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BSTRACT  

Reverse conversion is an important exercise in achieving the properties of Residue Number System (RNS). Current 
algorithms available for reverse conversion exhibits greater computational overhead in terms of speed and area. In 
this paper, we have developed a new algorithm for reverse conversion for two-moduli set and  three-moduli set that 
are very simple and with fewer multiplicative inverse operations than there are in the traditional algorithms like the 
Chinese Remainder Theorem (CRT) and Mixed Radix Conversion (MRC). 
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INTRODUCTION 

Residue Number System can be traced back to Sun 
Tzu, which is an old number system. Large binary 
and decimal numbers are represented in RNS 
uniquely using a set of smaller residues, that results 
in carry-free, high speed arithmetic operations. 
Parallelism is also ensured in RNS. [1][2][3]. 
Numbers are represented in this system by taking 
modulus operation where the divider is known as the 
modulo and the remainder is the residue which 
represents the number in RNS. 

The main advantage of RNS over the conventional 
number systems is that the standard arithmetic 
operations can be easily implemented due to the carry 
propagation inherent in the conventional number 
system. This ensures the design of high speed digital 
processors. RNS is very helpful in applications 
requiring many additions and for that matter many 
multiplication (multiplication is a repeated form of 
addition) but with no or fewer number of division and 
comparisons. The main problems of RNS 
representation are that division, magnitude 

comparison, scaling, overflow detection and sign 
detection are difficult to implement. RNS is suitable 
in applications such as cryptography, digital signal 
processing, image processing, speech processing etc 
[1]-[4]. 

Background  

The RNS is defined in terms of a set of relatively 
prime moduli, 𝑃𝑃 =  {𝑚𝑚1 ,𝑚𝑚2, … … .𝑚𝑚𝑛𝑛}, where 
𝐺𝐺𝐺𝐺𝐺𝐺 �𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑗𝑗� = 1 for 𝑖𝑖 ≠ 𝑗𝑗. 𝑀𝑀 = ∏ 𝑚𝑚𝑖𝑖

𝑛𝑛
𝑖𝑖=1   is the 

dynamic range. Any integer 𝑋𝑋 in the range [0, M) 
called the legitimate range can be unambiguously 
represented [5],[6].   

To perform an arithmetic operation in the residue 
number representation to achieve the properties of 
RNS, raises the need to be able to convert from the 
conventional representation to RNS and vice versa. 
The conversion from the conventional numbers to 
RNS is known as forward conversion and process is 
very simple and direct operation; divide the given 
number by each modulus in the moduli set and taking 
string of the remainders constitute the RNS 
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representation. The conversion form RNS to the 
conversional number system is referred to as 
reverse/backward conversion. This operation is very 
difficult to accomplish and it introduces grave 
overhead in terms of speed and complexity. The 
process of reverse/backward conversions are 
shrouded on the Chinese Remainder Theorem (CRT) 
or the Mixed-Radix Conversion (MRC) [7]  

 

Chinese Remainder Theorem (CRT) 

Given a set of pair-wise relatively-prime moduli, 
𝑚𝑚1,𝑚𝑚2, … … .𝑚𝑚𝑁𝑁 ,  and a residue representation 
(𝑥𝑥1, 𝑥𝑥2, … . . , 𝑥𝑥𝑁𝑁) in that system of some number X, 
i.e. 𝑥𝑥𝑖𝑖 = |𝑋𝑋|𝑚𝑚𝑖𝑖 , that number and its residues are 
related by the Chinese Remainder Theorem that is 
given as;

                                                                                    

 
 

|𝑋𝑋|𝑀𝑀 = |�𝑥𝑥𝑖𝑖 |𝑀𝑀𝑖𝑖
−1|𝑚𝑚𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑀𝑀𝑖𝑖|𝑀𝑀 … … … … . . (1) 

Where M is the product of the mi 
1

iM −  are the 

multiplicative inverse of iM  with respect to mi 

i
i

MM
m

=  [8], [9]. In other words, given the moduli 

set, and a number, 𝑋𝑋 represented in its residue form, 
𝑋𝑋 can be computed by equation 1. The main problem 
of the CRT is the modulo operation of 𝑀𝑀 which 
introduces more overhead to the reverse conversion 
process in terms of speed and complexity. 
 

Mixed Radix Conversion (MRC) 

The Mixed Radix Conversion (MRC) is an algorithm 
use to convert any number 𝑋𝑋 in RNS representation 
to its binary/decimal equivalent. MRC is given as 
follows; 
𝑋𝑋
= 𝑑𝑑1 + 𝑑𝑑2𝑚𝑚1 + 𝑑𝑑3𝑚𝑚1𝑚𝑚2 + ⋯
+ 𝑑𝑑𝑛𝑛𝑚𝑚1𝑚𝑚2𝑚𝑚3 …𝑚𝑚𝑛𝑛−1 … … … … … … … … … … … … … . (2) 

  Where 𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛 are the Mixed Radix Digits 
(MRDs) and computed as follows: 

