Global Scientific journals

GSJ: Volume 6, Issue 2, February 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com

ON p-GROUPS OF ORDER $2^{2 n+e}, e \in\{0,1\}$ SATISFYING THE
STRUCTURE GIVEN BY: $k(G)=p^{e}+\left(p^{2}-1\right) n+\left(p^{2}-1\right)(n-1) t$

ADEBISI, SUNDAY ADESINA

Abstract

Let $k(G)$ be the number of conjugacy classes of a group G. Then, there exists a non-negative integer $t=t(G)$ such that: $$
k(G)=p^{e}+\left(p^{2}-1\right) n+\left(p^{2}-1\right)(p-1) t \quad t \geq 0, \quad n \in Z^{+} \text {and } e \in\{0,1\}
$$

Define: even $=$ positive $(+)$ and odd $=$ negative $(-)$. Then, the following hold (i) If n and t are of the same sign then, $k(G)$ is negative. Otherwise, $k(G)$ is positive. (ii) If n is $0, e$ and t are of the same sign, then $k(G)$ is negative. Otherwise $k(G)$ is positive. And the result is generally in harmony with the Sylow's C, D and E theorems.

1. Introduction

The three main Sylow theorems are the Sylow E theorem, D theorem and C theorem sometimes referring to the "existence", "development" and "conjugate" theorem respectively. Another theorem gives the number of Sylow p-subgroups of a group for fixed prime p; this is sometimes referred to as the Sylow "counting theorem [14].

A Sylow p-subgroup (sometimes p-Sylow subgroup) of a group G is a maximal p-subgroup of G, i.e. a subgroup which is a p-group and which is not a proper subgroup of any other p-subgroup of G. The set of all Sylow p-subgroups for a given prime p can be denoted by $S y l_{\rho}(G)$. Here, all members are actually isomorphic to each other and have the largest possible order: if $|G|=p^{n} m, n>0$ where p does not divide m, then any Sylow p-subgroup W has order $|W|=p^{n}$. That is, W is a p-group and $(|G: W|, p)=1$. This properties can be exploited to further analyze the structure of G [17].

Suppose that $G>\{1\}$ is a p-group and $\chi \in \operatorname{Irr}(G)=$ the set of irreducible complex characters of G.
If $\chi \in \operatorname{Irr}(G)$, then $\chi(1)^{2} \leq|G: Z(G)|$. Thus, $\chi(1)^{2}$ is a divisor of $|G: Z(G)|$. Let $k(G)$ be the class number of the group G. Then ,consider $\operatorname{Irr}(G / Q)$ the subset $\{\chi \in \operatorname{Irr}(G) \mid Q \leq k e r(\chi)\}$ of $\operatorname{Irr}(G)$. Let $\operatorname{Lin}(G)=\{\chi \in \operatorname{Irr}(F) \mid \chi(1)=1\}$ be the set of linear characters of G ; then $\operatorname{Irr}_{1}(G)=\operatorname{Irr}(G) \backslash \operatorname{Lin}(G)$ is the set of nonlinear irreducible characters of G. Clearly, $\operatorname{Irr}_{1}(G)=\operatorname{Irr}\left(G / G^{\prime}\right)$.
Proposition A:[20] Let G be a group of order p^{m} and let $D \leq Z(G) \ni|D|=p$. Then,$k(G) \geq p-1+k(G \mid D)$. We have that $|\operatorname{Irr}(G \mid D)| \geq p-1$

[^0](i) If $k(G)=p-1+k(G \mid G)$, then , $Z(G)=D$ and $\chi(1)^{2}=p^{m-1} \forall$ $\chi \in \operatorname{Irr}(G \mid D)$.Hence, m is odd.
(ii) If m is even, then $k(G) \geq p^{2}-p+k(G \mid D)$.

