International Journal of Scientific & Engineering Research Volume 6, Issue 2, February 2018 ISSN 2229-5518

GSJ: Volume 6, Issue 2, February 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com

ON *p*-GROUPS OF ORDER 2^{2n+e} , $e \in \{0,1\}$ SATISFYING THE STRUCTURE GIVEN BY: $k(G) = p^e + (p^2 - 1)n + (p^2 - 1)(n - 1)t$

ADEBISI, SUNDAY ADESINA

ABSTRACT. Let k(G) be the number of conjugacy classes of a group G. Then, there exists a non-negative integer t = t(G) such that:

$$k(G) = p^{e} + (p^{2} - 1)n + (p^{2} - 1)(p - 1)t \ t \ge 0, \ n \in \mathbb{Z}^{+} \text{ and } e \in \{0, 1\}$$

Define: even = positive (+) and odd = negative (-).

Then, the following hold

- (i) If n and t are of the same sign then, k(G) is negative.
 Otherwise, k(G) is positive.
- (ii) If n is 0, e and t are of the same sign, then k(G) is negative. Otherwise k(G) is positive.
 And the result is generally in harmony with the Sylow's C, D and E theorems.

1. INTRODUCTION

The three main Sylow theorems are the Sylow E theorem, D theorem and C theorem sometimes referring to the "existence", "development" and "conjugate" theorem respectively. Another theorem gives the number of Sylow p-subgroups of a group for fixed prime p; this is sometimes referred to as the Sylow "counting theorem [14].

A Sylow *p*-subgroup (sometimes *p*-Sylow subgroup) of a group *G* is a maximal *p*-subgroup of *G*, i.e. a subgroup which is a *p*-group and which is not a proper subgroup of any other *p*-subgroup of *G*. The set of all Sylow *p*-subgroups for a given prime *p* can be denoted by $Syl_{\rho}(G)$. Here, all members are actually isomorphic to each other and have the largest possible order: if $|G| = p^n m$, n > 0 where *p* does not divide *m*, then any Sylow *p*-subgroup *W* has order $|W| = p^n$. That is, *W* is a *p*-group and (|G:W|, p) = 1. This properties can be exploited to further analyze the structure of *G* [17].

Suppose that $G > \{1\}$ is a *p*-group and $\chi \in Irr(G)$ = the set of irreducible complex characters of G.

If $\chi \in Irr(G)$, then $\chi(1)^2 \leq |G: Z(G)|$. Thus, $\chi(1)^2$ is a divisor of |G: Z(G)|. Let k(G) be the class number of the group G. Then, consider Irr(G/Q) the subset $\{\chi \in Irr(G) | Q \leq ker(\chi)\}$ of Irr(G). Let $Lin(G) = \{\chi \in Irr(F) | \chi(1) = 1\}$ be the set of linear characters of G; then $Irr_1(G) = Irr(G) \setminus Lin(G)$ is the set of nonlinear irreducible characters of G. Clearly, $Irr_1(G) = Irr(G/G')$.

Proposition A :[20] Let G be a group of order p^m and let $D \leq Z(G) \ni |D| = p$. Then, $k(G) \geq p - 1 + k(G \mid D)$. We have that $|Irr(G \mid D)| \geq p - 1$

 $Key\ words\ and\ phrases.$ p-groups, Sylow's, Class number, irreducible character, conjugacy class.

ADEBISI , SUNDAY ADESINA

- (i) If $k(G) = p 1 + k(G \mid G)$, then , Z(G) = D and $\chi(1)^2 = p^{m-1} \forall \chi \in Irr(G \mid D)$. Hence ,m is odd .
- (ii) If m is even, then $k(G) > p^2 p + k(G \mid D)$.

