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Abstract 

This present study discusses the spread of COVID-19 epidemic and its control. Regrettably,the 
virus is continuously spreading and its mortality rate is increasing daily. Here we used 
quarantine and treatment (isolation) strategies to control the spread of the disease. This work 
used mathematical modeling and optimal control approach to study the effect of the two 
control strategies as time-dependent intervention and also ascertain their contributions in the 
dynamic of the transmission of COVID-19. The model was well-posed as we proved that all its 
state variables are non negative for all time. The basic reproduction number was computed and 
was used it to carry out the sensitivity analysis that classify the serious parameter contributing 
to spread of COVID-19. The optimal control analysis was done using the Pontryagin’s maximum 
principle to find out the optimal strategies needed to restrain the disease. The finding’s of the 
optimal control analysis and numerical simulations showed that the combined implementation 
of the two interventions produced a fine result  in reducing COVID-19 infection in the 
population. This implies that combined interventions need to be deployed early in order to 
reduce the virus infection to the barest minimum. 

Keywords: COVID-19, optimal control, Treatment (Isolation), Quarantine, Basic Reproduction 
Number, Sensitivity analysis.  

I.   Introduction 

COVID-19 is a rapidly spreading infectious disease with pandemic potential, caused by the novel 
virus SARS-COV-2 [1]. Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses 
belonging to the family of coronaviridae [2]. The cause generally mild respiratory infections, 
eventhough they are occasionally latthal. Since their discovery and first characterization in1965 
[3], three major, large-scale  outbreaks have occurred, caused by emerging, highly pathogenic 
coronaviruses, namely, the “Severe Acute Respiratory Syndrome” (SARS) outbreak in 2003 in 
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mainland china [4], the “Middle East Respiratory Syndrome” (MERS) outbreak in 2012 in Saudi 
Arabia [5], [6] and the the MERS outbreak in South Korea [7], [8]. These outbreaks have 
resulted in more than 8000 and 2200 comfirmed  SARS and MERS cases respectively [9]. 
Recently, a fourh coronavirus outbreak has occurred in wuhan, the capital of Hubei province 
and seventh largest city of peoples republic of China [10], [11], [12]. 

On 31 December 2019, the Chinese authority informed the World Health Organization (WHO) 
in China country of 27 cases of viral pneumoniain which a novel coronavirus was identified as 
the causative agent. WHO also released a wide range of interium guidance for all countries on 
how to get prepared to cope with the emergency control of further spread of the disease. The 
virus ius mainly spread from person to person, through respiratory droplets and the spread is 
more likely when people are close (within 6 feet) to each other (Center for Disease Control and 
Prevention (CDC)) [13]. This has prompted Healthauthoritiesto stress upon social distancing and 
wearing of face mask as a means of controlling the spread of the disease. Certainly, at this time 
in the absence of a vaccine and any confirmed anti-viral therapy, social distancing, quarantine 
and isolation with treatment are the only possible control strategies available [14]. Thevirus 
may also be transmitted by touching infected surfaces and then touching ones own mouth, 
nose or eyes hence disinfecting of surfaces and hands is also recommended as preventive 
measure. Symptoms of the disease which includes severe respiratory illness, fever, cough, 
chills, lost of taste or smell, and myalgia orfatique may appear 2 – 14 days after exposure [14], 
[15]. The elderlys who are 65 years and above and individuals with underlying  medical 
conditions like chronic lung disease, serious heart condition, diabetes, chronic kidney disease 
and immunocompromised individuals are people with high risk of the infection [16]. 

II.  Related Litrature 

In the last decades, many mathematical models used to study the transmission dynamics and 
control of infectious disease have been proposed.these models are important such inpolicy 
making, emergency planning and risk assessment, definition of control programs, and 
improvement in various health -economic aspect [17]. 

Ali et al, [18] formulated a deterministic epidemic model for the spread of coronavirus disease 
(COVID-19)in which they include asymptomatic, quarantine and isolation compartments,since 
studies has stress on the importance of these population groups on the transmission of the 
disease. In their study, optimal quarantine and isolation strategies were deviced, noting that 
high levels need to be maintained during the early stages of the out break. 

Tang et al, [19] deviced deterministic compartmental model based on the clinicalprogression of 
the disease, epidemiological status of the individuals, and intervention measures. Their 
sensitivity analysis show that intervensions such as intensive contact tracing followed by 
quarantine and isolation, can effectively reduce the control reproduction number and 
transmission risk, with the effect of travel restriction. 
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Libotte et al[20] stated in their work that the objective is to determine an optimal control 
strategy for vaccine administration in COVID-19 pandemic treatment considering real data from 
China. Two optimal control problem  (mono and multi- objective) were proposed in which the 
first consists of minimizing the quantity of infected individuals during the treatment while the 
second considers minimizing together the quantity of infected individuals and the prescribed 
vaccine concentration during the treatment. 

Yan and Zou [21] discussed the application of optimal and sub-optimal controls to SEQIJR SARS 
model via the Pontryagin’s maximum principle. To this end, two control variables representing 
the quarantine and isolationstrategies are considered in the model. The simulation results 
demonstrated that the maximal applications of quarantine and isolation strategies in the early 
stage of the epidemic are of very critical impacts in both cases of optimal and sub-optimal 
control. 

Ahmed et al [22] in their paper, review and introduce some models for the COVID-19 that can 
address important questions about the global health care and suggest important notes. The y 
suggested three well known numerical technique forsolving such equations, which are Euler’s 
method, Runge-Kutta method of order two (RK2) and of order 4 (RK4). Results based on the 
suggested numerical techniques were provided, together with the approximate solutions which 
gives important key answers to the global issue. 

Yadav, [23], discussed the spread of COVID-19 epidemic of India and its end by using SIR model 
and the discussion about the spread was greatly detailed using Euler’s method. The result from 
the SIR model suggest that the Euler’smethod can be used to predict transmission and 
prevention of COVID-19 epidemic in India. 

III. Model formulation 

In this paper, we consider a deterministic compartmental model which divides the total human 
population size at time 𝑡𝑡 denoted by 𝑁𝑁(𝑡𝑡),  into susceptible individuals 𝑆𝑆(𝑡𝑡), exposed 
individuals 𝐸𝐸(𝑡𝑡), quarantined individuals 𝑄𝑄(𝑡𝑡), infected individuals 𝐼𝐼(𝑡𝑡), treated (isolated) 
individuals 𝑇𝑇(𝑡𝑡) and recovered individuals 𝑅𝑅(𝑡𝑡). Based on the clinical progression of the 
individuals and intervention measures of the infection, epidemiological status of the individuals 
and intervention measures are presented in figure 1 
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Figure 1: Schematic diagram of the model. 

The model is based on the following assumptions. The mixing between individuals are 
homogeneous. The population infected with active COVID–19 is generated from exposed, 
infected, quarantined and treated individuals. The recovered individuals are assumed to 
develop immunity to COVID–19 and all the compartments exit through natural death at a rate 
𝜇𝜇. For an individual to become infectious, he/she must pass through the latent stage. The force 
of infection associated with COVID–19 infection denoted by 𝜆𝜆 is given by    

𝜆𝜆 =
𝛽𝛽(𝐼𝐼 + 𝜂𝜂𝐸𝐸 + 𝜂𝜂1𝑄𝑄 + 𝜂𝜂2𝑇𝑇)

𝑁𝑁
                                                                        (1) 

Where 𝛽𝛽 is the effective contact rate for COVID-19 infection and the parameters 𝜂𝜂, 𝜂𝜂1, 𝜂𝜂2 are 
the modification factors for the exposed, quarantined and treated (isolated) individuals. He 
parameters 𝜂𝜂1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂2 are associated with hygiene consciousness of the quarantined and 
treated individuals. Susceptible individuals are recruited at the rate 𝜑𝜑. The acquire COVID-19 
infection through active contact at a rate 𝜆𝜆.  Exposed individuals are those that may have had 
contact with an infected person. Through contact tracing, the exposed individuals to the virus 
progresses to quarantine compartment for a period of fourteen (14) days (incubation period) at 
a rate 𝜌𝜌, and either move to treated (isolated) compartment at a rate 𝜎𝜎, for treatment or back 
to susceptible compartment at a rate 𝜋𝜋, depending on whether they are effectively infected 
(i.e., if they develop the symptoms) or not. The other proportion of the exposed individuals that 
are not traced (missed quarantine) move to infected compartment at a rate 𝜉𝜉. Interpersonal 
contact tracing is carried out on all persons undergoing treatment in order to pull out more 
infected individuals in the population. The infected individuals can be traced at a rate 𝛾𝛾 and 
isolated for treatment, while others present themselves for treatment at a rate 𝛾𝛾1. Also the 
treated individuals may recover at a rate 𝜓𝜓, while individuals in the infected compartment and 
those isolated for treatment may die due to COVID-19 infection at a rate 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎1 respectively. 
Proportion of the infected compartment who missed treatment may recover from the infection 
due to boost in immune system at a rate 𝜃𝜃. It is assumed that individuals that died because of 
COVID-19 are buried immediately to prevent further transmission. 
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Table 1: Variable Description 

Variables Description 

𝑆𝑆 Susceptible Compartment 

𝐸𝐸 Exposed Compartment 

𝑄𝑄 Quarantined Compartment 

𝐼𝐼 Infected Compartment 

𝑇𝑇 Treated (Isolated) Compartment 

𝑅𝑅 Recovered Compartment 

 

Table 2: Parameter Description    

Parameters Description 

𝜑𝜑 Recruitment rate into susceptible compartment. 

