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ABSTRACT 

In this paper, mathematical model for the transmission dynamics of meningitis to determine the 
negative effect of carriers on meningitis transmission is developed. The model describes 
meningitis transmission into compartments which leads to a linear system of differential 
equations. The model used data on 2017 meningitis outbreaks on children in the northwestern 
Nigeria. From the analysis, all Eigen-values are found negatives and 𝑅𝑅0 (the threshold 
parameter) is greater than 1, during and before the meningitis outbreak, by adjusting the rate of 
carrier from natural carrier rate it shows that the negative effect of carriers on meningitis 
transmission dynamics is more effective during outbreak than when there is no outbreak. Since 
𝑅𝑅0 is greater than 1 means that the endemic equilibrium is stable both locally and globally. The 
disease free equilibrium points are considered as well as the stability of a meningitis transmission 
dynamics model with all the eigenvalues of a Jacobian matrix are negatives. Thus, the disease 
free equilibrium points are locally asymptotically unstable. 

Keywords: Meningitis, Carrier, Threshold value 
 
INTRODUCTION 
 
Carrier is a person who is capable of transmitting disease infection without displaying any of the 
symptoms and can pass it to others. When a susceptible individual come into contact with the 
bacteria or infected individual become carriage of a bacterium, such individual is called carrier. 
Such is equally a healthy person harboring a pathogenic organism, without having clinical 
manifestation and can transmit organism to others. 
 
Meningitis infection infect humans hosts and the great majority of these infections result in 
asymptomatic colonization, which is extremely common as carriage in adult and the growth is 
very rare in infants (Trotter and Maiden, 2016). No matter the cause, the symptoms of meningitis 
are always similar and usually develop rapidly, often in as little as 12 hours, nearly all patients 
with meningitis experience vomiting, high fever, and a stiff neck. It also causes severe headache, 
back pain, muscle aches, sensitivity of the eyes to light, drowsiness, confusion, and even loss of 
consciousness, some children have convulsions (Samuel and Vivian, 2014). 
 
Carrier can be asymptomatic or of no symptoms at all, it therefore play undoubtablerole in 
spreading the disease (Fresnadillo et al, 2013). It was believed that 10%to 20% of the people 
carry meningitis without their knowledge and the percentage may increase especially during 
epidemic outbreak (World HealthOrganization [WHO]). The bacterial meningitis carrier carried 
the bacteria in the throat and back of their nose and spread through cough and droplet and the 
incidence of the infection during outbreak mostly affect individuals under 15 years of age 
(WHO). 
 

Materials and Methods 

A mathematical model which will be formulated using differential equations based on the 
epidemiological compartment modeling used is  the proposed S, C,  𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀 ,  𝑅𝑅𝐷𝐷 ,  𝑅𝑅𝑁𝑁 model for 
this paper, with carrier rate, which will be incorporated into the model. Data collected for the 
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2017 meningitis outbreaks in the north western Nigeria will be used and numerical simulations 
of the model will be conducted using Matlab application software. 

Model Formulation and Analysis 
In this paper, I consider the S, C,  𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀 ,  𝑅𝑅𝐷𝐷 ,  𝑅𝑅𝑁𝑁epidemiological model with the assumption 
that, natural death and death rates due to infection being unequal. The deterministic, 
compartmental mathematical model is formulated to describe the transmission dynamics of 
meningitis infection in the northwestern Nigeria. It is also assumed that, the population is 
heterogeneous. That is no individuals that make up of population can be grouped into different 
compartment or groups according to their epidemiological class and is to be taken is constant, the 
population size in a compartment is differentiable with respect to time and deterministic. In order 
words that the changes in population of a compartment can be calculated using only using 
history to developed the model. Natural deaths in each compartment and death due to meningitis 
only will be considered not of any other cause. The proportions of the population of children are 
immunized against meningitis infection through vaccination. And the population mixed 
homogeneously. That is all susceptible individuals are equally likely to be infected by infectious 
individuals in case of contact. 

Description of the Model Variables and Parameters 
 
The following tables describe the variables and parameters used in this model: 
 
Table 1: Variables used in the model 
 
Model 
Variables 

Description Initial Value Source 

S(t) Susceptible population 14, 624,414 NPC, 2017 
C(t) Carriers 3,656,104 NCDC, 2017 
𝐼𝐼𝑓𝑓  (t) Infected females 9,934 NCDC, 2017 

𝐼𝐼𝑚𝑚 (𝑡𝑡) Infected males 11,661 NCDC, 2017 

𝑅𝑅𝑑𝑑  (t) Recovered with deficiency 2,160 NCDC, 2017 

𝑅𝑅𝑛𝑛  (t) Recovered without deficiency 4,319 NCDC, 2017 
 
 
Table 2: Parameters used in the model used in the model 
 
Model 
Parameters 

Description Initial 
Value 

Source 

Λ Recruitment rate 0.41 Estimated 
𝛼𝛼 Death rate due to meningitis 0.01 NCDC, 2017 
µ Natural death rate 0.02 NCDC, 2017 
𝛽𝛽 Rate of Carrier contact 0.25 Coen, 2000 
𝜖𝜖1 Rate of female contact 0.035 Estimated 

