objects cashing in RMI-based applications,
thus, the system designer can choose the proper strategy for
the application from these two mechanisms:

1) Time Stamp technique (TS-RMI)

In this technique, Time comparison is done between
modified times in a server with cashed time on the client-
side.

2) Invalid message technique (IM-RMI)
In this technique, whenever the object changed in the
server, it broadcasts object updating messages to all
clients that used that cached object.

After some experiments, the results show whenever the
frequency of the server is high, TS-RMI is faster than IM-RMI
in response time. Otherwise, IM-RMI is faster than TS-RMI
in response time.

E. Optimizing RMI in Clusters
Using Java for parallel programming on clusters is limited

by weak support of high-speed in clusters and the lack
of efficient communication middleware that delayed its
operation. [5] presents a way for implementing Java RMI in
clusters in a more efficient way to overcome this limitation
without any source code modifications, totally transparent
to the user, and compatible with other systems. While
performance plays an essential role in parallel computing,
there were some attempts to develop an effective middleware
for Java distributed shared memory e.g CoJVM [6]. The main
goal of [3] is to deliver high-performance and large support
for Java RMI implementation. This is done by using some
specific sockets library that handles the requirements of RMI
in parallel computing and by optimizing RMI protocol under
some essential assumptions for the targeted used mechanism.
The optimization focus on three aspects:

a) Transport Protocol Optimization

b) Serialization Overhead reduction
c) Object Manipulation Improvements

And the results show that the overhead of calls is clearly
reduced and hence improves performance.

Furthermore, [7] report their work for providing a high-
performance RMI mechanism used in Common Component
Architecture (CCA), which allows CCA applications to as-
toundingly use parallel systems to speed up calculations oper-
ations. Their work relies on the previous Babel tool which is a
way that enables interoperability of different languages codes
to invoke each other.

The paper tries to deliver a high-performance RMI protocol
by exploiting three main features:

• high-performance feature via introducing little latency as

possible.
• portability feature by executing on common high-

performance computing platforms.
• Lightweight by trying to not trouble the CPU utilization

by the computing operation.

These features, successfully benefit all the scientific software
in CCA.

F. RMI Security
Java RMI security level considered as very low especially

for production systems, [14] used different technologies that
cover two of the three fundamental principles of information
security; integrity, confidentiality, and authentication by using
Kerberos and Java Authentication and Authorization services
(JAAS) to enhance the security level of RMI and build a
Secure RMI library as a result.

G. Synchronization
Java supports the creation and monitoring synchronization

of threads by waiting and synchronize any object, but it
does not work the same way for remote objects. And the
synchronization methods do not work in Java RMI. [27]
presented a mechanism that adds the thread synchronization to
Java in distributed systems. Their technique for monitor-style
has been applied in the context of J-Orchestra, which is a
system that rewrites current Java classes at the bytecode into
distributed programs that can execute on various machines.
The technique solves the absence of matching between the
Java concurrency mechanism and the middleware.

IV. COMMON OBJECT REQUEST BROKER
ARCHITECTURE (CORBA)

Common Object Request Broker Architecture is a specifi-
cation framework that was developed by Object Management
Group (OMG) to unify computing across different hardware,
operating systems, and languages by providing a message
passing mechanism. OMG is an international computer stan-
dards consortium that develops enterprise integration stan-
dards. CORBA is their attempt at moving the object-oriented
(OO) programming paradigm into distributed computing [23].

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2969

GSJ© 2021
www.globalscientificjournal.com

A. CORBA Components

CORBA consists of 5 main components as shown in Fig 3:

Fig. 3: CORBA main components

1) Object Request Broker (ORB) Core: CORBA consists
of a set of objects that each provides services to the clients.
ORB is the core system that is responsible for delivering
requests from clients to objects and return any responses. ORB
is important to provide transparency to the clients such that
they do not have to know where the objects are, what the
communication protocol is, or what the implementation of
these objects is. Clients first have to hold a reference to the
object then it can issue requests to that object using ORB
core. When ORB core receives a request it will locate the
object using the reference and activates it if it is not active
then it will deliver the request to it. The object will execute
the request and return the results to ORB and it will return it
to the client [24].

2) Interface Definition Language (IDL): Object references

are used to identify objects in the system but they do not
specify what operations can be performed on that object.
The client needs to know the interface for the object to
know what requests it can send to it and what the expected
responses are. OMG designed an interface definition language
to describe object interfaces. IDL is declarative and language-
independent. It separates the interface from the implementation
which allows invoking operations from any programming
language regardless of what the implementation of the object
is or what language it is written in. The interface is used to
generate compile-time stubs which are functions without an
implementation that can be called from the client as a normal
function. Stubs will take the parameters, convert them into a
request, and send it to the target object [25].