𝜇𝜇 Natural death rate. 

𝛽𝛽 Transmission rate 

𝜃𝜃 Recovery rate of infected individuals due to immune response. 

𝜓𝜓 Recovery rate of the treated individuals 

𝑎𝑎 Disease induced death rate of the infected individuals.  

𝑎𝑎1 Disease induced death rate of the treated individuals.  

𝜋𝜋 Progression rate from quarantined to susceptible compartment. 

𝜉𝜉 Progression rate of exposed individuals to infection compartment 

𝜌𝜌 Progression rate of the exposed individuals to the quarantined compartment 
through contact tracing. 

𝜎𝜎 The isolation rate of those that develop symptoms during quarantine period to 
treatment compartment. 

𝜆𝜆 Force of infection. 

𝛾𝛾 Progression rate of the infected individuals to the treatment compartment 
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through contact tracing. 

𝛾𝛾1 Progression rate of the infected individuals to treatment compartment through 
self submission.  

Putting the above formulations and assumptions together gives the following system of 
differential equations. 

𝑎𝑎𝑆𝑆(𝑡𝑡)
𝑎𝑎𝑡𝑡

= 𝜑𝜑 + 𝜋𝜋𝑄𝑄(𝑡𝑡) − 𝜇𝜇𝑆𝑆(𝑡𝑡) − 𝜆𝜆𝑆𝑆(𝑡𝑡)                                                                   

𝑎𝑎𝐸𝐸(𝑡𝑡)
𝑎𝑎𝑡𝑡

= 𝜆𝜆𝑆𝑆(𝑡𝑡) − (𝜇𝜇 + 𝜉𝜉 + 𝜌𝜌)𝐸𝐸(𝑡𝑡)                                                                          

𝑎𝑎𝑄𝑄(𝑡𝑡)
𝑎𝑎𝑡𝑡

= 𝜌𝜌𝐸𝐸(𝑡𝑡) − (𝜇𝜇 + 𝜎𝜎 + 𝜋𝜋)𝑄𝑄(𝑡𝑡)                                                                   (2)  

𝑎𝑎𝐼𝐼(𝑡𝑡)
𝑎𝑎𝑡𝑡

= 𝜉𝜉𝐸𝐸(𝑡𝑡) − (𝑎𝑎 + 𝜇𝜇 + 𝛾𝛾 + 𝛾𝛾1 + 𝜃𝜃)𝐼𝐼(𝑡𝑡)                                                            

𝑎𝑎𝑇𝑇(𝑡𝑡)
𝑎𝑎𝑡𝑡

= 𝜎𝜎𝑄𝑄(𝑡𝑡) + (𝛾𝛾 + 𝛾𝛾1)𝐼𝐼(𝑡𝑡) − (𝜓𝜓 + 𝜇𝜇 + 𝑎𝑎1)𝑇𝑇(𝑡𝑡)                                           

𝑎𝑎𝑅𝑅(𝑡𝑡)
𝑎𝑎𝑡𝑡

= 𝜓𝜓𝑇𝑇(𝑡𝑡) + 𝜃𝜃𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝑅𝑅(𝑡𝑡)                                                                               

where 

𝑆𝑆(0) = 𝑆𝑆0,𝐸𝐸(0) = 𝐸𝐸0,𝑄𝑄(0) = 𝑄𝑄0, 𝐼𝐼(0) = 𝐼𝐼0,𝑇𝑇(0) = 𝑇𝑇0,𝑅𝑅(0) = 𝑅𝑅0                                   (3) 

are the initial conditions, assumed to be positive. 

3.1           Positivity and Boundedness of Solutions 

For the COVID-19 transmission model system (2) to be epidemiologically meaningful, it is 
important to prove that all its state variables are non negative for all time. In other words, 
solutions of the model system (2) with non negative initial data remain positive for all time 
𝑡𝑡 > 0. 

The total human population can be determined by 

𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑇𝑇(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) 

By adding all the equations in system (2) gives the equation for 𝑁𝑁(𝑡𝑡), the total population. 

𝑁𝑁(𝑡𝑡) ≤ 𝜑𝜑 − 𝜇𝜇𝑁𝑁 − 𝑎𝑎𝐼𝐼 − 𝑎𝑎1𝑄𝑄                                                                               (4) 

Applying Barkhoff and Rota's [24] theorem having in mind that in the absence of COVID-19, 
𝑎𝑎 = 𝑎𝑎1 = 0, then we obtain  
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0 ≤ 𝑁𝑁 ≤
𝜑𝜑
𝜇𝜇

  𝑎𝑎𝑎𝑎 𝑡𝑡 ⟶ ∞ 

Theorem 1: The solution set Γ = �(𝑆𝑆,𝐸𝐸,𝑄𝑄, 𝐼𝐼,𝑇𝑇,𝑅𝑅) ∈ ℝ+
6 :𝑁𝑁 ≤ 𝜑𝜑

𝜇𝜇
� of the epidemiological model 

system (2) with non negative initial data (3) remain non negative for all time 𝑡𝑡 > 0. 

Proof: Given that the initial data 𝑆𝑆(0),𝐸𝐸(0),𝑄𝑄(0), 𝐼𝐼(0),𝑇𝑇(0),𝑅𝑅(0) are non negative, it is clear 
from the first subsystem of the model system (2) that is 

𝑎𝑎𝑆𝑆(𝑡𝑡)
𝑎𝑎𝑡𝑡

= 𝜑𝜑 + 𝜋𝜋𝑄𝑄(𝑡𝑡) − 𝜇𝜇𝑆𝑆(𝑡𝑡) − 𝜆𝜆𝑆𝑆(𝑡𝑡) 

≥ −(𝜆𝜆 + 𝜇𝜇)𝑆𝑆(𝑡𝑡)                                                                                                       (5) 

Solving (4) gives  

𝑆𝑆(𝑡𝑡) ≥ 𝑆𝑆(0) exp�−(𝜆𝜆 + 𝜇𝜇)� 𝑡𝑡 ≥ 0 

This implies that 𝑆𝑆(𝑡𝑡) > 0 ∀ 𝑡𝑡 > 0. Similarly, it can be proved that 𝐸𝐸,𝑄𝑄, 𝐼𝐼,𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅 are all non - 
negative, and this is done using the remaining sub-equations of system (2) and we have 

𝐸𝐸(𝑡𝑡) ≥ 𝐸𝐸(0) exp�−(𝜇𝜇 + 𝜉𝜉 + 𝜌𝜌)� 𝑡𝑡 ≥ 0            

𝑄𝑄(𝑡𝑡) ≥ 𝑄𝑄(0) exp�−(𝜇𝜇 + 𝜎𝜎 + 𝜋𝜋)� 𝑡𝑡 ≥ 0              

𝐼𝐼(𝑡𝑡) ≥ 𝐼𝐼(0) exp�−(𝑎𝑎 + 𝜇𝜇 + 𝛾𝛾 + 𝛾𝛾1 + 𝜃𝜃)� 𝑡𝑡 ≥ 0 

𝑇𝑇(𝑡𝑡) ≥ 𝑇𝑇(0) exp�−(𝜇𝜇 + 𝜓𝜓 + 𝑎𝑎1)� 𝑡𝑡 ≥ 0                

𝑅𝑅(𝑡𝑡) ≥ 𝑅𝑅(0) exp(−𝜇𝜇) 𝑡𝑡 ≥ 0                                           

This completes the proof. It is crucial to note that model system (2) will be analyzed in a 
feasible region Γ given by 

Γ = �(𝑆𝑆,𝐸𝐸,𝑄𝑄, 𝐼𝐼,𝑇𝑇,𝑅𝑅) ∈ ℝ+
6 : 𝑆𝑆 + 𝐸𝐸 + 𝑄𝑄 + 𝐼𝐼 + 𝑇𝑇 + 𝑅𝑅 ≤

𝜑𝜑
𝜇𝜇
�                          (6) 

which can easily be verified to be positively invariant with respect to model system (2). In what 
follows, model system (2) is epidemiologically and mathematically well posed in Γ [25]. 