𝜖𝜖2 Rate of male contact 0.040 Estimated 

𝜓𝜓1 Rate of return to susceptible  from 𝑅𝑅𝑑𝑑  0.045 Estimated 

𝜓𝜓2 Rate of return to susceptible from 𝑅𝑅𝑛𝑛  0.055 Estimated 

𝜅𝜅1 Rate of female move to  infectious from carrier  0.042 Estimated 

𝜅𝜅2 Rate of male move to  infectious from carrier 0.032 Estimated 
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𝛿𝛿 Rate of moving from 𝑅𝑅𝑑𝑑  𝑡𝑡𝑡𝑡 𝑅𝑅𝑛𝑛  0.05 Estimated 
𝜌𝜌1 Rate of female recovery from infectious class 0.045 Estimated 
𝜌𝜌2 Rate of male recovery from infectious class 0.035 Estimated 
𝜛𝜛 Rate of return from carrier to susceptible 0.125 Estimated 

 

Compartmental Diagram 
In this research, the population is divided into six disease-state compartments such as 
susceptible, carrier, infected female, infected male, recovered with deficiency and recovered 
without deficiency represented by S, C,  𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀 ,  𝑅𝑅𝐷𝐷 ,  𝑅𝑅𝑁𝑁respectively. In which the model 
considered was S, C,  𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀 ,  𝑅𝑅𝐷𝐷 ,  𝑅𝑅𝑁𝑁model : susceptible individuals (𝑆𝑆), people who can catch 
the disease; carrier individuals (𝐶𝐶), people whose body is a host for the infectious agent and are 
yet able to transmit the disease; infectious (infective) individuals 𝐼𝐼𝐹𝐹 ,   and 𝐼𝐼𝑀𝑀 ,   people who have 
the disease and can transmit the disease; recovered individual 𝑅𝑅𝐷𝐷 , and𝑅𝑅𝑁𝑁, proportion of people 
who have recovered from the disease with disability and without disability. it is however, assume 
that an individual can be infected only through contacts with infectious individuals and that 
immunity is permanent. The following tables describe the variables and parameters used in this 
model: 
Thus, the compartmental diagram for the deterministic model is as follows; 
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Model Equation 
The transitions between model classes can now be expressed by the following system of first 
order differential equations:- 

𝜕𝜕𝑆𝑆
𝜕𝜕𝑡𝑡

= 𝜆𝜆 + 𝜛𝜛𝐶𝐶 + 𝜓𝜓𝑅𝑅𝐷𝐷 + 𝜓𝜓𝑅𝑅𝑁𝑁 − 𝛽𝛽𝑆𝑆 − 𝜖𝜖1𝑆𝑆 − 𝜖𝜖2𝑆𝑆 − 𝜇𝜇𝑆𝑆… … … . (𝐼𝐼) 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 𝛽𝛽𝑆𝑆 − 𝜅𝜅1𝐶𝐶 − 𝜅𝜅2𝐶𝐶 − 𝜇𝜇𝐶𝐶 … … … . (𝐼𝐼𝐼𝐼) 

𝜕𝜕𝐼𝐼𝐹𝐹
𝜕𝜕𝑡𝑡

= 𝜅𝜅1𝐶𝐶 + 𝜖𝜖1𝑆𝑆 − 𝜌𝜌2𝐼𝐼𝐹𝐹 − 𝜌𝜌1𝐼𝐼𝐹𝐹 − 𝛼𝛼𝐼𝐼𝐹𝐹 − 𝜇𝜇𝐼𝐼𝐹𝐹 … … … . (𝐼𝐼𝐼𝐼𝐼𝐼) 

𝜕𝜕𝐼𝐼𝑀𝑀
𝜕𝜕𝑡𝑡

= 𝜅𝜅2𝐶𝐶 + 𝜖𝜖2𝑆𝑆 − 𝜌𝜌2𝐼𝐼𝑀𝑀 − 𝜌𝜌1𝐼𝐼𝑀𝑀 − 𝛼𝛼𝐼𝐼𝑀𝑀 − 𝜇𝜇𝐼𝐼𝑀𝑀 … … … . (𝐼𝐼𝐼𝐼) 

𝜕𝜕𝑅𝑅𝐷𝐷
𝜕𝜕𝑡𝑡

= 𝜌𝜌2𝐼𝐼𝐹𝐹 + 𝜌𝜌2𝐼𝐼𝑀𝑀 − 𝛿𝛿𝑅𝑅𝐷𝐷 − 𝜓𝜓1𝑅𝑅𝐷𝐷 − 𝜇𝜇𝑅𝑅𝐷𝐷 … … … . (𝐼𝐼) 

𝜕𝜕𝑅𝑅𝑁𝑁
𝜕𝜕𝑡𝑡

= 𝜌𝜌1𝐼𝐼𝐹𝐹 + 𝜌𝜌1𝐼𝐼𝑀𝑀 + 𝛿𝛿𝑅𝑅𝐷𝐷 − 𝜓𝜓2𝑅𝑅𝑁𝑁 − 𝜇𝜇𝑅𝑅𝑁𝑁 … … … . (𝐼𝐼𝐼𝐼) 

 

BASIC PROPERTIES OF THE MODEL 

Existence and uniqueness of solution 

For the mathematical model to predict the future of the system from its current state at time 𝑡𝑡0, 
the initial value problem (IVP) 

𝑥𝑥′ = 𝑓𝑓(𝑡𝑡, 𝑥𝑥),         𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0………………………………………….…………(XI) 

Must have a solution that exist and also unique. 