3) Dynamic Invocation Interface (DII): Static stub using

IDL is not the only way to invoke operations on objects.
CORBA provides a way to dynamically invoke operations on
objects that are not known at compile-time using the Dynamic
Invocation Interface. A gateway, for example, does not need to
be recompiled every time a new object is introduced. Instead,
it can use DII to convert any request it receives into a dynamic
dispatch and send it to the referenced object. DII can invoke
operations synchronously using RPC-like style or deferred

synchronous where the caller can specify whether to wait for
the response or not [25].

4) Interface Repository (IR): The interface repository stores

all IDL interfaces as runtime data structures and allows
applications to access these interfaces and write them program-
matically. IR is essential for DII to call methods on objects
dynamically because it stores interfaces, methods, parameters,
and response formats. Applications can use this information
to traverse all interfaces and the methods inside them as well
as all the types and describes all the operations supported by
an object [25].

5) Object Adapter: Object Adapter is a layer between the

CORBA implementation and the application. It provides the
ORB interface according to the specification to allow any
CORBA-based application to use it directly regardless of the
CORBA implementation. Object Adapters include the ability
to register object implementations, generate references for
CORBA objects, activate server processes, activate objects,
request demultiplexing, and object upcalls [25].

B. Fault-Tolerant CORBA
Many applications using CORBA require support for fault

tolerance. These applications range from critical large-scale
applications to medium or small non-critical applications that
require high availability. Fault tolerance refers to eliminating
all single-point of failure from the system. Fault Tolerance can
be achieved by different strategies such as replication, request
retry, load balancing, and immediate recovery [15].

C. Object Groups
One method to achieve fault tolerance is to create several

replicas of the same object and group them as one unit (See
Fig 4). Clients will invoke methods on the group and it will
send the invocation to all member objects. Each object will run
the invocation and return its result. Clients are unaware of the
existence of multiple objects. As a result, if one object fails
other objects that succeed will return the response without the
client noticing the failure [16].

Fig. 4: Object replication using Object Groups

Landis and Maffeis [17] showed how to extend CORBA to
support the features required for fault tolerance and reliability.
They provided a detailed description of the requirements for

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2970

GSJ© 2021
www.globalscientificjournal.com

one-to-many communication between a client and an object
group. They provided two examples that can be significantly
simplified when implemented using the group object. The first
example is a fault-tolerant directory service. The second is a
reliable stock exchange ticker application. They showed how
these examples might be implemented using object groups.
They also analyzed two CORBA-compliant environments that
implement fault-tolerant ORB: Electra and Orbix+Isis. They
also analyzed two low-level requirements for implementing a
fault-tolerant environment: Isis [18] and Horus [19].

Maffeis [20] designed and implemented a CORBA-
compliant ORB environment (Electra) that permits the imple-
mentation of objects to be grouped into named unit. This group
uses reliable multicast communication to share the operations
between all the implementations in that group. Electra allows
transparent communication where a group appears as one
singleton object and allows non-transparent communication
where an implementation can access the results of any invo-
cations. Actions in Electra can be performed synchronously,
asynchronously, or deferred-synchronously. Electra uses the
underlying toolkit to provide constraints on the ordering of
events where programmers can specify the requirements for
when the invocations are dispatched. Electra is written in C++
by making two slightly modified interfaces: the BOA class and
the Environment class.

D. Virtual Synchrony
Virtual Synchrony is a model in which it is guaranteed that

the behavior of a distributed system is predictable even if a
partial failure happens. When a multicast message is sent to a
group of objects, virtual synchrony guarantees that either all
objects receive the message, or no object receives it. It is never
the case that some objects receive it and some do not because
this will make the objects in the group in an inconsistent state
[21].

E. Failure Detection
A reliable system requires the detection of when a failure

happens because all objects in a group need to acknowledge
requests. Without it, a client will block forever waiting for
objects that failed to finish. The system will automatically
check for failure by a timeout failure detector. The detector
will consider any object that takes more time than a maximum
limit to be failed and will notify other object in order to
maintain consistency.