Theorem 2: Assume that the initial condition of COVID-19 in model system (2) satisfies 
𝑁𝑁(0) ≤ 𝜑𝜑

𝜇𝜇
. Then, whenever the solution exists on an interval 𝑃𝑃, it satisfies the following 

boundedness 

𝑁𝑁(𝑡𝑡) ≤
𝜑𝜑
𝜇𝜇

 

Proof: Since 𝐼𝐼(𝑡𝑡) ≥ 0, we have from (4) that 
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𝑎𝑎𝑁𝑁(𝑡𝑡)
𝑎𝑎𝑡𝑡

< 𝜑𝜑 − 𝜇𝜇𝑁𝑁 

Using comparison theorem by Lakshmikantham et al, [26], Zhang [27], it can be shown that 

𝑁𝑁(𝑡𝑡) ≤ 𝑁𝑁(0)𝑒𝑒−𝜇𝜇𝑡𝑡 +
𝜑𝜑
𝜇𝜇

(1 − 𝑒𝑒−𝜇𝜇𝑡𝑡 )                                                                  (7) 

Whenever(0) ≤ 𝜑𝜑
𝜇𝜇

, we have 𝑁𝑁(𝑡𝑡) ≤ 𝜑𝜑
𝜇𝜇

. Consequently, 𝐼𝐼(𝑡𝑡) ≤ 𝜑𝜑
𝜇𝜇

. 

3.2            Asymptotic Stability of Disease Free Equilibrium (DFE) 

At steady state, each of the equations in system (2) are equal to zero. This implies that the 
disease free equilibrium of the COVID-19 model is given by 

𝐻𝐻𝑜𝑜 = [𝑆𝑆, 0, 0, 0, 0, 0] = �
𝜑𝜑
𝜇𝜇

, 0, 0, 0, 0, 0�                                                      (8) 

3.3               Basic Reproduction Number 

The objective of a disease elimination programme is to reduce the basic reproduction ratio 
below one. Here the effective reproduction number ℛ𝑒𝑒  is calculated using the next generation 
approach [28], [29]. It follows that 𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉 which stands for new infection and remaining 
transmission terms respectively are obtained. Then for 𝐹𝐹 we have 

𝐸𝐸 = 𝜆𝜆𝑆𝑆,𝑄𝑄 = 0, 𝐼𝐼 = 0,𝑇𝑇 = 0                                                                 (9) 

Then  

 

For 𝑉𝑉 we have  

𝐸𝐸 = (𝜇𝜇 + 𝜉𝜉 + 𝜌𝜌)𝐸𝐸 = 𝐴𝐴𝐸𝐸                                                                                     

𝑄𝑄 = −𝜌𝜌𝐸𝐸 + (𝜇𝜇 + 𝜎𝜎 + 𝜋𝜋)𝑄𝑄 = −𝜌𝜌𝐸𝐸 + 𝐵𝐵𝑄𝑄                                             (10)  

𝐼𝐼 − 𝜉𝜉𝐸𝐸 + (𝑎𝑎 + 𝜇𝜇 + 𝛾𝛾 + 𝛾𝛾1 + 𝜃𝜃)𝐼𝐼 = −𝜉𝜉𝐸𝐸 + 𝐶𝐶𝐼𝐼                                                

𝑇𝑇 = −𝜎𝜎𝑄𝑄 − (𝛾𝛾 + 𝛾𝛾1)𝐼𝐼 + (𝜇𝜇 + 𝜓𝜓 + 𝑎𝑎1)𝑇𝑇 = −𝜎𝜎𝑄𝑄 − 𝐷𝐷𝐼𝐼 + 𝐺𝐺𝑇𝑇                       

Where, 𝐴𝐴 = (𝜇𝜇 + 𝜉𝜉 + 𝜌𝜌),𝐵𝐵 = (𝜇𝜇 + 𝜎𝜎 + 𝜋𝜋),𝐶𝐶 = (𝑎𝑎 + 𝜇𝜇 + 𝛾𝛾 + 𝛾𝛾1 + 𝜃𝜃),𝐷𝐷 = (𝛾𝛾 + 𝛾𝛾1) 𝑎𝑎𝑎𝑎𝑎𝑎  

𝐺𝐺 = (𝜇𝜇 + 𝜓𝜓 + 𝑎𝑎1) 

Then 

F
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:=

ηη
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And   

 

 

 

 

 

 

Since the basic reproduction ratio is the dominant eigenvalue of the next generation matrix of 

𝐹𝐹𝑉𝑉−1 and having that 𝑆𝑆
𝑁𝑁

= 1, we obtain 

ℛ𝑒𝑒 = 𝛽𝛽 �
𝜂𝜂𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜉𝜉𝐵𝐵𝐺𝐺 + 𝜌𝜌𝜂𝜂1𝐶𝐶𝐺𝐺 + (𝜉𝜉𝐵𝐵𝐷𝐷 + 𝜌𝜌𝜎𝜎𝐶𝐶)𝜂𝜂2

𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺
�                                               (11) 

The model was quantitatively analyzed for the stability of the disease free equilibrium using 
[28] theorem, which shows that the disease free equilibrium of COVID-19 model system (2) is 
locally asymptotically stable if ℛ𝑒𝑒  is less than unity and unstable if ℛ𝑒𝑒  is greater than unity. 

3.4             Existence of COVID-19 Endemic Equilibrium State 

Let 𝐻𝐻1
∗ = [𝑆𝑆∗,𝐸𝐸∗,𝑄𝑄∗, 𝐼𝐼∗,𝑇𝑇∗,𝑅𝑅∗] be any arbitrary equilibrium state of the model system (2) 

where the disease cannot be totally eradicated but remains in the population. Note that he 
force of infection is denoted by 

𝜆𝜆 =
𝛽𝛽(𝐼𝐼 + 𝜂𝜂𝐸𝐸 + 𝜂𝜂1𝑄𝑄 + 𝜂𝜂2𝑇𝑇)

𝑁𝑁
 

If we solve system (2) simultaneously, by equating the sub-equations to zero we obtain 

𝑆𝑆∗ =
𝜑𝜑 + 𝜋𝜋𝑄𝑄∗

𝜇𝜇 + 𝜆𝜆
,𝐸𝐸∗ =

𝑆𝑆∗𝜆𝜆
𝐴𝐴

,𝑄𝑄∗ =
𝜌𝜌𝐸𝐸∗

𝐵𝐵
, 𝐼𝐼∗ =

𝜉𝜉𝐸𝐸∗

𝐶𝐶
,𝑇𝑇∗ =

𝜎𝜎𝑄𝑄∗ + (𝛾𝛾 + 𝛾𝛾1)𝐼𝐼∗

𝐺𝐺
,𝑅𝑅∗ =

𝜓𝜓𝑇𝑇∗ + 𝜃𝜃𝐼𝐼∗

𝜇𝜇
 

 

 

 

V

A

ρ−

ξ−

0

0

B

0

σ−

0

0

C

D−

0

0

0

G











:=
ρ

V 1−

1
A

ρ

A B⋅

ξ

A C⋅

B D⋅ ξ⋅ C ρ⋅ σ⋅+

A B⋅ C⋅ G⋅

0

1
B

0

σ

B G⋅

0

0

1
C

D
C G⋅

0

0

0

1
G





















→

F V 1−
⋅

η Sβ⋅

A N⋅
ξ Sβ⋅

A C⋅ N⋅
+

ρ Sβ⋅ η1⋅

A B⋅ N⋅
+

Sβ B D⋅ ξ⋅ C ρ⋅ σ⋅+( )⋅ η2⋅

A B⋅ C⋅ G⋅ N⋅
+

0

0

0

Sβ η1⋅

B N⋅

σ Sβ⋅ η2⋅

B G⋅ N⋅
+

0

0

0

Sβ
C N⋅

D Sβ⋅ η2⋅

C G⋅ N⋅
+

0

0

0

Sβ η2⋅

G N⋅

0

0

0

















→
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Which we further solved to get 