In this section, the conditions for the existence and uniqueness of solution for the model system 
of equation shall be established. Let 
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𝑓𝑓1(𝑡𝑡, 𝑥𝑥) = 𝜆𝜆 + 𝜛𝜛𝐶𝐶 + 𝜓𝜓𝑅𝑅𝐷𝐷 + 𝜓𝜓𝑅𝑅𝑁𝑁 − 𝛽𝛽𝑆𝑆 − 𝜖𝜖1𝑆𝑆 − 𝜖𝜖2𝑆𝑆 − 𝜇𝜇𝑆𝑆… … . (𝑋𝑋𝐼𝐼𝐼𝐼) 

𝑓𝑓2(𝑡𝑡, 𝑥𝑥) = 𝛽𝛽𝑆𝑆 − 𝜅𝜅1𝐶𝐶 − 𝜅𝜅2𝐶𝐶 − 𝜇𝜇𝐶𝐶… … … . (𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼) 

𝑓𝑓3(𝑡𝑡, 𝑥𝑥) = 𝜅𝜅1𝐶𝐶 + 𝜖𝜖1𝑆𝑆 − 𝜌𝜌2𝐼𝐼𝐹𝐹 − 𝜌𝜌1𝐼𝐼𝐹𝐹 − 𝛼𝛼𝐼𝐼𝐹𝐹 − 𝜇𝜇𝐼𝐼𝐹𝐹 … … … . (𝑋𝑋𝐼𝐼𝐼𝐼) 

𝑓𝑓4(𝑡𝑡, 𝑥𝑥) = 𝜅𝜅2𝐶𝐶 + 𝜖𝜖2𝑆𝑆 − 𝜌𝜌2𝐼𝐼𝑀𝑀 − 𝜌𝜌1𝐼𝐼𝑀𝑀 − 𝛼𝛼𝐼𝐼𝑀𝑀 − 𝜇𝜇𝐼𝐼𝑀𝑀 … … … . (𝑋𝑋𝐼𝐼) 

𝑓𝑓5(𝑡𝑡, 𝑥𝑥) = 𝜌𝜌2𝐼𝐼𝐹𝐹 + 𝜌𝜌2𝐼𝐼𝑀𝑀 − 𝛿𝛿𝑅𝑅𝐷𝐷 − 𝜓𝜓1𝑅𝑅𝐷𝐷 − 𝜇𝜇𝑅𝑅𝐷𝐷 … … … . (𝑋𝑋𝐼𝐼𝐼𝐼) 

𝑓𝑓6(𝑡𝑡, 𝑥𝑥) = 𝜌𝜌1𝐼𝐼𝐹𝐹 + 𝜌𝜌1𝐼𝐼𝑀𝑀 + 𝛿𝛿𝑅𝑅𝐷𝐷 − 𝜓𝜓2𝑅𝑅𝑁𝑁 − 𝜇𝜇𝑅𝑅𝑁𝑁 … … … . (𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼) 

 

So that 

𝑥𝑥′ = 𝑓𝑓(𝑡𝑡, 𝑥𝑥),         𝑥𝑥(𝑡𝑡0) = 𝑓𝑓(𝑥𝑥)……………………………………………….(XVIII) 

Theorem 1, (Momoh et al, 2013) Let 𝐷𝐷′denotes the region 

|𝑡𝑡 − 𝑡𝑡0| ≤ 𝑎𝑎, ‖𝑥𝑥 − 𝑥𝑥0‖ ≤ 𝑏𝑏, 

 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … … 𝑥𝑥𝑛𝑛),  

𝑥𝑥0 = (𝑋𝑋10, 𝑋𝑋20, … . .𝑋𝑋𝑛𝑛0)…………………………………….…………………..(XIX) 

And suppose that 𝑓𝑓(𝑡𝑡, 𝑥𝑥) satisfies the Lipchitz condition 

‖𝑓𝑓(𝑡𝑡, 𝑥𝑥1) − 𝑓𝑓(𝑡𝑡, 𝑥𝑥2)‖ ≤ 𝑘𝑘‖𝑥𝑥1 − 𝑥𝑥2‖,……….……………………………..………(XX) 

Whenever the pairs (𝑡𝑡, 𝑥𝑥1) 𝑎𝑎𝑛𝑛𝑑𝑑 (𝑡𝑡, 𝑥𝑥2) belongs to 𝐷𝐷′ , where k is a positive constant. Then, there 
exist a constant 𝛿𝛿 > 0 such that there exist a unique continuous vector solution �̅�𝑥(𝑡𝑡) of the 
system (XI) in the interval |𝑡𝑡 − 𝑡𝑡0| ≤ 𝛿𝛿. 

It is important to note that condition (XX) is satisfied by requirement that 𝜕𝜕𝑓𝑓𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕

, 𝜕𝜕, 𝜕𝜕 = 1, 2, … . . 𝑛𝑛 

be continuous and bounded in𝐷𝐷′ . 

Lemma 2. If  𝑓𝑓(𝑡𝑡, 𝑥𝑥) has continuous partial derivatives  𝜕𝜕𝑓𝑓𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕

 on a bounded closed covex domain 

R, then it satisfies a Lipchitz condition in R. 