Let $c l(G)=\left\{A_{1}, A_{2}, \cdots, A_{t}\right\}$ be the set of all G-classes . i. e . $\mathrm{t}=k(G) ; a_{i} \in A_{i}$. Then , the number of commuting ordered pairs $(x, y) \in G x G$ is equal to

$$
\sum_{i=1}\left|C_{G}\left(a_{i}\right)\right| \cdot\left|A_{i}\right|=|G| \cdot k(G)
$$

\therefore the number of non-commutating ordered pair $(x, y) \in G \mathrm{x} G$ is equal to $|G|^{2}-|G| \cdot k(G)$.Let $\alpha_{2}(G)$ denote the number of ordered non-commuting pairs (x, y) $\in G \times G \ni G=\langle x, y\rangle$ whence $\alpha_{2}(G)=0$ if G is either abelian or not generated by 2 elements. Then, Mann has shown that:

$$
\begin{equation*}
\sum_{Q \leq G} \alpha_{2}(Q)=|G|^{2}-|G| \cdot k(G) . \cdots \tag{1}
\end{equation*}
$$

The following theorem is due to P.Hall .
Proposition α :(see[20])
(a) Suppose that G is a 2 -generator p-group then, $\varphi_{2}(G)=\left(p^{2}-1\right)\left(p^{2}-p\right) \cdot|\Phi(G)|^{2}$
(b) If $G=E S(m, p)$ is an exraspecial group of order $p^{2 m+1}$, then, the number $t=t(m, p)$ of nonabelian subgroup of order p^{3} in G is equal to $\frac{p^{2 m}-1}{p^{2}-1} \cdot p^{2 m-2}$
Proof :(a) $\varphi_{2}(G)$ is equal to the number of (ordered) minimal bases of G. Now, by assumption,$G / \Phi(G)$ is abelian of type (p,p). If $a \in G \backslash \Phi(G), G \backslash\langle x, \Phi(G)\rangle$, then,$G=\langle a, b\rangle$. This element a, can be chosen in $|G|-|\Phi(G)|=|\Phi(G)|\left(p^{2}-1\right)$ ways and b, after the choice of a in $|G|-p|\Phi(G)|=|\Phi(G)|\left(p^{2}-p\right)$ ways. Applying the combinatorial product rule, the result follows.
(b) Every nonabelian 2-generator subgroup of G has order p^{3}.By using (1) and (a), taking into cognisance the value $k(G)=p^{2 m}+p-1$, we have that $p^{3}(p-1)\left(p^{2}-1\right) t$ $=p^{2 m+1}\left(p^{2 m+1}-p^{2 m}-p+1\right)=p^{2 m+1}\left(p^{2 m}-1\right)(p-1)$
Theorem β : Let $|G|=p^{2 n+e}, e \in\{0,1\}$. Then \exists a non-negative integer $t=t(G)$ $\ni \mathrm{k}(\mathrm{G})=p^{e}+\left(p^{2}-1\right)[n+(p-1) t]=p^{e}+\left(p^{2}-1\right) n+\left(p^{2}-1\right)(p-1) t$.
If $Q \unlhd G$ then $t(G / Q) \leq t(G)$.
Proof : (See [12]) By $\alpha(a)$, and (1) we get $|G|^{2} \equiv|G| \cdot k(G) \bmod \left(p^{2}-1\right)\left(p^{2}-p\right)$. And so, $k(G) \equiv|G|\left(\bmod \left(p^{2}-1\right)(p-1)\right)$.
Now, observe that: $p^{2 n+e}=p^{e}+\left(p^{2 n}-1\right) p^{e}$
$=p^{e}+\left(p^{2}-1\right)\left(p^{2 n-2}+p^{2 n-4}+\cdots+p^{2}+1\right)\left(p^{e}-1+1\right)$
$=p^{e}+\left(p^{2}-1\right)\left(p^{2 n-2}+p^{2 n-4}+\cdots+p^{2}+1\right)\left(p^{2}-1\right)$
$+\left(p^{2}-1\right)\left(p^{2 n-2}+p^{2 n-4}+\cdots+p^{2}+1\right)$
$\equiv p^{e}+\left(p^{2}-1\right)\left(p^{2 n-2}+\cdots+p^{2}+1\right) \equiv p^{e}+\left(p^{2}-1\right) n\left(\bmod \left(p^{2}-1\right)(p-1)\right)$
$\left(\right.$ since $\left.p^{2 n-2}+\cdots+p^{2}+1 \equiv n(\bmod (p-1))\right)$.
$\therefore k(G)=p^{e}+\left(p^{2}-1\right) n+\left(p^{2}-1\right)(p-1) t=p^{e}+\left(p^{2}-1\right)[n+(p-1) t]$, for some $t=t(G) \in \mathbb{Z}$. Now, to prove that $t(G)$ is non negative, use induction on $|G|$.By assuming that $n>1$. Let $Q \leq Z(G)$ be such that $|Q|=p$. Then , $k(G)>k(G / Q)$ since $\bigcap_{\chi \in \operatorname{Irr}(G)} \operatorname{Ker} \chi(1)=\operatorname{Ker}(\rho G)=\{1\}$, where ρG is the regular character of G. Now , let $e=0$, then $|G|=p^{2 n}$ and $|G / Q|=p^{2(n-1)+1}$, so, by the result above, $k(G)=1+\left(P^{2}-1\right)[n+(p-1) t(G)]$ and $k(G / Q)=p+\left(p^{2}-1\right)[n-1+(p-1) t(G / Q)]$ And so, $0<k(G)-k(G / Q)=1-p+\left(p^{2}-1\right)[1+(t(G)-t(G / Q))(p-1)]$.
$\therefore t(G) \geq t(G / Q)$ is obtained, since $t(G)-t(G / Q) \in \mathbb{Z}$,
and $1+[t(G)-t(G / Q)](p-1)>\frac{p-1}{p^{2}-1}>0$.
And so,$t(G) \geq t(G / Q) \geq 0$, by induction.
Let $e=1$, then $,|G|=p^{2 n+1},|G / Q|=p^{2 n}$. Then, by the result, we have that : $k(G)=p+\left(p^{2}-1\right)[n+(p-1) t(G)]$ and $k(G / Q)=1+\left(p^{2}-1\right)[n+(p-1) t(G / Q)]$ So that $0<k(G)-k(G / Q)=p-1+\left(p^{2}-1\right)(p-1)[t(G)-t(G / Q)]$. This must be that $t(G)-t(G / Q) \geq 0$. Thus, $t(G) \geq t(G / Q) \geq 0$
Proposition : Suppose that $Q \triangleleft G$ and $|G: Q|=p$. Let s be the number of G-invariant characters in $\operatorname{Irr}(Q)$. Then ,
(i) $p k(G)=k(Q)+\left(p^{2}-1\right) s$.
(ii) If, in addition, G is a p-group, then $p-1$ divides $s-1$.