𝑆𝑆∗ =
𝜑𝜑𝐴𝐴𝐵𝐵

𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵
 

𝐸𝐸∗ =
𝜆𝜆𝜑𝜑𝐵𝐵

𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵
 

𝑄𝑄∗ =
𝜆𝜆𝜑𝜑𝜌𝜌

𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵
 

𝐼𝐼∗ =
𝜆𝜆𝜉𝜉𝜑𝜑𝐵𝐵

𝐶𝐶[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]
 

𝑇𝑇∗ =
𝜆𝜆𝜑𝜑[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]

𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]
 

𝑅𝑅∗ =
𝜑𝜑𝜓𝜓𝜆𝜆[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷] + 𝜃𝜃𝜉𝜉𝜑𝜑𝜆𝜆𝐵𝐵𝐺𝐺
𝜇𝜇𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]

 

From equation (1), we have 

𝜆𝜆 =
𝛽𝛽(𝐼𝐼∗ + 𝜂𝜂𝐸𝐸∗ + 𝜂𝜂1𝑄𝑄∗ + 𝜂𝜂2𝑇𝑇∗)

𝑁𝑁∗                                                                      (12) 

Substituting 𝑆𝑆∗,𝐸𝐸∗,𝑄𝑄∗, 𝐼𝐼∗,𝑇𝑇∗,𝑅𝑅∗ in (12) where  

𝑁𝑁∗ = 𝑆𝑆∗ + 𝐸𝐸∗ + 𝑄𝑄∗ + 𝐼𝐼∗ + 𝑇𝑇∗ + 𝑅𝑅∗                                                                    (13) 

The, we obtain 

𝑁𝑁∗ =
𝜑𝜑𝐴𝐴𝐵𝐵 + 𝜆𝜆𝜑𝜑𝐵𝐵 + 𝜆𝜆𝜑𝜑𝜌𝜌
𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵

+
𝜆𝜆𝜉𝜉𝜑𝜑𝐵𝐵𝐶𝐶 + 𝜆𝜆𝜑𝜑[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]
𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]

+
𝜑𝜑𝜓𝜓𝜆𝜆[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷] + 𝜃𝜃𝜉𝜉𝜑𝜑𝜆𝜆𝐵𝐵𝐺𝐺
𝜇𝜇𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]

 

𝑁𝑁∗ =
𝜑𝜑𝜆𝜆[𝜇𝜇𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜌𝜌𝜇𝜇𝐶𝐶𝐺𝐺 + 𝜇𝜇𝜉𝜉𝐵𝐵𝐺𝐺 + [𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷][𝜇𝜇 + 𝜓𝜓] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺] + 𝜇𝜇𝜑𝜑𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺

𝜇𝜇𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]
                (14) 

and  

𝛽𝛽(𝐼𝐼∗ + 𝜂𝜂𝐸𝐸∗ + 𝜂𝜂1𝑄𝑄∗ + 𝜂𝜂2𝑇𝑇∗) 

= 𝛽𝛽 �
𝜆𝜆𝜉𝜉𝜑𝜑𝐵𝐵

𝐶𝐶[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]
+

𝜆𝜆𝜂𝜂𝜑𝜑𝐵𝐵 + 𝜆𝜆𝜂𝜂1𝜑𝜑𝜌𝜌
𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵

+
𝜆𝜆𝜂𝜂2𝜑𝜑[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]

𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]
� 

=
𝜆𝜆𝛽𝛽𝜑𝜑[𝜉𝜉𝐺𝐺𝐵𝐵 + 𝜂𝜂𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜂𝜂1𝜌𝜌𝐶𝐶𝐺𝐺 + 𝜂𝜂2[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]]

𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝜇𝜇𝐴𝐴𝐵𝐵]
                                                                       (15) 

Substituting (14) and (15) into (12) gives 
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𝜆𝜆 =

𝜆𝜆𝛽𝛽𝜑𝜑 [𝜉𝜉𝐺𝐺𝐵𝐵+𝜂𝜂𝐵𝐵𝐶𝐶𝐺𝐺+𝜂𝜂1𝜌𝜌𝐶𝐶𝐺𝐺+𝜂𝜂2[𝜎𝜎𝜌𝜌𝐶𝐶+𝜉𝜉𝐵𝐵𝐷𝐷 ]]
𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )+𝜇𝜇𝐴𝐴𝐵𝐵 ]

𝜑𝜑𝜆𝜆 [𝜇𝜇𝐵𝐵𝐶𝐶𝐺𝐺+𝜌𝜌𝜇𝜇𝐶𝐶𝐺𝐺 +𝜇𝜇𝜉𝜉𝐵𝐵𝐺𝐺 +[𝜎𝜎𝜌𝜌𝐶𝐶+𝜉𝜉𝐵𝐵𝐷𝐷 ][𝜇𝜇+𝜓𝜓]+𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺 ]+𝜇𝜇𝜑𝜑𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺
𝜇𝜇𝐶𝐶𝐺𝐺[𝜆𝜆(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )+𝜇𝜇𝐴𝐴𝐵𝐵 ]

 

1 =
𝜇𝜇𝛽𝛽𝜑𝜑�𝜉𝜉𝐺𝐺𝐵𝐵 + 𝜂𝜂𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜂𝜂1𝜌𝜌𝐶𝐶𝐺𝐺 + 𝜂𝜂2[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]�

𝜆𝜆𝜑𝜑[𝜇𝜇𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜌𝜌𝜇𝜇𝐶𝐶𝐺𝐺 + 𝜇𝜇𝜉𝜉𝐵𝐵𝐺𝐺 + [𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷][𝜇𝜇 + 𝜓𝜓] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺] + 𝜇𝜇𝜑𝜑𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺
 

𝜆𝜆𝜑𝜑[𝜇𝜇𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜌𝜌𝜇𝜇𝐶𝐶𝐺𝐺 + 𝜇𝜇𝜉𝜉𝐵𝐵𝐺𝐺 + [𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷][𝜇𝜇 + 𝜓𝜓] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺] + 𝜇𝜇𝜑𝜑𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺
= 𝜇𝜇𝜑𝜑𝛽𝛽�𝜉𝜉𝐺𝐺𝐵𝐵 + 𝜂𝜂𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜂𝜂1𝜌𝜌𝐶𝐶𝐺𝐺 + 𝜂𝜂2[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]� 

𝜆𝜆𝜑𝜑[𝜇𝜇𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜌𝜌𝜇𝜇𝐶𝐶𝐺𝐺 + 𝜇𝜇𝜉𝜉𝐵𝐵𝐺𝐺 + [𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷][𝜇𝜇 + 𝜓𝜓] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺]

+ 𝜇𝜇𝜑𝜑 �𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 − 𝛽𝛽�𝜉𝜉𝐺𝐺𝐵𝐵 + 𝜂𝜂𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜂𝜂1𝜌𝜌𝐶𝐶𝐺𝐺 + 𝜂𝜂2[𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]�� = 0 

𝜆𝜆[𝜇𝜇𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜌𝜌𝜇𝜇𝐶𝐶𝐺𝐺 + 𝜇𝜇𝜉𝜉𝐵𝐵𝐺𝐺 + [𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷][𝜇𝜇 + 𝜓𝜓] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺] + 𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺[1 − ℛ𝑒𝑒] = 0 

Therefore, 𝜆𝜆 is a positive solution of the following equation 

𝑏𝑏1𝜆𝜆 + 𝑏𝑏0 = 0                                                                                       (16) 

Where 

𝑏𝑏1 = 𝜇𝜇𝐵𝐵𝐶𝐶𝐺𝐺 + 𝜌𝜌𝜇𝜇𝐶𝐶𝐺𝐺 + 𝜇𝜇𝜉𝜉𝐵𝐵𝐺𝐺 + [𝜎𝜎𝜌𝜌𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷][𝜇𝜇 + 𝜓𝜓] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺 

𝑏𝑏0 = 𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺[1 − ℛ𝑒𝑒] 