Being interested in the region 

1 ≤ 𝜀𝜀 ≤ 𝑅𝑅…………………………………………………………..……….……..(XXI) 

By looking for a bounded solution of the form 

0 < 𝑅𝑅 < ∞…………………………………………………………………………(XXII), 

Following the proving of existence theorem 
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Theorem 2.Let 𝐷𝐷′denote the region in (XX) such that (XXI) and (XXII) hold. Then there exist a 
solution of model system (XII) – (XVII) which is bounded in the region 𝐷𝐷′ . 

Proof. 

𝑓𝑓1 = 𝜆𝜆 + 𝜛𝜛𝐶𝐶 + 𝜓𝜓𝑅𝑅𝐷𝐷 + 𝜓𝜓𝑅𝑅𝑁𝑁 − 𝛽𝛽𝑆𝑆 − 𝜖𝜖1𝑆𝑆 − 𝜖𝜖2𝑆𝑆 − 𝜇𝜇𝑆𝑆 

𝑓𝑓2 = 𝛽𝛽𝑆𝑆 − 𝜅𝜅1𝐶𝐶 − 𝜅𝜅2𝐶𝐶 − 𝜇𝜇𝐶𝐶 

𝑓𝑓3 = 𝜅𝜅1𝐶𝐶 + 𝜖𝜖1𝑆𝑆 − 𝜌𝜌2𝐼𝐼𝐹𝐹 − 𝜌𝜌1𝐼𝐼𝐹𝐹 − 𝛼𝛼𝐼𝐼𝐹𝐹 − 𝜇𝜇𝐼𝐼𝐹𝐹  

𝑓𝑓4 = 𝜅𝜅2𝐶𝐶 + 𝜖𝜖2𝑆𝑆 − 𝜌𝜌2𝐼𝐼𝑀𝑀 − 𝜌𝜌1𝐼𝐼𝑀𝑀 − 𝛼𝛼𝐼𝐼𝑀𝑀 − 𝜇𝜇𝐼𝐼𝑀𝑀  

𝑓𝑓5 = 𝜌𝜌2𝐼𝐼𝐹𝐹 + 𝜌𝜌2𝐼𝐼𝑀𝑀 − 𝛿𝛿𝑅𝑅𝐷𝐷 − 𝜓𝜓1𝑅𝑅𝐷𝐷 − 𝜇𝜇𝑅𝑅𝐷𝐷  

𝑓𝑓6 = 𝜌𝜌1𝐼𝐼𝐹𝐹 + 𝜌𝜌1𝐼𝐼𝑀𝑀 + 𝛿𝛿𝑅𝑅𝐷𝐷 − 𝜓𝜓2𝑅𝑅𝑁𝑁 − 𝜇𝜇𝑅𝑅𝑁𝑁  
 

It suffices to show that 𝛿𝛿𝑓𝑓𝜕𝜕
𝛿𝛿𝑥𝑥𝜕𝜕

, 𝜕𝜕, 𝜕𝜕 = 1, 2, 3, 4 are continuous  

Consider the partial derivatives 

𝛿𝛿𝑓𝑓1
𝛿𝛿𝛿𝛿

= −𝛽𝛽 − 𝜀𝜀1 − 𝜀𝜀2 − 𝜇𝜇, �𝛿𝛿𝑓𝑓1
𝛿𝛿𝛿𝛿
� =  |−𝛽𝛽 − 𝜀𝜀1 − 𝜀𝜀2 − 𝜇𝜇| < ∞ 

𝛿𝛿𝑓𝑓1
𝛿𝛿𝐶𝐶

= 𝜛𝜛, �𝛿𝛿𝑓𝑓1
𝛿𝛿𝛿𝛿
� =  |𝜛𝜛| < ∞ 

𝛿𝛿𝑓𝑓1
𝛿𝛿𝐼𝐼𝐹𝐹

= 0, �𝛿𝛿𝑓𝑓1
𝛿𝛿𝐼𝐼𝐹𝐹
� =  |0| < ∞ 

𝛿𝛿𝑓𝑓1
𝛿𝛿𝐼𝐼𝑀𝑀

= 0, �𝛿𝛿𝑓𝑓1
𝛿𝛿𝐼𝐼𝑀𝑀

� =  |0| < ∞ 

𝛿𝛿𝑓𝑓1
𝛿𝛿𝑅𝑅𝐷𝐷

= 𝜓𝜓1, �𝛿𝛿𝑓𝑓1
𝛿𝛿𝑅𝑅𝐷𝐷

� =  |𝜓𝜓1| < ∞ 

𝛿𝛿𝑓𝑓1
𝛿𝛿𝑅𝑅𝑁𝑁

= 𝜓𝜓2, �𝛿𝛿𝑓𝑓1
𝛿𝛿𝑅𝑅𝑁𝑁

� =  |𝜓𝜓2| < ∞ 

Similarly 

𝛿𝛿𝑓𝑓2
𝛿𝛿𝛿𝛿

= 𝛽𝛽, �𝛿𝛿𝑓𝑓2
𝛿𝛿𝛿𝛿
� =  |𝛽𝛽| < ∞ 

𝛿𝛿𝑓𝑓2
𝛿𝛿𝐶𝐶

= −𝜅𝜅1 − 𝜅𝜅2 −𝜛𝜛 − 𝜇𝜇, �𝛿𝛿𝑓𝑓1
𝛿𝛿𝛿𝛿
� =  |−𝜅𝜅1 − 𝜅𝜅2 −𝜛𝜛 − 𝜇𝜇| < ∞ 

𝛿𝛿𝑓𝑓2
𝛿𝛿𝐼𝐼𝐹𝐹

= 0, �𝛿𝛿𝑓𝑓2
𝛿𝛿𝐼𝐼𝐹𝐹
� =  |0| < ∞ 

𝛿𝛿𝑓𝑓2
𝛿𝛿𝐼𝐼𝑀𝑀

= 0, �𝛿𝛿𝑓𝑓2
𝛿𝛿𝐼𝐼𝑀𝑀

� =  |0| < ∞ 