    𝑑𝑑1 = 𝑥𝑥1  

    𝑑𝑑2 = �(𝑥𝑥2 − 𝑑𝑑1)|𝑚𝑚1
−1|𝑚𝑚2 �𝑚𝑚2

  

    𝑑𝑑3 = ��(𝑥𝑥3 − 𝑑𝑑1)|𝑚𝑚1
−1|𝑚𝑚3 − 𝑑𝑑2� |𝑚𝑚2

−1|𝑚𝑚3 �𝑚𝑚3
  

     ⋮  

    𝑑𝑑𝑛𝑛 = ��… �(𝑥𝑥3 − 𝑑𝑑1)|𝑚𝑚1
−1|𝑚𝑚𝑛𝑛 − 𝑑𝑑2� |𝑚𝑚2

−1|𝑚𝑚𝑛𝑛 −

⋯− 𝑑𝑑𝑛𝑛−1� |𝑚𝑚𝑛𝑛−1
−1 |𝑚𝑚𝑛𝑛 �𝑚𝑚𝑛𝑛

… … … … … …(2.3) [10]. 

That is, 𝑋𝑋 in the interval  [0,𝑀𝑀] can be uniquely 
represented. The MRC is serial and an error in the 
computation of  𝑑𝑑1 will lead to an error in the 
subsequent 𝑑𝑑𝑖𝑖 . 

The New Algorithms 

The proposed new algorithm is presented below is 
very simple and have fewer multiplicative inverse 
operations than there are in the CRT and MRC.  

ALGORITHM FOR TWO MODULI SET: 

Given a two moduli set 𝑚𝑚 = {𝑚𝑚1, 𝑚𝑚2} and 
residues 𝑟𝑟 = (𝑟𝑟1, 𝑟𝑟2), 𝑚𝑚 and 𝑟𝑟 can be written in a 
form: 

𝑋𝑋 ≡ 𝑟𝑟1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚1 … … … … … … 1 

𝑋𝑋 ≡ 𝑟𝑟2 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 … … … … … … 2 

Equation 1 can also be written as  

𝑋𝑋 = 𝑚𝑚1𝑝𝑝 + 𝑟𝑟1  … … … … … … 3 

Now equation 3 is the general form of decimal 
equivalent that satisfies equation 2 such that: 

|𝑚𝑚1𝑝𝑝 +  𝑟𝑟1|𝑚𝑚2 =  𝑟𝑟2 

Where p = [0,𝑟𝑟2]. 

Generally, the decimal equivalent for any two moduli 
set can be computed as follows: 

X =  
|𝑚𝑚1𝑝𝑝 +  𝑟𝑟1|𝑚𝑚2 =  𝑟𝑟2 

Where, 

p = [0,𝑟𝑟2] that is, any value from the range that 
satisfies X. 

Therefore the value that satisfies X at a chosen 
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NUMERICAL ILLUSTRATION WITH TWO 
MODULI SET {2n + 1, 2n} 

Example 1: Given the moduli set m = {5, 4} and 
residues r= (2, 3) 

Example 2: Given the moduli set m = {9, 8} and 
residues r= (7, 7) 

Solution: 

With two moduli set, we have  

Generally, the decimal equivalent for any two moduli 
set can be computed as follows: 

X =  
|𝑚𝑚1𝑝𝑝 +  𝑟𝑟1|𝑚𝑚2 =  𝑟𝑟2 

Where, 

p = [0,𝑟𝑟2] that is, any value from the range that 
satisfies X. 

Therefore the value that satisfies X at a chosen 
number from p, is its decimal equivalent. 

From example 1,  𝑚𝑚1 = 5, 𝑚𝑚2 = 4, 𝑟𝑟1 = 2, 𝑟𝑟2 = 3 

X =  
|5𝑝𝑝 +  2|4 =  3 

p= [0, 1,…3] 

When p=1 

|5(1)  +  2|4 =  3 is satisfied. Since |7|4 =  3 
satisfied X at the value of 7 (5(1)  +  2), we stop and 

take that value as its decimal equivalent.  

Therefore the decimal equivalent for example 1 is 
7. 

From example 2,  𝑚𝑚1 = 9, 𝑚𝑚2 = 8, 𝑟𝑟1 = 7, 𝑟𝑟2 = 7 

X =  
|9𝑝𝑝 +  7|8 =  7 

p=[0, 1,…7] 

When p=0 

|9(0)  +  7|8 =  7 is satisfied. Since |7|8 =  7 
satisfied X at the value 7 (9(0) +  7), we stop and 

take that value as is decimal equivalent. 

Therefore the decimal equivalent for example 2 is 
7. 