It is worth noting that 𝑏𝑏1 is positive and 𝑏𝑏0 will be positive if and only if ℛ𝑒𝑒  is less than unity and 
negative if ℛ𝑒𝑒  is greater than unity. Therefore, if 𝑏𝑏0 is positive, no endemic equilibrium state 
exists and if 𝑏𝑏0 > 0, then a forward bifurcation occurs since 𝑏𝑏1 > 0. This implies that an 
endemic equilibrium state only exists If and only if 𝑏𝑏0 < 0. This is given by 

𝜆𝜆 =
−𝑏𝑏0

𝑏𝑏1
⟹ 𝜆𝜆 =

𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺[ℛ𝑒𝑒 − 1]
𝑏𝑏1

 

Then substituting for 𝜆𝜆 in 𝑆𝑆∗,𝐸𝐸∗,𝑄𝑄∗, 𝐼𝐼∗,𝑇𝑇∗,𝑅𝑅∗ we get 

𝑆𝑆∗ =
𝜑𝜑𝐴𝐴𝐵𝐵

𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )
𝑏𝑏1

+ 𝜇𝜇𝐴𝐴𝐵𝐵
=

𝜑𝜑𝑏𝑏1

𝜇𝜇[𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝑏𝑏1] 

𝐸𝐸∗ =

𝜑𝜑𝜇𝜇𝐴𝐴 𝐵𝐵2𝐶𝐶𝐺𝐺(ℛ𝑒𝑒−1)
𝑏𝑏1

𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )
𝑏𝑏1

+ 𝜇𝜇𝐴𝐴𝐵𝐵
=

𝜑𝜑𝐵𝐵𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)
𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝑏𝑏1

 

𝑄𝑄∗ =

𝜑𝜑𝜌𝜌𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)
𝑏𝑏1

𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )
𝑏𝑏1

+ 𝜇𝜇𝐴𝐴𝐵𝐵
=

𝜑𝜑𝜌𝜌𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)
𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝑏𝑏1

 

GSJ: Volume 9, Issue 2, February 2021 
ISSN 2320-9186 1508

GSJ© 2021 
www.globalscientificjournal.com



𝐼𝐼∗ =

𝜑𝜑𝜉𝜉𝜇𝜇𝐴𝐴 𝐵𝐵2𝐶𝐶𝐺𝐺(ℛ𝑒𝑒−1)
𝑏𝑏1

𝐶𝐶 �𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )
𝑏𝑏1

+ 𝜇𝜇𝐴𝐴𝐵𝐵�
=

𝜑𝜑𝜉𝜉𝐵𝐵𝐺𝐺(ℛ𝑒𝑒 − 1)
𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝑏𝑏1

 

𝑇𝑇∗ =

𝜑𝜑𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)
𝑏𝑏1

[𝜌𝜌𝜎𝜎𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]

𝐶𝐶𝐺𝐺 �𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )
𝑏𝑏1

+ 𝜇𝜇𝐴𝐴𝐵𝐵�
=

𝜑𝜑(ℛ𝑒𝑒 − 1)[𝜌𝜌𝜎𝜎𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷]
𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝑏𝑏1

 

𝑅𝑅∗ =

𝜑𝜑𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)
𝑏𝑏1

[𝜓𝜓[𝜌𝜌𝜎𝜎𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺]

𝜇𝜇𝐶𝐶𝐺𝐺 �𝜇𝜇𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺 (ℛ𝑒𝑒−1)(𝐴𝐴𝐵𝐵−𝜌𝜌𝜋𝜋 )
𝑏𝑏1

+ 𝜇𝜇𝐴𝐴𝐵𝐵�
=
𝜑𝜑(ℛ𝑒𝑒 − 1)[𝜓𝜓[𝜌𝜌𝜎𝜎𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷] + 𝜃𝜃𝜉𝜉𝐵𝐵𝐺𝐺]
𝜇𝜇[𝐶𝐶𝐺𝐺(ℛ𝑒𝑒 − 1)(𝐴𝐴𝐵𝐵 − 𝜌𝜌𝜋𝜋) + 𝑏𝑏1]  

This leads to the following theorem. 

Theorem 3: The model system (2) has a unique endemic equilibrium (EE) state whenever  
ℛ𝑒𝑒 > 1. 

3.5           Sensitivity Analysis of the Model Parameters 

We conducted the sensitivity analysis of the model parameters to know the relative 
contribution of different model parameter that is responsible for the transmission and control 
of the disease. This helps to the parameters that have the highest impact in reducing the 
effective reproduction number. 

The normalized forward sensitivity index method of ℛ𝑒𝑒 , is used to investigate the relative 
change in ℛ𝑒𝑒 , to relative change in the model parameter 𝑔𝑔. This is also defined using partial 
derivatives if ℛ𝑒𝑒  is a differentiable function of the model parameter 𝑔𝑔,as is defined in [30], [30]. 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝑔𝑔
.
𝑔𝑔
ℛ𝑒𝑒

                                                                                                     (17) 

Where 𝑍𝑍𝑔𝑔
ℛ𝑒𝑒  is the sensitivity index of 𝑍𝑍𝑔𝑔

ℛ𝑒𝑒  from a parameter, 𝑔𝑔. 

Table 3: The Parameter values for COVID- 19 infection used to calculate 𝓡𝓡𝒆𝒆. 

Parameters Description Value  Reference 
𝜑𝜑 Recruitment rate into Susceptible class 11.0811 Estimated 
𝜇𝜇 Natural death rate 1𝐸𝐸 − 6 [32] 
𝛽𝛽 Transmission rate 0.2 [19] 
𝜃𝜃 Recovery rate of infected individuals due to 

immune response 
0.33029 [19] 

𝜓𝜓 Recovery rate of treated individuals 0.11624 [19] 
𝑎𝑎 Death induced rate of infected individuals  0.0079 [19] 
𝑎𝑎1 Rate of disease induced death on treated 

individuals 
0.0068 [33] 

𝜋𝜋 Progress from Quarantine to Susceptible class 1/14 [34], [35] 
𝜉𝜉 Progress from Exposed to Infected class 1/7 [14] 
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𝜌𝜌 Progress from Exposed to Quarantined class 1.8887E-7 [19] 
𝜎𝜎 Progress from Quarantine to Treated class 0.1259 [19] 
𝛾𝛾 Progress from Infected to Treated class (contact 

Tracing) 
0.13266 [19] 

𝛾𝛾1 Progress from Infected to Treated (self 
submission) 

0.001 Assumed 

𝜂𝜂 Modification factor for the Exposed 0.3 [21] 
𝜂𝜂1 Modification factor for the Quarantined 0 [21] 
𝜂𝜂2 Modification factor for the Treated (Isolated) 0.1 [21] 

 

The sensitivity index of ℛ𝑒𝑒  with respect to each parameter of ℛ𝑒𝑒  using the parameter values in 
table 3 is given in table 4. For example the sensitivity index for 𝛽𝛽 is given by 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝛽𝛽
.
𝛽𝛽
ℛ𝑒𝑒

= +1. 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜇𝜇
.
𝜇𝜇
ℛ𝑒𝑒

 

= −�
𝜂𝜂
𝐴𝐴2 +

𝜉𝜉(𝐴𝐴 + 𝐶𝐶)
(𝐴𝐴𝐶𝐶)2 +

𝜌𝜌𝜂𝜂1(𝐴𝐴 + 𝐵𝐵)
(𝐴𝐴𝐵𝐵)2 +

𝜉𝜉𝜂𝜂2𝐷𝐷(𝐴𝐴𝐶𝐶 + 𝐴𝐴𝐺𝐺 + 𝐶𝐶𝐺𝐺)
(𝐴𝐴𝐶𝐶𝐺𝐺)2 +

𝜌𝜌𝜎𝜎𝜂𝜂2(𝐴𝐴𝐵𝐵 + 𝐴𝐴𝐺𝐺 + 𝐵𝐵𝐺𝐺)
(𝐴𝐴𝐵𝐵𝐺𝐺)2 � ×

𝜇𝜇
ℛ𝑒𝑒

= −9.22744 × 𝐸𝐸−5 

 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜂𝜂
.
𝜂𝜂
ℛ𝑒𝑒

=
1
𝐴𝐴

×
𝜂𝜂
ℛ𝑒𝑒

= 2.36216 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜂𝜂1
.
𝜂𝜂1

ℛ𝑒𝑒
=

𝜌𝜌
𝐴𝐴𝐵𝐵

×
𝜂𝜂1

ℛ𝑒𝑒
= 0 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜂𝜂2
.
𝜂𝜂2

ℛ𝑒𝑒
=
𝜌𝜌𝜎𝜎𝐶𝐶 + 𝜉𝜉𝐵𝐵𝐷𝐷
𝐴𝐴𝐵𝐵𝐶𝐶𝐺𝐺

×
𝜂𝜂2

ℛ𝑒𝑒
= 0.25896 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜉𝜉
.
𝜉𝜉
ℛ𝑒𝑒

= �−
𝜂𝜂
𝐴𝐴2 +

𝜇𝜇 + 𝜌𝜌
𝐴𝐴2𝐶𝐶

−
𝜌𝜌𝜂𝜂1

𝐴𝐴2𝐵𝐵
+
𝜂𝜂2𝐷𝐷(𝜇𝜇 + 𝜌𝜌)