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𝛿𝛿𝑓𝑓2
𝛿𝛿𝑅𝑅𝐷𝐷

= 0, �𝛿𝛿𝑓𝑓2
𝛿𝛿𝑅𝑅𝐷𝐷

� =  |0| < ∞ 

𝛿𝛿𝑓𝑓2
𝛿𝛿𝑅𝑅𝑁𝑁

= 0, �𝛿𝛿𝑓𝑓2
𝛿𝛿𝑅𝑅𝑁𝑁

� =  |0| < ∞ 

The same way 

𝛿𝛿𝑓𝑓3
𝛿𝛿𝛿𝛿

= 𝜀𝜀1, �𝛿𝛿31
𝛿𝛿𝛿𝛿
� =  |𝜀𝜀1| < ∞ 

𝛿𝛿𝑓𝑓3
𝛿𝛿𝐶𝐶

= 𝜅𝜅1, �𝛿𝛿𝑓𝑓3
𝛿𝛿𝐶𝐶
� =  |𝜅𝜅1| < ∞ 

𝛿𝛿𝑓𝑓3
𝛿𝛿𝐼𝐼𝐹𝐹

= −𝜌𝜌2 − 𝜌𝜌1 − 𝛼𝛼 − 𝜇𝜇, �𝛿𝛿𝑓𝑓3
𝛿𝛿𝐼𝐼𝐹𝐹
� =  |−𝜌𝜌2 − 𝜌𝜌1 − 𝛼𝛼 − 𝜇𝜇| < ∞ 

𝛿𝛿𝑓𝑓3
𝛿𝛿𝐼𝐼𝑀𝑀

= 0, �𝛿𝛿𝑓𝑓3
𝛿𝛿𝐼𝐼𝑀𝑀

� =  |0| < ∞ 

𝛿𝛿𝑓𝑓3
𝛿𝛿𝑅𝑅𝐷𝐷

= 0, �𝛿𝛿𝑓𝑓3
𝛿𝛿𝑅𝑅𝐷𝐷

� =  |0| < ∞ 

𝛿𝛿𝑓𝑓3
𝛿𝛿𝑅𝑅𝑁𝑁

= 0, �𝛿𝛿𝑓𝑓3
𝛿𝛿𝑅𝑅𝑁𝑁

� =  |0| < ∞ 

Also 

𝛿𝛿𝑓𝑓4
𝛿𝛿𝛿𝛿

= 𝜖𝜖2, �𝛿𝛿𝑓𝑓4
𝛿𝛿𝛿𝛿
� =  |𝜖𝜖2| < ∞ 

𝛿𝛿𝑓𝑓4
𝛿𝛿𝐶𝐶

= 𝜅𝜅2, �𝛿𝛿𝑓𝑓4
𝛿𝛿𝐶𝐶
� =  |𝜅𝜅2| < ∞ 

𝛿𝛿𝑓𝑓4
𝛿𝛿𝐼𝐼𝐹𝐹

= 0, �𝛿𝛿𝑓𝑓4
𝛿𝛿𝐼𝐼𝐹𝐹
� =  |0| < ∞ 

𝛿𝛿𝑓𝑓4
𝛿𝛿𝐼𝐼𝑀𝑀

= −𝜌𝜌1 − 𝜌𝜌2 − 𝛼𝛼 − 𝜇𝜇, �𝛿𝛿𝑓𝑓4
𝛿𝛿𝐼𝐼𝑀𝑀

� =  |−𝜌𝜌1 − 𝜌𝜌2 − 𝛼𝛼 − 𝜇𝜇| < ∞ 

𝛿𝛿𝑓𝑓4
𝛿𝛿𝑅𝑅𝐷𝐷

= 0, �𝛿𝛿𝑓𝑓4
𝛿𝛿𝑅𝑅𝐷𝐷

� =  |0| < ∞ 

𝛿𝛿𝑓𝑓4
𝛿𝛿𝑅𝑅𝑁𝑁

= 0, �𝛿𝛿𝑓𝑓4
𝛿𝛿𝑅𝑅𝑁𝑁

� =  |0| < ∞ 

Similarly 

𝛿𝛿𝑓𝑓5
𝛿𝛿𝛿𝛿

= 0, �𝛿𝛿𝑓𝑓5
𝛿𝛿𝛿𝛿
� =  |0| < ∞ 

𝛿𝛿𝑓𝑓5
𝛿𝛿𝐶𝐶

= 0, �𝛿𝛿𝑓𝑓5
𝛿𝛿𝐶𝐶
� =  |0| < ∞ 

𝛿𝛿𝑓𝑓5
𝛿𝛿𝐼𝐼𝐹𝐹

= 𝜌𝜌2, �𝛿𝛿𝑓𝑓5
𝛿𝛿𝐼𝐼𝐹𝐹
� =  |𝜌𝜌2| < ∞ 

GSJ: Volume 8, Issue 11, November 2020 
ISSN 2320-9186 1954

GSJ© 2020 
www.globalscientificjournal.com



9 
 

𝛿𝛿𝑓𝑓5
𝛿𝛿𝐼𝐼𝑀𝑀

= 𝜌𝜌1, �𝛿𝛿𝑓𝑓5
𝛿𝛿𝐼𝐼𝑀𝑀

� =  |𝜌𝜌1| < ∞ 

𝛿𝛿𝑓𝑓5
𝛿𝛿𝑅𝑅𝐷𝐷

= −𝛿𝛿 − 𝜓𝜓1 − 𝜇𝜇, �𝛿𝛿𝑓𝑓5
𝛿𝛿𝑅𝑅𝐷𝐷

� =  |−𝛿𝛿 − 𝜓𝜓1 − 𝜇𝜇| < ∞ 

𝛿𝛿𝑓𝑓5
𝛿𝛿𝑅𝑅𝑁𝑁

= 0, �𝛿𝛿𝑓𝑓5
𝛿𝛿𝑅𝑅𝑁𝑁

� =  |0| < ∞ 

Finally becomes 

𝛿𝛿𝑓𝑓6
𝛿𝛿𝛿𝛿

= 0, �𝛿𝛿𝑓𝑓6
𝛿𝛿𝛿𝛿
� =  |0| < ∞ 

𝛿𝛿𝑓𝑓6
𝛿𝛿𝐶𝐶

= 0, �𝛿𝛿𝑓𝑓6
𝛿𝛿𝛿𝛿
� =  |0| < ∞ 

𝛿𝛿𝑓𝑓6
𝛿𝛿𝐼𝐼𝐹𝐹

= 𝜌𝜌1, �𝛿𝛿𝑓𝑓6
𝛿𝛿𝐼𝐼𝐹𝐹
� =  |𝜌𝜌1| < ∞ 

𝛿𝛿𝑓𝑓6
𝛿𝛿𝐼𝐼𝑀𝑀

= 𝜌𝜌1, �𝛿𝛿𝑓𝑓6
𝛿𝛿𝐼𝐼𝑀𝑀

� =  |𝜌𝜌1| < ∞ 

𝛿𝛿𝑓𝑓6
𝛿𝛿𝑅𝑅𝐷𝐷

= 𝛿𝛿, �𝛿𝛿𝑓𝑓6
𝛿𝛿𝑅𝑅𝐷𝐷

� =  |𝛿𝛿| < ∞ 

