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ABSTRACT:  
In this paper, we embed a control operator in a modified conjugate gradient method. The 
embedded control operator in the modified conjugate gradient method was used to solve the 
Lagrange form of optimal control problems. The solutions obtained in all the problems 
converged appropriately in just few iterations by considering the repetition of the functional 
values and gradient norm as the basis of convergence. 
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1.0 INTRODUCTION 
Optimal control theory is a branch of applied mathematics that deals with finding a control law 
for a dynamical system over a period of time such that an objective function is optimized. It has 
numerous applications in the fields of science, engineering, medicine and social sciences. 
Several methods are available for solving optimal control problems. Ibiejugba and Onumanyi [4] 
constructed a control operator, the explicit knowledge of which was used to devise an Extended 
Conjugate Gradient Method (ECGM) algorithm for solving the Lagrange form of optimal control 
problems without delay in the state equations.  Aderibigbe [2] constructed a control operator 
which enabled the ECGM to be employed in solving the Lagrange form of optimal control 
problems but with delay parameter in the state equations. The work of [2] was subsequently 
extended to the Bolza form of optimal control problems by [1]. As a result of the successes 
recorded by [4] and [2], Olorunsola and Olotu [6] came up with the idea of discretizing the 
component of the control operators to solve continuous optimal control problems constrained by 
evolution equation. The work of these researchers gave us the desire to embed the control 
operator constructed by [4] in a Modified Conjugate Gradient Method Algorithm developed in 
[5] to solve the Lagrange form of  optimal control problems and the results obtained converges 
appropriately in just few iterations.  
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2.0 MATERIAL AND METHODS 
2.1 Modified Conjugate Gradient Methods (MCGM) 

The Modified Conjugate Gradient Method (MCGM) developed in [5] was designed to solve 
equations of the form: 

Minimize 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥𝑇𝑇𝐴𝐴𝐴𝐴 − 𝑏𝑏𝑇𝑇𝑥𝑥                                                                                     (1) 

The MCGM is a variant of the gradient method. In its simplest form, the gradient method uses 
the iterative scheme:  
𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼∇𝑓𝑓(𝑥𝑥)                                                                                       (2)           
to generate a sequence {𝑥𝑥𝑖𝑖}𝑖𝑖=1

𝑛𝑛  of vectors which converges to the minimum of 𝑓𝑓(𝑥𝑥), [3]. The 
parameter 𝛼𝛼 appearing in (2) denotes the step length of the descent direction. In particular, if F is 
a function on a Hibert space ℋ, F admits a Taylor series expansion 
𝑓𝑓(𝑥𝑥) = 𝑓𝑓0 + 〈𝑎𝑎, 𝑥𝑥〉ℋ + 1

2
〈𝑥𝑥,𝑄𝑄𝑄𝑄〉ℋ                   (3) 

where 𝑎𝑎, 𝑥𝑥 ∈  ℋ and Q is a positive definite, symmetric, linear operator, then it can be shown 
that f possesses a unique minimum 𝑥𝑥∗ ∈ ℋ and that ∇𝑓𝑓(𝑥𝑥) = 0, [3]. The MCGM algorithm for 
iteratively locating the minimum 𝑥𝑥∗ of 𝑓𝑓(𝑥𝑥) in ℋ as described by [5] is given as follows:  
Step 1:  Guess the initial element,  𝑥𝑥0  

Step 2:  Compute the gradient of the function at initial guess,  𝑔𝑔0 

Step 3:  Compute the descent direction,  𝑝𝑝0 = −𝑔𝑔0 

Step 4:  Set 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑝𝑝𝑖𝑖  ,    ∀ 𝑖𝑖 = 0,  1,  2,  .  .  . ,  𝑛𝑛 

where  𝛼𝛼𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑇𝑇𝑔𝑔𝑖𝑖
𝑝𝑝𝑖𝑖𝑇𝑇𝑄𝑄𝑝𝑝𝑖𝑖

 ,   ∀ 𝑖𝑖 = 0,  1,  2,  .  .  . ,  𝑛𝑛 

Step 5:  Compute 𝑔𝑔𝑖𝑖+1 = 𝑔𝑔𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑄𝑄𝑝𝑝𝑖𝑖 ,   ∀ 𝑖𝑖 = 0,  1,  2,  .  .  . ,  𝑛𝑛 