𝐴𝐴2𝐶𝐶𝐺𝐺
−
𝜂𝜂2𝜌𝜌𝜎𝜎
𝐴𝐴2𝐵𝐵𝐺𝐺

� ×
𝜉𝜉
ℛ𝑒𝑒

= −2.36214 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜎𝜎
.
𝜎𝜎
ℛ𝑒𝑒

= �−
𝜌𝜌𝜂𝜂1

𝐴𝐴𝐵𝐵2 +
𝜂𝜂2𝜌𝜌(𝜇𝜇 + 𝜋𝜋)
𝐴𝐴𝐵𝐵2𝐺𝐺

� ×
𝜎𝜎
ℛ𝑒𝑒

= 2.79137𝐸𝐸−7 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜋𝜋
.
𝜋𝜋
ℛ𝑒𝑒

= �−
𝜌𝜌𝜂𝜂1

𝐴𝐴𝐵𝐵2 −
𝜂𝜂2𝜌𝜌𝜎𝜎
𝐴𝐴𝐵𝐵2𝐺𝐺

� ×
𝜋𝜋
ℛ𝑒𝑒

= −2.79134𝐸𝐸−7 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜌𝜌
.
𝜌𝜌
ℛ𝑒𝑒

= �−
𝜂𝜂
𝐴𝐴2 −

𝜉𝜉
𝐴𝐴2𝐶𝐶

+
𝜂𝜂1(𝜇𝜇 + 𝜉𝜉)
𝐴𝐴2𝐵𝐵

−
𝜂𝜂2𝜉𝜉𝐷𝐷
𝐴𝐴2𝐶𝐶𝐺𝐺

−
𝜂𝜂2𝜎𝜎(𝜇𝜇 + 𝜉𝜉)
𝐴𝐴2𝐵𝐵𝐺𝐺

� ×
𝜌𝜌
ℛ𝑒𝑒

= −4.547𝐸𝐸−6 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝛾𝛾
.
𝛾𝛾
ℛ𝑒𝑒

= �−
𝜉𝜉
𝐴𝐴𝐶𝐶2 +

𝜂𝜂2𝜉𝜉(𝑎𝑎 + 𝜇𝜇)
𝐴𝐴𝐶𝐶2𝐺𝐺

� ×
𝛾𝛾
ℛ𝑒𝑒

= −0.66587 
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𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝛾𝛾1
.
𝛾𝛾1

ℛ𝑒𝑒
= �−

𝜉𝜉
𝐴𝐴𝐶𝐶2 +

𝜂𝜂2𝜉𝜉(𝑎𝑎 + 𝜇𝜇)
𝐴𝐴𝐶𝐶2𝐺𝐺

�×
𝛾𝛾1

ℛ𝑒𝑒
= −5.01935𝐸𝐸−3 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜓𝜓
.
𝜓𝜓
ℛ𝑒𝑒

= �−
𝜂𝜂2𝜉𝜉𝐷𝐷
𝐴𝐴𝐶𝐶𝐺𝐺2 −

𝜂𝜂2𝜌𝜌𝜎𝜎
𝐴𝐴𝐵𝐵𝐺𝐺2� ×

𝜓𝜓
ℛ𝑒𝑒

= −0.24466 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝜃𝜃
.
𝜃𝜃
ℛ𝑒𝑒

= �−
𝜉𝜉
𝐴𝐴𝐶𝐶2 −

𝜂𝜂2𝜉𝜉𝐷𝐷
𝐴𝐴𝐶𝐶2𝐺𝐺

� ×
𝜃𝜃
ℛ𝑒𝑒

= −1.66856 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝑎𝑎
.
𝑎𝑎
ℛ𝑒𝑒

= �−
𝜉𝜉
𝐴𝐴𝐶𝐶2 +

𝜂𝜂2𝜉𝜉𝐷𝐷
𝐴𝐴𝐶𝐶2𝐺𝐺

� ×
𝑎𝑎
ℛ𝑒𝑒

= −0.03991 

𝑍𝑍𝑔𝑔
ℛ𝑒𝑒 =

𝜕𝜕ℛ𝑒𝑒

𝜕𝜕𝑎𝑎1
.
𝑎𝑎1

ℛ𝑒𝑒
= �−

𝜂𝜂2𝜉𝜉𝐷𝐷
𝐴𝐴𝐶𝐶𝐺𝐺2 −

𝜂𝜂2𝜌𝜌𝜎𝜎
𝐴𝐴𝐵𝐵𝐺𝐺2� ×

𝑎𝑎1

ℛ𝑒𝑒
= −0.014312 

Table 4: The effect of the parameters on  𝓡𝓡𝒆𝒆. 

Parameters Value Effect on ℛ𝑒𝑒  
𝜇𝜇 1𝐸𝐸 − 6 −9.22744𝐸𝐸−5 
𝛽𝛽 0.2 1 
𝜃𝜃 0.33029 −1.66856 
𝜓𝜓 0.11624 −0.24466 
𝑎𝑎 0.0079 −0.03991 
𝑎𝑎1 0.0068 −0.014312 
𝜋𝜋 1/14 −2.79134𝐸𝐸−7 
𝜉𝜉 1/7 −2.36214 
𝜌𝜌 1.8887E-7 −4.547𝐸𝐸−6 
𝜎𝜎 0.1259 2.79137𝐸𝐸−7 
𝛾𝛾 0.13266 −0.66587 
𝛾𝛾1 0.001 −5.01935𝐸𝐸−3 
𝜂𝜂 0.3 2.36216 
𝜂𝜂1 0 0 
𝜂𝜂2 0.1 0.25896 

 

The sensitivity indices 𝑍𝑍(𝜂𝜂),𝑍𝑍(𝜂𝜂2),𝑍𝑍(𝛽𝛽),𝑍𝑍(𝜎𝜎) are positive and this shows that the value of ℛ𝑒𝑒  
increases as the value of 𝜂𝜂, 𝜂𝜂2,𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎 increases. The remaining indices 
𝑍𝑍(𝜃𝜃),𝑍𝑍(𝑎𝑎1),𝑍𝑍(𝛾𝛾1),𝑍𝑍(𝜉𝜉),𝑍𝑍(𝛾𝛾),𝑍𝑍(𝑎𝑎) 𝑍𝑍(𝜋𝜋),𝑍𝑍(𝜓𝜓),𝑍𝑍(𝜇𝜇)𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍(𝜌𝜌) are negative, indicating that the 
value ℛ𝑒𝑒  decreases as 𝜃𝜃,𝑎𝑎1, 𝛾𝛾1, 𝜉𝜉, 𝛾𝛾,𝑎𝑎,𝜋𝜋,𝜓𝜓, 𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌 increases. Actually, the effectiveness of 
control may be measured by its effect on ℛ𝑒𝑒 . Once the 
parameters 𝜃𝜃,𝑎𝑎1, 𝛾𝛾1, 𝜉𝜉, 𝛾𝛾,𝑎𝑎,𝜋𝜋,𝜓𝜓, 𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌 will reduce ℛ𝑒𝑒  < 1, then it is curative if the reduction 
can be maintained. This implies that these parameters can help in reducing the rate of COVID – 
19 infection over time and if it is maintained, the transmission of the disease may decrease, 
causing the cases in the population to go below an endemicity threshold. 
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IV. Optimal Control Analysis 

Optimal control theory is a branch of mathematical optimization that deals with finding a 
control for a dynamic system over a period of time such that an objective, function is optimized 
[36]. It is an extension of calculus of variations, and is used for deriving cotrol policy [37].  The 
optimal control can be derived using Pontryagin’s maximum principle (a necessary condition 
known as Pontryagin’s minimum principle or simply Pontryagin’s principle) or by solving the 
Hamilton – Jacobi – Bellman equation (a sufficient condition). 