𝛿𝛿𝑓𝑓6
𝛿𝛿𝑅𝑅𝑁𝑁

= −𝜓𝜓2 − 𝜇𝜇, �𝛿𝛿𝑓𝑓6
𝛿𝛿𝑅𝑅𝑁𝑁

� =  |−𝜓𝜓2 − 𝜇𝜇| < ∞ 

Clearly, all these partial derivatives are continuous and bounded, hence, by theorem (2), there 
exist a unique solution of (XII) – (XVIII) in the region   𝐷𝐷′ . 

Feasible region 
Since the model monitors human population, all associated parameters of the model and state 
variables are assumed to be non-negative t ≥ 0. It is quite simple to show that the state variables 
of the model remain non- negative for all non-negative initial conditions.  
 
Lemma 1. The closed Ω is positively invariant and attracting. 

Proof: Adding (1) – (VI) gives rate of change of the total population. The total population can be 
written as: 

N(t) = S(t) + C(t) + 𝐼𝐼𝐹𝐹  (t) + 𝐼𝐼𝑀𝑀(t) + 𝑅𝑅𝐷𝐷(t) + 𝑅𝑅𝑁𝑁(t)……………………..……(VII) therefore the eq. 
(VII) is changing at a rate 
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𝛿𝛿𝑁𝑁
𝛿𝛿𝑡𝑡

= 𝛿𝛿𝑆𝑆
𝛿𝛿𝑡𝑡

+ 𝛿𝛿𝐶𝐶
𝛿𝛿𝑡𝑡

+ 𝛿𝛿𝐼𝐼𝑓𝑓
𝛿𝛿𝑡𝑡

+ 𝛿𝛿𝐼𝐼𝑚𝑚
𝛿𝛿𝑡𝑡

+ 𝛿𝛿𝑅𝑅𝐷𝐷
𝛿𝛿𝑡𝑡

+ 𝛿𝛿𝑅𝑅𝑁𝑁
𝛿𝛿𝑡𝑡

= Λ − 𝜇𝜇𝑁𝑁 ………………………………..(VIII) 

In the absence of the disease ie, for 𝐼𝐼𝐹𝐹  = 𝐼𝐼𝑀𝑀  = 𝑅𝑅𝐷𝐷  = 𝑅𝑅𝑁𝑁 = 0  

Which become 

𝛿𝛿𝑁𝑁
𝛿𝛿𝑡𝑡
≤  Λ − 𝜇𝜇𝑁𝑁………………………………………………………..……………..(IX) 

By the separation of variables of differentials inequality eq. (IX) become 

𝛿𝛿𝑁𝑁
Λ−𝜇𝜇𝑁𝑁

≤ 𝛿𝛿𝑡𝑡……………………………………………………………………………(X) 

Thus, the human population (N) is bounded by𝜆𝜆
𝜇𝜇

, so that 𝛿𝛿𝑁𝑁
𝛿𝛿𝑡𝑡

= 0  whenever 𝑁𝑁(𝑡𝑡) = 𝜆𝜆
𝜇𝜇

, 

It can be shown that 𝑁𝑁(𝑡𝑡) = 𝜆𝜆
𝜇𝜇

+ �𝑁𝑁0 −
𝜆𝜆
𝜇𝜇
� 𝑒𝑒−𝜇𝜇𝑡𝑡 . In particular 𝑁𝑁(𝑡𝑡) = 𝜆𝜆

𝜇𝜇
,if 𝑁𝑁(0) = 𝜆𝜆

𝜇𝜇
. 