2

Let $cl(G) = \{A_1, A_2, \dots, A_t\}$ be the set of all G-classes . i. e. t = k(G); $a_i \in A_i$. Then the number of commuting ordered pairs $(x, y) \in GxG$ is equal to

$$\sum_{i=1} |C_G(a_i)| . |A_i| = |G| .k(G)$$

∴ the number of non-commutating ordered pair $(x, y) \in GxG$ is equal to $|G|^2 - |G|.k(G)$.Let $\alpha_2(G)$ denote the number of ordered non-commuting pairs $(x, y) \in G \ge G = \langle x, y \rangle$ whence $\alpha_2(G) = 0$ if G is either abelian or not generated by 2 elements. Then, Mann has shown that :

$$\sum_{Q \le G} \alpha_2(Q) = |G|^2 - |G| \cdot k(G) \cdot \cdots (1)$$

The following theorem is due to P.Hall . **Proposition** α :(see[20])

- (a) Suppose that G is a 2-generator p-group then , $\varphi_2(G) = (p^2 - 1)(p^2 - p).|\Phi(G)|^2$
- (b) If G = ES(m, p) is an excaspecial group of order p^{2m+1} , then, the number t = t(m, p) of nonabelian subgroup of order p^3 in G is equal to $\frac{p^{2m}-1}{n^2-1} p^{2m-2}$

Proof : (a) $\varphi_2(G)$ is equal to the number of (ordered) minimal bases of G. Now, by assumption , $G/\Phi(G)$ is abelian of type (p,p) . If $a\in G\backslash\Phi(G)$, $G\backslash\langle x,\Phi(G)\rangle$, then , $G=\langle a,b\rangle$. This element a, can be chosen in $|G|-|\Phi(G)|=|\Phi(G)|(p^2-1)$ ways and b, after the choice of a in $|G|-p|\Phi(G)|=|\Phi(G)|(p^2-p)$ ways . Applying the combinatorial product rule , the result follows.

(b) Every nonabelian 2-generator subgroup of G has order p^3 . By using (1) and (a), taking into cognisance the value $k(G) = p^{2m} + p - 1$, we have that $p^3(p-1)(p^2-1)t$ $= p^{2m+1}(p^{2m+1} - p^{2m} - p + 1) = p^{2m+1}(p^{2m} - 1)(p - 1) \qquad \square$ **Theorem** β : Let $|G| = p^{2n+e}$, $e \in \{0, 1\}$. Then \exists a non-negative integer t = t(G) $i = k(G) = p^e + (p^2 - 1)[n + (p - 1)t] = p^e + (p^2 - 1)n + (p^2 - 1)(p - 1)t$ If $Q \leq G$ then $t(G/Q) \leq t(G)$. **Proof :** (See [12]) By $\alpha(a)$, and (1) we get $|G|^2 \equiv |G|.k(G)mod(p^2-1)(p^2-p)$. And so, $k(G) \equiv |G|(mod(p^2 - 1)(p - 1)).$ Now , observe that: $p^{2n+e} = p^e + (p^{2n} - 1)p^e$ $= p^{e} + (p^{2} - 1)(p^{2n-2} + p^{2n-4} + \dots + p^{2} + 1)(p^{e} - 1 + 1)$ = $p^{e} + (p^{2} - 1)(p^{2n-2} + p^{2n-4} + \dots + p^{2} + 1)(p^{2} - 1)$ $\begin{array}{l} & + (p^2 - 1)(p^{2n-2} + p^{2n-4} + \dots + p^2 + 1) \\ & \equiv p^e + (p^2 - 1)(p^{2n-2} + \dots + p^2 + 1) \\ & \equiv p^e + (p^2 - 1)(p^{2n-2} + \dots + p^2 + 1) \\ \end{array}$ (since $p^{2n-2} + \cdots + p^2 + 1 \equiv n(mod(p-1)))$. $\therefore k(G) = p^e + (p^2 - 1)n + (p^2 - 1)(p - 1)t = p^e + (p^2 - 1)[n + (p - 1)t],$ for some $t = t(G) \in \mathbb{Z}$. Now, to prove that t(G) is non negative, use induction on |G|.By assuming that n > 1. Let $Q \leq Z(G)$ be such that |Q| = p. Then k(G) > k(G/Q)since $\bigcap_{\chi \in Irr(G)} Ker\chi(1) = Ker(\rho G) = \{1\}$, where ρG is the regular character of G. Now , let e = 0, then $|G| = p^{2n}$ and $|G/Q| = p^{2(n-1)+1}$, so, by the result above, $k(G) = 1 + (P^2 - 1)[n + (p-1)t(G)]$ and $k(G/Q) = p + (p^2 - 1)[n - 1 + (p-1)t(G/Q)]$ And so, $0 < k(G) - k(G/Q) = 1 - p + (p^2 - 1)[1 + (t(G) - t(G/Q))(p - 1)]$. $\therefore t(G) \ge t(G/Q)$ is obtained, since $t(G) - t(G/Q) \in \mathbb{Z}$,