We are interested in minimizing the cost function 

𝑀𝑀(𝑣𝑣1, 𝑣𝑣2) = � �𝐴𝐴1𝐸𝐸(𝑡𝑡) + 𝐴𝐴2𝑄𝑄(𝑡𝑡) + 𝐴𝐴3𝐼𝐼(𝑡𝑡) + 𝐴𝐴4𝑇𝑇(𝑡𝑡) +
1
2
𝐶𝐶1𝑣𝑣1

2
𝑡𝑡𝑓𝑓

0

+
1
2
𝐶𝐶2𝑣𝑣2

2� 𝑎𝑎𝑡𝑡                          (18) 

subject to the system of differential equations (2), where 𝑡𝑡𝑓𝑓  is the final time. This performance 
specification involves the number of individuals of exposed, quarantined, infected or treated 
(isolated), respectively as well as the cost for applying quarantine control𝑣𝑣1 and treatment 
(isolation) control 𝑣𝑣2. The total cost includes not only the consumption for every individual but 
also the cost of organization, management, and co-operation etc. Base on the literature for 
optimal control of epidemics, the cost of controls is assumed to be non linear and quadratic 
[38],[39],[40],[41][42]. The coefficients, 𝐴𝐴3,𝐴𝐴4,𝐶𝐶1, and 𝐶𝐶2 are balancing cost factor due to 
scales and importance of the six parts of the objective function.  

Our aim is to find an optimal control pair, 𝑣𝑣1
∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣2

∗ such that  

𝑀𝑀(𝑣𝑣1
∗, 𝑣𝑣2

∗) = min
𝜙𝜙

𝐽𝐽(𝑣𝑣1, 𝑣𝑣2)                                                                                                (19) 

where the control effects 𝑣𝑣1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣2 are assumed to be bounded and Lebesgue measurable 
time-dependent functions on the interval �0, 𝑡𝑡𝑓𝑓�. 

Therefore,  

𝜙𝜙 = �(𝑣𝑣1, 𝑣𝑣2) ⎸0 ≤ 𝑣𝑣1 ≤ 1, 0 ≤ 𝑣𝑣2 ≤ 1, 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓� 

Applying Pontryagin’s maximum principle [43] which provides the necessary conditions for an 
optimal control problem. This converts the COVID-19 model system (2) with equations (18) and 
(19) intoa problem of minimizing a Hamiltonian, H, pointwisely with respect to 𝑣𝑣1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣2: 

𝐻𝐻 = 𝐴𝐴1𝐸𝐸(𝑡𝑡) + 𝐴𝐴2𝑄𝑄(𝑡𝑡) + 𝐴𝐴3𝐼𝐼(𝑡𝑡) + 𝐴𝐴4𝑇𝑇(𝑡𝑡) +
1
2
𝐶𝐶1𝑣𝑣1

2(𝑡𝑡) +
1
2
𝐶𝐶2𝑣𝑣2

2(𝑡𝑡) + �𝜆𝜆𝑖𝑖𝑓𝑓𝑖𝑖

6

𝑖𝑖=1

               (20) 

Where 𝑓𝑓𝑖𝑖  is the right hand side of the differential equation of 𝑖𝑖𝑡𝑡ℎ state variables by applying 
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𝐻𝐻 = 𝐴𝐴1𝐸𝐸(𝑡𝑡) + 𝐴𝐴2𝑄𝑄(𝑡𝑡) + 𝐴𝐴3𝐼𝐼(𝑡𝑡) + 𝐴𝐴4𝑇𝑇(𝑡𝑡) +
1
2
𝐶𝐶1𝑣𝑣1

2(𝑡𝑡) +
1
2
𝐶𝐶2𝑣𝑣2

2(𝑡𝑡) + 𝜆𝜆1(𝜑𝜑 + 𝜋𝜋𝑄𝑄 − 𝜇𝜇𝑆𝑆 − 𝜆𝜆𝑆𝑆)

+ 𝜆𝜆2(𝜆𝜆𝑆𝑆 − (𝜇𝜇 + 𝜉𝜉 + 𝜌𝜌)𝐸𝐸) + 𝜆𝜆3(𝜌𝜌𝐸𝐸 − (𝜇𝜇 + 𝜎𝜎 + 𝜋𝜋)𝑄𝑄)
+ 𝜆𝜆4(𝜉𝜉𝐸𝐸 − (𝑎𝑎 + 𝜇𝜇 + 𝛾𝛾 + 𝛾𝛾1)𝐼𝐼)   + 𝜆𝜆5(𝜎𝜎𝑄𝑄 + (𝛾𝛾 + 𝛾𝛾1)𝐼𝐼 − (𝜓𝜓 + 𝜇𝜇 + 𝑎𝑎1)𝑇𝑇)
+ 𝜆𝜆6(𝜓𝜓𝑇𝑇 + 𝜃𝜃𝐼𝐼 − 𝜇𝜇𝑅𝑅)                                      (21) 

Applying pontryagin’s maximum principle together with the existence result for control pairs 
from (19), we have the following proposition. 

Proposition1: Given an optimal control pair (𝑣𝑣1
∗, 𝑣𝑣2

∗) and corresponding solution 
𝑆𝑆∗,𝐸𝐸∗,𝑄𝑄∗, 𝐼𝐼∗,𝑇𝑇∗,𝑅𝑅∗ that maximizes 𝑀𝑀(𝑣𝑣1, 𝑣𝑣2) over 𝜙𝜙. Then there exist adjoint variables 
𝜆𝜆1(𝑡𝑡), 𝜆𝜆2(𝑡𝑡), 𝜆𝜆3(𝑡𝑡), 𝜆𝜆4(𝑡𝑡), 𝜆𝜆5(𝑡𝑡), 𝜆𝜆6(𝑡𝑡) satisfying. 

𝑎𝑎𝜆𝜆1

𝑎𝑎𝑡𝑡
=
𝛽𝛽(𝐼𝐼∗ + 𝜂𝜂𝐸𝐸∗ + 𝜂𝜂1𝑄𝑄∗ + 𝜂𝜂2𝑇𝑇∗)

𝑁𝑁
(𝜆𝜆1 − 𝜆𝜆2) + 𝜇𝜇𝜆𝜆1                                                                        

𝑎𝑎𝜆𝜆2

𝑎𝑎𝑡𝑡
= −𝐴𝐴1 +

𝜂𝜂𝛽𝛽𝑆𝑆∗

𝑁𝑁
(𝜆𝜆2 − 𝜆𝜆1) + 𝜆𝜆2�𝜇𝜇 + 𝜉𝜉 + 𝜌𝜌𝑣𝑣1

∗(𝑡𝑡)� − 𝜆𝜆3𝜌𝜌𝑣𝑣1
∗(𝑡𝑡) − 𝜆𝜆4𝜉𝜉                                       

𝑎𝑎𝜆𝜆3

𝑎𝑎𝑡𝑡
= −𝐴𝐴2 +

𝜂𝜂1𝛽𝛽𝑆𝑆∗

𝑁𝑁
(𝜆𝜆2 − 𝜆𝜆1) + 𝜇𝜇𝜆𝜆3 + 𝜎𝜎(𝜆𝜆3 − 𝜆𝜆5) + 𝜋𝜋(𝜆𝜆3 − 𝜆𝜆1)                                        (21) 

𝑎𝑎𝜆𝜆4

𝑎𝑎𝑡𝑡
= −𝐴𝐴3 +

𝛽𝛽𝑆𝑆∗

𝑁𝑁
(𝜆𝜆1 − 𝜆𝜆2) + 𝜆𝜆4(𝜇𝜇 + 𝑎𝑎) + (𝛾𝛾𝑣𝑣2

∗(𝑡𝑡) + 𝛾𝛾1)(𝜆𝜆4 − 𝜆𝜆5) + 𝜃𝜃(𝜆𝜆4 − 𝜆𝜆6)                  

𝑎𝑎𝜆𝜆5

𝑎𝑎𝑡𝑡
= −𝐴𝐴4 +

𝜂𝜂2𝛽𝛽𝑆𝑆∗

𝑁𝑁
(𝜆𝜆2 − 𝜆𝜆1) + 𝜆𝜆5(𝜇𝜇 + 𝑎𝑎1) + 𝜓𝜓(𝜆𝜆5 − 𝜆𝜆6)                                                               