Hence, the region Ω is positively invariant and attract all solutions in 𝑅𝑅+
6  

Therefore, the feasible solutions set of the equation system eq. (I-VI) enters the region. 

Ω = { (S, C,  𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀 ,  𝑅𝑅𝐷𝐷 ,  𝑅𝑅𝑁𝑁)𝜖𝜖ℝ6 → Λ
𝜇𝜇
} 

MODEL ANALYSIS 

Disease free equilibrium 

The disease free equilibrium points are steady solution where there is no disease. Hence the 
disease free equilibrium exists when   C,  𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀 ,  𝑅𝑅𝐷𝐷 ,  𝑅𝑅𝑁𝑁 are set to 0, that is S= C=  
𝐼𝐼𝐹𝐹=𝐼𝐼𝑀𝑀=𝑅𝑅𝐷𝐷=𝑅𝑅𝑁𝑁 = 0. Let 𝑁𝑁(𝑡𝑡) represent the human population during the disease free equilibrium 
which can be written as 𝑑𝑑𝑁𝑁

𝑑𝑑𝑡𝑡
= 𝜆𝜆 − 𝜇𝜇𝑆𝑆. 

Stability of a Disease Free Equilibrium 
 
To understand how the parameters affect the meningitis model, the stability nature of the Disease 
Free Equilibrium is analyzed by finding the Jacobian matrix for the 𝑆𝑆,𝐶𝐶, 𝐼𝐼𝐹𝐹 , 𝐼𝐼𝑀𝑀 ,𝑅𝑅𝑑𝑑 ,𝑅𝑅𝑛𝑛  system. 
Jacobian matrix is used in order to determine the local stability of the disease free equilibrium 
𝑝𝑝0 = (𝜆𝜆

𝜇𝜇
, 0, 0, 0,0,0) .  

Evaluation of the stability of the disease-free equilibrium 𝑃𝑃0, by jacobian matrix 

 The evaluation follows 

Jacobian matrix at 𝑝𝑝0 = (𝜆𝜆
𝜇𝜇

, 0, 0, 0,0,0) 
𝐽𝐽(𝑃𝑃0) = 
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⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴 𝜛𝜛 0 0 𝜓𝜓1 𝜓𝜓2
β 𝐵𝐵 0 0 0 0
𝜖𝜖1 𝜖𝜖1 𝐶𝐶 0 0 0
𝜖𝜖2 𝜖𝜖2 0 𝐷𝐷 0 0
0 0 𝜌𝜌2 𝜌𝜌2 𝐸𝐸 0
0 0 𝜌𝜌1 𝜌𝜌1 𝛿𝛿 −𝜓𝜓2 − 𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎤

…………………………………………..………(XXX). 

 

Let 

𝐴𝐴 = −𝛽𝛽 − 𝜖𝜖1 − 𝜖𝜖1 − 𝜇𝜇 

𝐵𝐵 = −𝜅𝜅1 − 𝜅𝜅2 − 𝜇𝜇 

𝐶𝐶 = −𝜌𝜌2 − 𝜌𝜌1 − 𝛼𝛼 − 𝜇𝜇 

𝐷𝐷 = −𝜌𝜌1 − 𝜌𝜌2 − 𝛼𝛼 − 𝜇𝜇 

𝐸𝐸 = −𝛿𝛿 − 𝜓𝜓1 − 𝜇𝜇 

Thus the characteristic equation is given as 

 
|𝐽𝐽(𝑃𝑃0 − 𝜆𝜆)| 

⎣
⎢
⎢
⎢
⎢
⎡
−𝜇𝜇 − 𝜆𝜆 𝜛𝜛 0 0 0 0

0 −𝜇𝜇 − 𝜆𝜆 0 0 0 0
0 0 −𝛼𝛼 − 𝜇𝜇 − 𝜆𝜆 0 0 0
0 0 0 −𝛼𝛼 − 𝜇𝜇 − 𝜆𝜆 0 0
0 0 0 0 −𝜇𝜇 − 𝜆𝜆 0
0 0 0 0 0 −𝜇𝜇 − 𝜆𝜆⎦

⎥
⎥
⎥
⎥
⎤

 = 0………….(XXXI) 

 
From here the eigenvalues of 𝑱𝑱(𝑷𝑷𝟎𝟎)can be obtained as 

𝜆𝜆1 = −𝜇𝜇 
𝜆𝜆2 = −𝜇𝜇 

𝜆𝜆3 = −𝛼𝛼 − 𝜇𝜇 
𝜆𝜆4 = −𝛼𝛼 − 𝜇𝜇 
𝜆𝜆5 = −𝜇𝜇 
𝜆𝜆6 = −𝜇𝜇 

 
 
Since all eigen-values are negatives, it implies that the disease free equilibrium point is locally 
asymptotically stable if 𝑅𝑅0 < 1. It is unstable if 𝑅𝑅0 > 1. 
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The Threshold Parameter 

The threshold parameter defined 𝑅𝑅0= 1
𝑆𝑆∗
∗ 𝜆𝜆
𝜇𝜇
 according to (Momoh et al, 2013) approach as the 

parameter that is used to determine the equilibria. 