Proof : (i) If $\tau \in \operatorname{Irr}(Q)$ is G-invariant, then, $\tau(G)=\chi^{1}+\cdots+\chi^{p}$ where $\operatorname{Irr}\left(\tau^{G}\right)=\left\{\tau^{1}, \cdots, \tau^{p}\right\}, \chi(1)=\tau(1)$.(This was given by Clifford). Now, let $\varphi \in \operatorname{Irr}(Q)$ be not G invariant, then, $\varphi^{G}=\chi \in \operatorname{Irr}(G)$ and $\chi_{Q}=\varphi_{1}+\cdots+\varphi_{p}$ is called the Clifford decomposition, where $\varphi=\varphi_{1}$.
Now, since $\bigcup_{\tau \in \operatorname{Irr}(Q)} \operatorname{Irr}\left(\tau^{G}\right)=\operatorname{Irr}(G)$,

$$
\operatorname{Irr}\left(\left(\sum_{\chi \in \operatorname{Irr}(G)} \chi\right) Q\right)=\operatorname{Irr}(Q)
$$

we thus have that : $k(G)=|\operatorname{Irr}(G)|=s p+\frac{1}{p}(|\operatorname{Irr}(Q)|-s)=s p+\frac{1}{p}(k(Q)-s)$, and the result follows . By theorem (β), we have the proof of (ii).
Proposition : (See [12])The number $s=s(G)$ of nonabelian subgroups of order p^{3} is a p-group $G,|G|=p^{m}, m \geq 5$ is divisible by p^{2}.
Proof : (See [20])By proposition $\alpha(a)$ and (1), we have that:
$s p^{2}(p-1)\left(p^{2}-1\right)+$

$$
\sum_{Q \leq G,|Q|>p^{3}} \alpha_{2}(Q)=p^{m} \cdot\left[p^{m}-k(G)\right] \cdots(i i)
$$

If $Q \leq G$ is a 2-generator subgroup of order $\geq p^{4}$, then $|\Phi(Q)| \geq p^{2}$. Thus, $\alpha_{2}(Q)$ is divisible by p^{5}, by $\alpha(a)$.
By (ii), we have the result .
It was proved by Mann [in sec. 2 [20]] that

$$
k(G)=p^{e}+\left(p^{2}-1\right)[n+(p-1) t]
$$

Now, to exhaust all possibilities,

$$
\begin{aligned}
k(G)=p^{e}+t(1-p)-n(\bmod p) & =p^{e}+t-p t-n(\bmod p) \\
& =p^{e}+t-n(\bmod p)
\end{aligned}
$$