F. Message Queues
Maffeis and Olsen [22] proposed an easy way to achieve

reliability using message queues. If process A wants to send a
message to process B then process A will send the message to
its queue handler, which is a separate process that will store
the message in non-volatile storage. Then, the handler will
attempt to send the message to process B’s handler. If process
B handler is online then it will delete the message from the
queue, otherwise, it will repeatedly attempt to send it until
process B’s handler is online. This allows process A to send

the message and forget about it and the handler is responsible
for making sure the message is delivered.

G. Synchronization and Concurrency Control
In a distributed environment, there is often the need to

access an object for a service from different objects at the same
time and that will cause corruption to happen in that object.
CORBA provides the specification for the Concurrency Con-
trol Service. The concurrency control service allows clients to
acquire and release locks in two modes: transactional mode
using the Transaction Service, and non-transactional mode on
behalf of the current thread. When a client try to take a lock
that is already acquired by another client, it will be forced to
wait by blocking until the lock is released. This guarantees
that only one client is using the resource at any time. There
are three lock modes: Read, Write and Upgrade. The read and
write lock supports the known policy which is multiple people
are allowed read access concurrently but only one write access
is allowed at any time. This means that either multiple people
are reading at the same time or one write at a time but never
read and write together or multiple writes. Upgrade Access
is used to avoid a deadlock when multiple clients already
have Read Access and want Write Access. Without Upgrade
Access, they both will attempt to acquire Write Access and
they both will deadlock forever. In this case, Upgrade Access
can be used to denote that others can still have read access
but not upgrade access or write access. This way if two clients
want to read then write an object only one of them is allowed
[26].

V. DIFFERENCES AND SIMILARITIES

The comparison of RPC, RMI and CORBA are listed in the
Table I.

VI. CONCLUSION

There has been a huge focus on message passing for
communication between components of the distributed system.
Distributed systems are critical for many large-scale applica-
tions such as Air traffic control, defense systems, medical
systems, telephony and networking systems, supply chains
systems, stock exchange systems, etc. and message passing
plays a significant role to ensure efficiency and reliability.
This paper provides an overview of RPC technology and
various implementations and the properties of each one. It
provides an overview of RMI which an RPC implementation
by Oracle, the advantages of using RMI, and various studies
related to RMI. It also provides an overview of CORBA
which a framework for distributed object computing designed
by OMG, an overview of its different components, and an
overview of the research on how to achieve reliability and
fault-tolerance as an extension to CORBA.

REFERENCES

[1] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, “The Java® Virtual
Machine Specification,” p. 606.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2971

GSJ© 2021
www.globalscientificjournal.com

TABLE I: Summarizes the similarities and differences between RPC, RMI, and CORBA.

 RPC RMI CORBA

What is it?

Remote Procedure Call is a protocol
that allows one program to order a
service from another program on a net-
work without having to know the net-
work’s specifics.

RMI is an implementation of message
passing mechanism. It allows Java vir-
tual machines to communicate and in-
voke methods resides in other JVMs.
It’s a fundamental mechanism in dis-
tributed systems field.

CORBA is a standard not an implemen-
tation. It can be implemented by any
vendor as a framework for distributed
computing and it will guarantee inter-
operability with other implementations.

Operation System

Remote Procedure Call uses IDL it
can use different operating systems and
computer languages.

RMI can operates whereas it is a java
platform.

CORBA is OS-independent, this means
it can be implemented on any operating
system allowing clients and servers on
different operating systems to commu-
nicate with each others.

Programming Language

Remote Procedure Call Language
(RPCL) is identical to the eXternal
Data Representation (XDR) language.

RMI is a Java programing language
package, located at java.rmi;

CORBA specification does not assume
any programming language. It can be
implemented using any programming
language allowing them to communi-
cate with each other.

Stubs

The stubs simulate a working local unit
by hiding the code’s ”distance” on the
other side. They also serve as process
interfaces.

Stub in RMI is a class that imple-
ments the remote interface. It operates
as a client-side representation for the re-
mote object. The stub interacts with the
server-side skeleton via the network.

CORBA use Interface Definition Lan-
guage (IDL) to allow the application
to specify the interface and CORBA
will use it to generate the stubs in the
programming language that the imple-
menter is using.

Features

Batching is one of RPC’s functions,
allowing a client to send an arbitrarily
large number of call messages to a
server. A client may use broadcasting
to transmit a data packet to the network
and then wait for several responses. A
server may become a client and render
an RPC callback to the client’s method
using callback procedures.