 
DURING OUTBREAK 
Theorem: if 𝑅𝑅0 > 1, then 𝑃𝑃∗ is globally asymptotically stable with respect to the interior of Ω. 
Considering natural carrier rate which is 25% .Therefore, 
 

𝑆𝑆∗ =
𝜆𝜆 + 𝜛𝜛𝐶𝐶 + 𝜓𝜓1𝑅𝑅𝐷𝐷 + 𝜓𝜓2𝑅𝑅𝑁𝑁

𝛽𝛽 + 𝜀𝜀1 + 𝜀𝜀2 + 𝜇𝜇
 

=
14,624,414 + 3,656,104 + 2,160 + 4,319

0.25 + 0.35 + 0.40 + 0.02
 

=
18,286,997

1.02
 

= 17,928,428 

𝑅𝑅0 =
1
𝑆𝑆∗
∗
𝜆𝜆
𝜇𝜇

 

=
1

17,928,428
∗

14,624,414
0.02

 

=
14,624,414

358,569
 

= 40.78549456 ≈ 41 > 1 

When carrier rate raised to 60% 

𝑆𝑆∗ =
𝜆𝜆 + 𝜛𝜛𝐶𝐶 + 𝜓𝜓1𝑅𝑅𝐷𝐷 + 𝜓𝜓2𝑅𝑅𝑁𝑁

𝛽𝛽 + 𝜀𝜀1 + 𝜀𝜀2 + 𝜇𝜇
 

14,624,414 + 8,774,648 + 2,160 + 4,319
0.25 + 0.35 + 0.40 + 0.02

 

=
23,405,541

1.02
 

= 22,946,609 

𝑅𝑅0 =
1
𝑆𝑆∗
∗
𝜆𝜆
𝜇𝜇
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=
1

22,946,609
∗

14,624,414
0.02

 

=
14,624,414

458,932
 

= 31.86618933 ≈ 32 > 1 

When carrier rate raised to 90% 

𝑆𝑆∗ =
𝜆𝜆 + 𝜛𝜛𝐶𝐶 + 𝜓𝜓1𝑅𝑅𝐷𝐷 + 𝜓𝜓2𝑅𝑅𝑁𝑁

𝛽𝛽 + 𝜀𝜀1 + 𝜀𝜀2 + 𝜇𝜇
 

14,624,414 + 13,161,973 + 2,160 + 4,319
0.25 + 0.35 + 0.40 + 0.02

 

=
27,792.866

1.02
 

= 27,247,908 

𝑅𝑅0 =
1
𝑆𝑆∗
∗
𝜆𝜆
𝜇𝜇

 

=
1

27,247,908
∗

14,624,414
0.02

 

=
14,624,414

514,958
 

= 26.83585524 ≈ 27 > 1 

BEFORE OUTBREAK 
Theorem: if 𝑅𝑅0 > 1, then 𝑃𝑃∗ is globally asymptotically stable with respect to the interior of Ω. 
Considering natural carrier rate which is 25% .Therefore, 
 

𝑆𝑆∗ =
𝜆𝜆 + 𝜛𝜛𝐶𝐶
𝛽𝛽 + 𝜇𝜇

 

=
14,624,414 + 3,656,104

0.25 + 0.02
 

= 67,705,622 

𝑅𝑅0 =
1
𝑆𝑆∗
∗
𝜆𝜆
𝜇𝜇

 

=
1

67,705,622
∗

14,624,414
0.02
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= 10.800000325 ≈ 11 > 1 

Since R0 > 1, therefore the disease will persist as observed from the threshold that during the 
outbreaks that 𝑅𝑅0 is obtained when natural carrier rate is 25% with 𝑅𝑅0 = 41 when carrier rate is 
increased to 60%, and 𝑅𝑅0 =  32 when carrier rate is finally increased to 90% 𝑅𝑅0 = 26 bur when 
there is no outbreak,𝑅𝑅0 = 11 therefore, these indicate that carrier negative effect is mostly 
observed during outbreak. 
 
Stability of Disease Free Equilibrium 

The disease free equilibrium point is locally stable if 𝑅𝑅0 < 1 and unstable if  𝑅𝑅0 > 1.  Therefore base on 
this research, the disease free equilibrium is unstable. 

NUMERICAL SIMULATION 

The key parameters were used to investigate the meningitis transmission dynamics as well as to 
investigate the negative effect of carrier on disease transmission by interchanging rate of carrier 
from the data collected during 2017 epidemic outbreak. Based on the graph, the carrier rates 
possess increasing approaching the susceptible population during outbreak.  
 

 

Figure 2: Graphical representation of Meningitis Transmission with carrier rate at 
25 percent 
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CONCLUSION 
Since all the Eigen- values are negatives it implies that the disease free equilibrium point is locally 
asymptotically unstable with  𝑅𝑅0 > 1. Means that each infected individual infect more than one individual 
such that there is expectation of the disease spread out. 
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