Now, when $e=0, k(G)=1+t-n(\bmod)$
$|G|=2^{2 n}$ implies $n \geq 1, p=2$.
If n is even, (then $n=2 u$ say $)$ implies that $k(G)=1+t-2 u(\bmod 2)=1+t(\bmod 2)$.
Further, if t is even, $k(G)=1(\bmod 2)$. But if t is odd, $t=2 d+1$, say, thus, $k(G)=0(\bmod 2)$ implies that $k(G)$ is even.
If n is odd, (then, $n=2 w+1$ say), implies that $k(G)=1+t-2 w-1=t(\bmod 2)$.
So, if t is odd, $k(G)=1(\bmod 2)$ and even t implies $k(G)$ is even.
By Sylow's, if $B=\left\{B_{i}\right\}$ is a family of all subsets of G, each of order p^{k}.
Then, $|B|=$ the number of conjugacy classes of order p^{k}. Hence, it implies that t is odd for $p=2$ in harmony with the $\operatorname{result} k(G)=1(\bmod 2)$.

Summarily, we have the generalized result given in tabular form as follows:

e	n	t	$k(G)$	
0	even	even	odd	
0	even	odd	even	
0	odd	odd	odd	
0	odd	even	even	
1	0	even	even	
1	0	odd	odd	
1	1	even	even	
1	1	odd	odd	
1	even	even	odd	
1	odd	odd	odd	

Bibliography

[1]: Burnside, W. (1913). On the outer automorphisms of a group. Proc. Lond. Math. Soc. (2) 11, (40-42).
[2]: Govich, N. et.al. (1998) Groups of prime power order with many conjugacy (1913). On some properties of groups whose orders are powers of primes I.Proc. Lond. Math. Soc.(2)11 225-245,13(6-12).
[3]: Hall, P. (1933). A contribution to the theory of groups of prime power order. Proc. Lond. Math. Soc. 36 (29-95).
[4]: Hall, P. (1936). On a Theorem of Frobernius Proc. Lond. Math. Soc. 40 (468-5011).
[5]: Hall, P. (1940). The classification of prime power groups. J. reine angew. Math. 182 (130-141).
[6]: Isaacs, I.M. \& Moreto, A. (2001). The character degrees and nilpotence class of a p-group. J. Algebra 238 (827-842).
[7]: Issacs, I.M. (1972).The number of generators of a linear p-group,Can. J.Math.24(852-858).
[8]: Isaacs, I.M. (1976). Character Theory of Finite Groups. Acad. Press, N.Y.
[9]: Issacs, I.M. (1986). Sets of p-powers as irreducible character degrees. Proc. Amer. Math. Soc. 96(551-552).
[10]: Issacs, I.M. (1994). Algebra: A Graduate Course Brooks/Cole.
[11]: Knoche, H.G. (1951). Uber den Frobeniusschen Klassenbegriff in nilpotenten Gruppen. I, II. Math. Z 55 (71-83) Ibid 59 (8-16).
[12]: Mann, A. (1978). Conjugacy Classes in finite groups. Israel J. Math. 31 (78-84).
[13]: Mann, A. (1990). On the power structure of some p-groups Circ. Mat. Palermo II, 23, (227-235).
[14]: Mann, A. (1995). A transfer result for powerful Sylow Subgroups. J. Algebra 178 (299-301).
[15]: Mann, A. (1999). Minimal Characters of p-groups. J. Group Theory 2 (225-250).
[16]: Mann, A. (2007). The power structure of p-groups I. J. Algebra 42 (121-135), 318(953-956).
[17]: Weir, A. (1955). Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p. Proc. Amer. Math. Soc. 6 (529-533).
[18]: Weir, A. (1955). The Sylow subgroups of the symmetric groups. Proc. Amer. Math. Soc. 6 (534-541).
[19]: Wielandt, H. (1959). Ein Beweis für die Existenz der Sylowgruppen. Arch. Math. 10(401-402) (MR26\#504).
[20]: Yakov Berkovich (2008). Groups of prime power order vol. 1. Walter de Gruyter. GmbH \& Co. KG, 10785 Berlin, Germany.

Department of Mathematics, Faculty of Science, University of Lagos, Nigeria
E-mail address: adesinasunday@yahoo.com

[^0]: Key words and phrases. p-groups, Sylow's, Class number, irreducible character, conjugacy class.