𝑎𝑎𝜆𝜆5

𝑎𝑎𝑡𝑡
=
𝛽𝛽𝑆𝑆∗

𝑁𝑁
(𝜆𝜆2 − 𝜆𝜆1) + 𝜇𝜇𝜆𝜆6                                                                                                                          

With transversality condition  

𝜆𝜆1(𝑡𝑡) = 𝜆𝜆2(𝑡𝑡) = 𝜆𝜆3(𝑡𝑡) = 𝜆𝜆4(𝑡𝑡) = 𝜆𝜆5(𝑡𝑡) = 𝜆𝜆6(𝑡𝑡) = 0                                                               (22) 

and optimality condition is given by 

𝑣𝑣1
∗(𝑡𝑡) =

𝜌𝜌𝐸𝐸∗(𝜆𝜆2 − 𝜆𝜆3)
𝐶𝐶1

;  𝑣𝑣2
∗(𝑡𝑡) =

𝛾𝛾𝐼𝐼∗(𝜆𝜆4 − 𝜆𝜆5)
𝐶𝐶2

                                                                            (23) 

Proof:  

The system of differential equations in (21) is obtained by differentiation of Hamiltonian 
function, H, evaluated at the optimal control. This is written as 

−
𝑎𝑎𝜆𝜆1

𝑎𝑎𝑡𝑡
=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑆𝑆∗

, 𝜆𝜆1�𝑡𝑡𝑓𝑓� = 0; 

−
𝑎𝑎𝜆𝜆2

𝑎𝑎𝑡𝑡
=
𝜕𝜕𝐻𝐻
𝜕𝜕𝐸𝐸∗

, 𝜆𝜆2�𝑡𝑡𝑓𝑓� = 0; 
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−
𝑎𝑎𝜆𝜆3

𝑎𝑎𝑡𝑡
=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑄𝑄∗ , 𝜆𝜆3�𝑡𝑡𝑓𝑓� = 0; 

−
𝑎𝑎𝜆𝜆4

𝑎𝑎𝑡𝑡
=
𝜕𝜕𝐻𝐻
𝜕𝜕𝐼𝐼∗

, 𝜆𝜆4�𝑡𝑡𝑓𝑓� = 0; 

−
𝑎𝑎𝜆𝜆5

𝑎𝑎𝑡𝑡
=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑇𝑇∗

, 𝜆𝜆5�𝑡𝑡𝑓𝑓� = 0; 

−
𝑎𝑎𝜆𝜆6

𝑎𝑎𝑡𝑡
=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑅𝑅∗

, 𝜆𝜆6�𝑡𝑡𝑓𝑓� = 0; 

This gives the costate system in equation (21). The optimality conditions are given in the 
interior of the control set as 

𝑉𝑉 = {𝑣𝑣1
∗, 𝑣𝑣2

∗ ⎸0 ≤ 𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡) ≤ 1} 

In adding, equating to zero the derivative of Hamiltonian with respect to the control variables in 
the control set, 𝑉𝑉, that is  

𝜕𝜕𝐻𝐻
𝜕𝜕𝑣𝑣1

∗ = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕𝐻𝐻
𝜕𝜕𝑣𝑣2

∗ = 0, we solve 𝑣𝑣1 𝑎𝑎𝑎𝑎 𝑣𝑣1
∗ and 𝑣𝑣2 𝑎𝑎𝑎𝑎 𝑣𝑣2

∗, this gives 

𝑣𝑣1
∗ =

𝜌𝜌𝐸𝐸∗(𝜆𝜆2 − 𝜆𝜆3)
𝐶𝐶1

;  𝑣𝑣2
∗ =

𝛾𝛾𝐼𝐼∗(𝜆𝜆4 − 𝜆𝜆5)
𝐶𝐶2

 

Using the bounds on the controls we divide the optimality conditions as follows 

𝑣𝑣1
∗ = max �0, min �1,

𝜌𝜌𝐸𝐸∗(𝜆𝜆2 − 𝜆𝜆3)
𝐶𝐶1

�� 

𝑣𝑣2
∗ = max �0, min �1,

𝛾𝛾𝐼𝐼∗(𝜆𝜆2 − 𝜆𝜆3)
𝐶𝐶2

�� 

Owing to the pair boundedness of the state and adjoint functions and the resulting Lipschitz 
structure of ODE’s, we obtain the uniqueness of the optimal control pair which follows from the 
optimality system as in [39],[41],[42],[44],[45]. 
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Fig. 2 and 3 are dynamics of COVID – 19 infected individuals when both Quarantine Control (𝑣𝑣1) 
and Treatment (Isolation) (𝑣𝑣2) are employed as optimal control. 
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Fig. 4: Dynamics of Susceptible individuals when both Quarantine Control (𝑣𝑣1) and Treatment 
(Isolation) (𝑣𝑣2) are employed as optimal control. 

 

 

Fig. 5: Dynamics of Exposed individuals when both Quarantine Control (𝑣𝑣1) and Treatment 
(Isolation) (𝑣𝑣2) are employed as optimal control. 

 

0 20 40 60 80 100 120 140 160

Time=t 

Fig 4

0

2

4

6

8

10

12

Su
sc

ep
tib

le
 C

om
pa

rtm
en

t

10 6

Without Control

With Optimal Control

0 20 40 60 80 100 120 140 160

Time=t 

Fig 5  

0

2

4

6

8

10

12

Ex
po

se
d 

C
om

pa
rtm

en
t

10 6

Without Control

With Optimal Control

GSJ: Volume 9, Issue 2, February 2021 
ISSN 2320-9186 1516

GSJ© 2021 
www.globalscientificjournal.com



 

Fig. 6: Dynamics of Infected individuals when both Quarantine Control (𝑣𝑣1) and Treatment 
(Isolation) (𝑣𝑣2) are employed as optimal control. 

 

 

 

Fig. 5: Dynamics of Recovered individuals when both Quarantine Control (𝑣𝑣1) and Treatment 
(Isolation) (𝑣𝑣2) are employed as optimal control. 

V. Numerical Results and Discussion 

In this section, numerical simulations of the optimal control model (2) have been perfomed 
using Runge Kutta method written in MATLAB programming. We use a set of logical parameter 
values. Graphical results are displayed using the initial values:  𝑆𝑆 = 11,081,000,𝐸𝐸 =
105.1,𝑄𝑄 = 1.1642, 𝐼𝐼 = 27.679,𝑇𝑇 = 1,𝑅𝑅 = 2 andall the parameters showed in table 3. The 
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simulations are performed with timeline of 150 days. Firstly, the optimal control model is 
simulated. For the simulation of optimal control system (2), we solved the optimality sytems 
when there is no control and when there is control. Here, the numerical simulations of the 
optimal system (2) are performed considering both controls, that is, quarantine (𝑣𝑣1) and 
treatment (Isolation) (𝑣𝑣2) and the results are shown in figures 2 and 3,  4 – 7. We observe the 
effect of quarantine and treatment (Isolation) on the susceptible, exposed, quarantine, 
infected, treated (isolated) and recovered individuals for five (6) months timeline. It has been 
seen that the control measures signicantly influences the susceptible, exposed, quarantine, 
infected, treated (isolated) and recovered individuals. As expected , both the exposed and 
infected individuals have increased in the absence of control (quarantineand treatment), than 
the individuals with the optimal control measure. On the contrary, the number of recovered 
individuals increases when quarantine and treatment control are applied compared to the 
individuals without optimal control.  Furthermore, the number of recovered individuals 
increases when quarantine and treatment (isolation) controls are applied compared to the 
individuals without optimal control. 

VI. Conclusions 

In this paper an optimal control model has been formulated considering two control variables, 
i.e., quarantine and treatment (isolation) by using the most well-known pontryagin’s maximum 
principle. Numerical simulation was performed toillustrate the analytic results. From 
investigation, it was observed that the optimal quarantine andtreatment are much more 
effective for reducing the number of exposed and infected individuals to maximize the 
recovered individuals and also to minimize the cost of control measures. Since there are 
quarantine and treatment strategies available for COVID – 19 infection, so from the 
simulations, ithas been stabliushed that the optimal combination of quarantine and treatment 
are effective to control the disease progression. So to reduce the infection (COVID-19), 
quarantine exposed and subsequent treatment of infected individuals  should be stated on 
time.   
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