RMI aimed to support Object-oriented
programing in distributes system envi-
ronment, it is a successor version of
RPC and more efficient. One of the
essential and special features of RMI
is its capability to download the imple-
mentation of an object’s class if it is
not defined in the receiver’s machine.
All of the implementation and body of
an object, before available only in one
Java virtual machine, can be transferred
to another, even remote, JVM.

CORBA is designed to be feature-
complete specification. It includes the
transport protocol, interface definition
language, dynamic interface invocation,
object adapters, interoperability, loca-
tion transparency, synchronization and
transactions.

[2] D. Hou and H. Xia, “Design of Distributed Architecture Based on
Java Remote Method Invocation Technology,” in 2009 International
Conference on Environmental Science and Information Application
Technology, Wuhan, China, Jul. 2009, pp. 618–621, doi: 10.1109/ES-
IAT.2009.235.

[3] T. Sysala and J. Janecek, “Optimizing remote method invocation in
Java,” in Proceedings. 13th International Workshop on Database and Ex-
pert Systems Applications, Aix-en-Provence, France, 2002, pp. 29–33,
doi: 10.1109/DEXA.2002.1045872.

[4] Seong-Eun Chu, Dae-Wook Kang, and Jae-Nam Kim, “Efficient
Implementations of Remote Method Invocation Considering Object
Consistency,” in 2006 International Conference on Hybrid Infor-
mation Technology, Cheju Island, Nov. 2006, pp. 634–641, doi:
10.1109/ICHIT.2006.253558.

[5] G. L. Taboada, C. Teijeiro, and J. Tourino, “High Performance Java
Remote Method Invocation for Parallel Computing on Clusters,” in
2007 IEEE Symposium on Computers and Communications, Santiago,
Portugal, Jul. 2007, pp. 233–239, doi: 10.1109/ISCC.2007.4381536.

[6] M. Lobosco, A. Silva, O. Loques, and C. L. de Amorim, “A New
Distributed JVM for Cluster Computing,” in Euro-Par 2003 Parallel Pro-
cessing, vol. 2790, H. Kosch, L. Böszörményi, and H. Hellwagner, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 1207–1215.

[7] J. Yin, K. Agarwal, M. Krishnan, D. Chavarria-Miranda, I. Gorton, and
T. Epperly, “Implementing High Performance Remote Method Invoca-
tion in CCA,” in 2011 IEEE International Conference on Cluster Com-
puting, Austin, TX, USA, Sep. 2011, pp. 547–551, doi: 10.1109/CLUS-
TER.2011.78.

[8] T. H. Dineen, P. J. Leach, N. W. Mishkin, J. N. Pato, and G. L. Wyant,
“The network computing architecture and system: an environment for
developing distributed applications,” in Digest of Papers. COMPCON
Spring 88 Thirty-Third IEEE Computer Society International Confer-

ence, San Francisco, CA, USA, 1988, pp. 296–299.

[9] A. S. Tanenbaum and R. van Renesse, “A Critique of the Remote
Procedure Call Paradigm,” p. 10.

[10] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,”
ACM Trans. Comput. Syst., vol. 2, no. 1, p. 21, 1984.

[11] Bacon and K.G. Hamilton, “Distributed Computing with the RPC:
the Cambridge Approach”, Distributed Processing, IFIP, North-Holland,
1988, pp. 355-369.

[12] K. Cheung, C. Chow, J. Koontz, M. Li, and B. Self “Project Athena
Success in Engineering Projects” 6.933 Final Project Fall 1999.

[13] H. Bagci and A. Kara, “A Lightweight and High Performance Remote
Procedure Call Framework for Cross Platform Communication:,” in
Proceedings of the 11th International Joint Conference on Software
Technologies, Lisbon, Portugal, 2016, pp. 117–124.

[14] D. Zalewski, “Security Enhancement of Java Remote Method Invoca-
tion,” in 2006 International Conference on Dependability of Computer
Systems, Szklarska Poreba, 2006, pp. 223–231, doi: 10.1109/DEPCOS-
RELCOMEX.2006.47.

[15] “Fault Tolerant CORBA”, OMG.org, 2010. [Online]. Available:
https://www.omg.org/spec/FT/1.0/PDF. [Accessed: 13-
Mar- 2021]

[16] S. Maffeis, “The Object Group Design Pattern”, COOTS, vol. 96, p. 12,
1996.

[17] S. Landis and S. Maffeis, “Building reliable distributed systems with
CORBA”, Theory and Practice of Object Systems, vol. 3, no. 1,
pp. 31-43, 1997. Available: 10.1002/(sici)1096-9942(1997)3:1¡31::aid-
tapo4¿3.0.co;2-a.