ON *p*-GROUPS OF ORDER $2^{2n+e} e \in \{0,1\}$

and $1+ [t(G) - t(G/Q)](p-1) > \frac{p-1}{p^2-1} > 0$. And so $,t(G) \geq t(G/Q) \geq 0$, by induction. Let e = 1, then, $|G| = p^{2n+1}$, $|G/Q| = p^{2n}$. Then, by the result, we have that : $k(G) = p + (p^2-1)[n+(p-1)t(G)]$ and $k(G/Q) = 1+ (p^2-1)[n+(p-1)t(G/Q)]$ So that $0 < k(G) - k(G/Q) = p - 1+ (p^2-1)(p-1)[t(G) - t(G/Q)]$. This must be that $t(G) - t(G/Q) \geq 0$. Thus, $t(G) \geq t(G/Q) \geq 0$ **Proposition :** Suppose that Q < G and |G : Q| = p. Let s be the number of G-invariant characters in Irr(Q). Then,

- (i) $pk(G) = k(Q) + (p^2 1)s$.
- (ii) If , in addition , G is a p-group , then p-1 divides s-1 .
- **Proof**: (i) If $\tau \in Irr(Q)$ is *G*-invariant, then, $\tau^{(G)} = \chi^1 + \cdots + \chi^p$

where $Irr(\tau^G) = \{\tau^1, \cdots, \tau^p\}$, $\chi(1) = \tau(1)$. (This was given by Clifford). Now, let $\varphi \in Irr(Q)$ be not Ginvariant, then, $\varphi^G = \chi \in Irr(G)$ and $\chi_Q = \varphi_1 + \cdots + \varphi_p$ is called the Clifford decomposition, where $\varphi = \varphi_1$. Now, since $\bigcup_{\tau \in Irr(Q)} Irr(\tau^G) = Irr(G)$,

$$Irr((\sum_{\chi \in Irr(G)} \chi)Q) = Irr(Q)$$

we thus have that : $k(G) = |Irr(G)| = sp + \frac{1}{p}(|Irr(Q)| - s) = sp + \frac{1}{p}(k(Q) - s)$, and the result follows. By theorem (β) , we have the proof of (ii). \Box **Proposition :** (See [12])The number s = s(G) of nonabelian subgroups of order p^3 is a *p*-group G, $|G| = p^m$, $m \ge 5$ is divisible by p^2 . **Proof :** (See [20])By proposition $\alpha(a)$ and (1), we have that:

sp² $(p-1)(p^2-1) +$

$$\sum_{\leq G, |Q| > p^3} \alpha_2(Q) = p^m \cdot [p^m - k(G)] \cdots (ii)$$

If $Q \leq G$ is a 2-generator subgroup of order $\geq p^4$, then $|\Phi(Q)| \geq p^2$. Thus, $\alpha_2(Q)$ is divisible by p^5 , by $\alpha(a)$. By (ii), we have the result.

It was proved by Mann [in sec. 2 [20]] that

$$k(G) = p^{e} + (p^{2} - 1)[n + (p - 1)t].$$

Now, to exhaust all possibilities,

$$k(G) = p^e + t(1-p) - n(\operatorname{mod} p) = p^e + t - pt - n(\operatorname{mod} p)$$
$$= p^e + t - n(\operatorname{mod} p)$$

Now, when e = 0, $k(G) = 1 + t - n \pmod{4}$

 $|G| = 2^{2n}$ implies $n \ge 1, p = 2$.

If n is even, (then n = 2u say) implies that $k(G) = 1+t-2u \pmod{2} = 1+t \pmod{2}$. Further, if t is even, $k(G) = 1 \pmod{2}$. But if t is odd, t = 2d + 1, say, thus, $k(G) = 0 \pmod{2}$ implies that k(G) is even.