 

ALGORITHM FOR THREE MODULI SET: 

Given a moduli set 𝑚𝑚 = {𝑚𝑚1, 𝑚𝑚2,𝑚𝑚3} and 
residues 𝑟𝑟 = (𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3), 𝑚𝑚 and 𝑟𝑟 can be written in a 
form: 

𝑋𝑋 ≡ 𝑟𝑟1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚1 … … … … … … 1 

𝑋𝑋 ≡ 𝑟𝑟2 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 … … … … … … 2 

𝑋𝑋 ≡ 𝑟𝑟3 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚3 … … … … … … 3 

Equation 1 can also be written as  

𝑋𝑋 = 𝑚𝑚1𝑘𝑘 + 𝑟𝑟1  … … … … … … 4 

Equation 4 must satisfy equation 2 such that 

𝑚𝑚1𝑘𝑘 +  𝑟𝑟1 ≡ 𝑟𝑟2𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 

𝑚𝑚1𝑘𝑘 ≡ (𝑟𝑟2 − 𝑟𝑟1)𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 

𝑘𝑘 ≡ (𝑟𝑟2 − 𝑟𝑟1).𝑚𝑚1
−1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2 

𝑘𝑘 = 𝑚𝑚2𝑡𝑡 + |(𝑟𝑟2 − 𝑟𝑟1).𝑚𝑚1
−1|𝑚𝑚2   

Putting k into equation 4, we have  

𝑋𝑋 = 𝑚𝑚1(𝑚𝑚2𝑡𝑡 +   |(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 ) +  𝑟𝑟1  

X = 𝑚𝑚1𝑚𝑚2𝑡𝑡 + � 𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 +

 𝑟𝑟1�… … … … … … 5 

Now equation 5 is the general form of decimal 
equivalent that satisfies equation 3 such that: 

�𝑚𝑚1𝑚𝑚2𝑡𝑡 + � 𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 + 𝑟𝑟1��𝑚𝑚3

=  𝑟𝑟3 

Where t = [0,𝑟𝑟3] 
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Generally, the decimal equivalent for any three 
moduli set can be computed as follows: 

X =  
|𝑚𝑚1𝑚𝑚2𝑝𝑝 + (𝑠𝑠)|𝑚𝑚3 =  𝑟𝑟3 

Where, 

s = � 𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 + 𝑟𝑟1� 

p = [0,𝑟𝑟3] that is, any value from the range that 
satisfies X after computing the value of s. 

Therefore the value that satisfies X at a chosen 
number from p, is its decimal equivalent. 

 

NUMERICAL ILLUSTRATION WITH THREE 
MODULI SET {2n + 1, 2n, 2n - 1} 

Example 3: Given the moduli set m = {5, 4, 3} and 
residues r= (0, 3, 0) 

Example 4: Given the moduli set m = {9, 8, 7} and 
residues r= (7, 0, 2) 

Solution: 

With three moduli set, we have  

Generally, the decimal equivalent for any three 
moduli set can be computed as follows: 

X =  
|𝑚𝑚1𝑚𝑚2𝑝𝑝 + (𝑠𝑠)|𝑚𝑚3 =  𝑟𝑟3 

Where, 

s = � 𝑚𝑚1|(𝑟𝑟2 −  𝑟𝑟1)𝑚𝑚1
−1|𝑚𝑚2 + 𝑟𝑟1� 

p = [0,𝑟𝑟3] that is, any value from the range that 
satisfies X after computing the value of s. 

Therefore the value that satisfies X at a chosen 
number from p, is its decimal equivalent. 

From example 3,  𝑚𝑚1 = 5, 𝑚𝑚2 = 4,𝑚𝑚3 = 3, 𝑟𝑟1 =
0, 𝑟𝑟2 = 3, 𝑟𝑟3 = 0 

X =  
|5.4. 𝑝𝑝 + (𝑠𝑠)|3 =  0 

s = ( 5|(3 −  0)5−1|4 +  0) 

s = ( 5|(3). 1|4 +  0) 

s = 15 

X =  
|5.4. 𝑝𝑝 + (15)|3 =  0 

X =  
|20𝑝𝑝 +  15|3 =  0 

p= [0, 1, 2] 

When p=0 

|20(0)  +  15|3 =  0 is satisfied. Since |15|3 =  0 
satisfied X at the value of 15 (20(0) +  15), we stop 

and take that value as its decimal equivalent.  

Therefore the decimal equivalent for example 3 is 
15. 

From example 4,  𝑚𝑚1 = 9, 𝑚𝑚2 = 8,𝑚𝑚3 = 7, 𝑟𝑟1 =
7, 𝑟𝑟2 = 0, 𝑟𝑟3 = 2 

X =  
|9.8. 𝑝𝑝 + (𝑠𝑠)|7 =  2 

s = ( 9|(0 −  7)9−1|8 +  7) 

s = ( 9|(−7). 1|4 +  7) 

s = 16 

X =  
|9.8. 𝑝𝑝 + (16)|7 =  2 

X =  
|72𝑝𝑝 +  16|7 =  2 

p= [0, 1,2,…6] 

When p=0 

|72(0)  +  16|7 =  2 is satisfied. Since |16|7 =  2 
satisfied X at the value of 16 (72(0) +  16), we stop 

and take that value as its decimal equivalent.  

Therefore the decimal equivalent for example 4 is 
16. 
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Conclusion 

New algorithm for reverse conversion in RNS for 
two moduli set and three moduli set have been 
proposed. These algorithms are very simple and 
straight forward with fewer number multiplicative 
inverses operations than there are in the traditional 
CRT and MRC algorithms.  
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