[18] F. Reynolds, “Reliable distributed computing with the Isis toolkit
[Book Reviews]”, IEEE Parallel and Distributed Technology: Systems
and Applications, vol. 4, no. 3, p. 71, 1996. Available: 10.1109/m-
pdt.1996.532142.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2972

GSJ© 2021
www.globalscientificjournal.com

http://www.omg.org/spec/FT/1.0/PDF

[19] R. van Renesse, K. Birman and S. Maffeis, “Horus: A Flexible Group
Communication System”, Communications of the ACM, vol. 39, no. 4,
pp. 76-83, 1996. Available: 10.1145/227210.227229..

[20] S. Maffeis, “Adding Group Communication and Fault-Tolerance to
CORBA”, Coots, vol. 95, pp. 135-146, 1995.

[21] K. Birman, “Reliable distributed systems”. New York: Springer, 2010.
[22] S. Maffeis and D. Schmidt, “Constructing reliable distributed commu-

nication systems with CORBA”, IEEE Communications Magazine, vol.
35, no. 2, pp. 56-60, 1997. Available: 10.1109/35.565656.

[23] S. Vinoski, “Distributed Object Computing With CORBA”, C++ Report,
pp. 32-38, 1993.

[24] S. Vinoski, “CORBA: integrating diverse applications within distributed
heterogeneous environments”, IEEE Communications Magazine, vol.
35, no. 2, pp. 46-55, 1997. Available: 10.1109/35.565655 [Accessed
14 March 2021].

[25] Z. Yang and K. Duddy, “CORBA”, ACM SIGOPS Operating
Systems Review, vol. 30, no. 2, pp. 4-31, 1996. Available:
10.1145/232302.232303 [Accessed 14 March 2021].

[26] “Concurrency Service Specification”, Omg.org, 2000. [Online].
Available: https://www.omg.org/spec/CONC/1.0/PDF. [Ac-
cessed: 16- Mar- 2021].

[27] E. Tilevich and Y. Smaragdakis, “Portable and Efficient Distributed
Threads for Java,” in Middleware 2004, vol. 3231, H.-A. Jacobsen, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 478–492.

[28] Barkly, J., “Comparing Remote Procedure Calls,” NISTIR, 1993.
[29] P. G. Soares, “On remote procedure call,” CASCON ’92: Proceedings of

the 1992 conference of the Centre for Advanced Studies on Collaborative
research - vol. 2, p. 215–267 November 1992.

[30] B. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo and M. Schwartz,
“A Remote Procedure Call Facility for Interconnecting Heterogeneous
Computer Systems”, IEEE Transactions on Software Engineering, vol.
se-13, p 880-894, 1987.

[31] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. In-
ouye, L. Kethana, J. Walpole and K. Zhang, “Optimistic Incre-
mental Specialization: Streamlining a Commercial Operating Sys-
tem”, ACM SIGOPS Operating Systems ReviewDecember, 1995,
https://doi.org/10.1145/224057.224080

[32] G. Muller, R. Marlet, E. N. Volanschi, C. Cinsel and C. Pu “Fast, Op-
timized Sun RPC Using Automatic Program Specialization” IEEE Pro-
ceedings. 18th International Conference on Distributed Computing Sys-
tems (Cat. No.98CB36183), 1998, DOI: 10.1109/ICDCS.1998.679507.

[33] A. S. Tanenbaum and G. J. Sharp, “The Amoeba Distributed
Operating System”, Communications of the ACMDecember, 1990,
https://doi.org/10.1145/96267.96281

[34] A. D . Birrell and B. J. Nelson, “Implementing remote procedure calls”,
ACM Transactions on Computer Systems, February 1984.

[35] J. W. Stamos and D. K. Gifford, “Remote evaluation”, ACM Transaction
s on Programming Languages and Systems, vol. 4, p. 537-565, October
1990.

[36] M. Satyanarayanan,“zIntegrating security in a large distributed system”,
ACM Transactions on Computer Systems, vol. 3 p. 247-280, August
1989.

GSJ: Volume 9, Issue 4, April 2021
ISSN 2320-9186 2973

GSJ© 2021
www.globalscientificjournal.com

http://www.omg.org/spec/CONC/1.0/PDF

	Abdulrahman Osama Mustafa
	Muhamad Alamin Sayegh
	Abdulmajeed Abdullah Abbas
	Prof. Mohammed Jaffer Alhaddad