If n is odd, (then, n = 2w + 1 say), implies that $k(G) = 1 + t - 2w - 1 = t \pmod{2}$. So, if t is odd, $k(G) = 1 \pmod{2}$ and even t implies k(G) is even.

By Sylow's, if $B = \{B_i\}$ is a family of all subsets of G, each of order p^k .

Then, |B| = the number of conjugacy classes of order p^k . Hence, it implies that t is odd for p = 2 in harmony with the result $k(G) = 1 \pmod{2}$.

3

ADEBISI , SUNDAY ADESINA

Summarily, we have the generalized result given in tabular form as follows:

e	n	t	k(G)	
0	even	even	odd	
0	even	odd	even	
0	odd	odd	odd	
0	odd	even	even	
1	0	even	even	
1	0	odd	odd	
1	1	even	even	
1	1	odd	odd	
1	even	even	odd	
1	odd	odd	odd	

Bibliography

4

- [1]: Burnside, W. (1913). On the outer automorphisms of a group. Proc. Lond. Math. Soc. (2) 11, (40-42).
- [2]: Govich, N. et.al. (1998) Groups of prime power order with many conjugacy (1913). On some properties of groups whose orders are powers of primes I.Proc. Lond. Math. Soc.(2)11 225-245,13(6-12).
- [3]: Hall, P. (1933). A contribution to the theory of groups of prime power order. Proc. Lond. Math. Soc. 36 (29-95).
- [4]: Hall, P. (1936). On a Theorem of Frobernius Proc. Lond. Math. Soc. 40 (468-5011).
- [5]: Hall, P. (1940). The classification of prime power groups. J. reine angew. Math. 182 (130-141).
- [6]: Isaacs, I.M. & Moreto, A. (2001). The character degrees and nilpotence class of a p-group. J. Algebra 238 (827-842).
- [7]: Issacs, I.M. (1972). The number of generators of a linear p-group, Can. J.Math.24(852-858).
- [8]: Isaacs, I.M. (1976). Character Theory of Finite Groups. Acad. Press, N.Y.
- [9]: Issacs, I.M. (1986). Sets of p-powers as irreducible character degrees. Proc. Amer. Math. Soc. 96(551-552).
- [10]: Issacs, I.M. (1994). Algebra: A Graduate Course Brooks/Cole.
- [11]: Knoche, H.G. (1951). Über den Frobeniusschen Klassenbegriff in nilpotenten Gruppen. I, II. Math. Z 55 (71-83) Ibid 59 (8-16).
- [12]: Mann, A. (1978). Conjugacy Classes in finite groups. Israel J. Math. 31 (78-84).
- [13]: Mann, A. (1990). On the power structure of some *p*-groups Circ. Mat. Palermo II, 23, (227-235).
- [14]: Mann, A. (1995). A transfer result for powerful Sylow Subgroups. J. Algebra 178 (299-301).

ON *p*-GROUPS OF ORDER $2^{2n+e} e \in \{0, 1\}$

- [15]: Mann, A. (1999). Minimal Characters of *p*-groups. J. Group Theory 2 (225-250).
- [16]: Mann, A. (2007). The power structure of p-groups I. J. Algebra 42 (121-135), 318(953-956).
- [17]: Weir, A. (1955). Sylow *p*-subgroups of the classical groups over finite fields with characteristic prime to *p*. Proc. Amer. Math. Soc. 6 (529-533).
- [18]: Weir, A. (1955). The Sylow subgroups of the symmetric groups. Proc. Amer. Math. Soc. 6 (534-541).
- [19]: Wielandt, H. (1959). Ein Beweis für die Existenz der Sylowgruppen. Arch. Math. 10(401-402) (MR26#504).
- [20]: Yakov Berkovich (2008). Groups of prime power order vol. 1. Walter de Gruyter. GmbH & Co. KG, 10785 Berlin, Germany.

Department of Mathematics, Faculty of Science, University of Lagos, Nigeria $E\text{-}mail\ address:\ adesinasunday@yahoo.com$

 $\mathbf{5}$