Step 6:  Update the descent direction,  𝑝𝑝𝑖𝑖+1 = −𝑔𝑔𝑖𝑖+1 + 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖 , 

 where 𝛽𝛽𝑖𝑖 = −(𝑔𝑔𝑖𝑖+1+𝑔𝑔𝑖𝑖)𝑇𝑇𝑔𝑔𝑖𝑖+1 
𝑝𝑝𝑖𝑖𝑇𝑇𝑔𝑔𝑖𝑖

,                ∀ 𝑖𝑖 = 0,  1,  2,  .  .  . ,  𝑛𝑛  

Step 7:  𝐼𝐼𝑓𝑓 𝑔𝑔𝑖𝑖 = 0 for some 𝑖𝑖 then, terminate the sequence; else set  

 𝑖𝑖 = 𝑖𝑖 + 1  and go to Step 4 

In the iterative steps 2 through 7 above, 𝑔𝑔𝑖𝑖  denotes the gradient of the function f at 𝑥𝑥𝑖𝑖 , 𝑝𝑝𝑖𝑖  denotes 
the descent direction at i-th step of the algorithm and 𝛼𝛼𝑖𝑖  denotes the step length of the descent 
sequence {𝑥𝑥𝑖𝑖}. Step 3, 4, 5, and 6 of the algorithm reveal the crucial role of the linear operator Q 
in determining the step length of the descent sequence and also in generating a conjugate 
direction of search. 
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2.2 The Extended Modified Conjugate Gradient Method (EMCGM) 
According to [2], an extended modified conjugate gradient method (EMCGM) adopts the 
MCGM to obtain the solution of Lagrange form of optimal control problem of the form: 

min(𝑥𝑥 , 𝑢𝑢) 𝐽𝐽 = ∫ {𝑥𝑥𝑇𝑇(𝑡𝑡)𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝐵𝐵𝐵𝐵(𝑡𝑡)}𝑡𝑡𝑓𝑓
𝑡𝑡0

𝑑𝑑𝑑𝑑                            

(4) 

subject to:  𝑥̇𝑥(𝑡𝑡) =  𝐶𝐶𝐶𝐶(𝑡𝑡) +  𝐷𝐷𝐷𝐷(𝑡𝑡);  0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                (5) 

𝑥𝑥(0) =  𝑥𝑥0 

where A, B, C and D are specified constants such that 𝐴𝐴 > 0,  𝐵𝐵 > 0; 𝑥𝑥0 and 𝑡𝑡𝑓𝑓  are given, 𝑥̇𝑥(t) 
denotes the derivative of the state vector, x(. ), with respect to time and u(. ) is the control vector. 
As conventional with penalty function techniques, (4) and (5) may equivalently be written in the 
form: 
min(𝑥𝑥 , 𝑢𝑢) 𝐽𝐽 = ∫ �𝐴𝐴𝑥𝑥2(𝑡𝑡) + 𝐵𝐵𝑢𝑢2(𝑡𝑡) + 𝜇𝜇||𝑥̇𝑥(𝑡𝑡) −   𝐶𝐶𝐶𝐶(𝑡𝑡) −  𝐷𝐷𝑢𝑢(𝑡𝑡)||2�𝑇𝑇

0 𝑑𝑑𝑑𝑑,  𝜇𝜇 >  0              (6) 

where 𝜇𝜇 is the penalty parameter and 𝜇𝜇||𝑥̇𝑥(𝑡𝑡) −   𝐶𝐶𝐶𝐶(𝑡𝑡) −  𝐷𝐷𝐷𝐷(𝑡𝑡)||2 is the penalty term. The 
control operator, Q, is related to the problem in the sense that: 
〈𝑦𝑦,  𝑄𝑄�𝑦𝑦〉𝐻𝐻  ≅∫ �𝐴𝐴𝑥𝑥2(𝑡𝑡) + 𝐵𝐵𝑢𝑢2(𝑡𝑡) + 𝜇𝜇�𝑥̇𝑥(𝑡𝑡) −   𝐶𝐶𝐶𝐶(𝑡𝑡) +  𝐷𝐷𝐷𝐷(𝑡𝑡)�

2
�𝑇𝑇

0 𝑑𝑑𝑑𝑑                                (7) 

where 𝑦𝑦𝑇𝑇(𝑡𝑡) = �𝑥𝑥(𝑡𝑡),  𝑢𝑢(𝑡𝑡�) and ℋ is a suitably chosen Hilbert space. According to [4], the 
operator 𝑄𝑄�  is then utilized in the iterative procedure of the MCGM in order to arrive at a 
solution. Generally, for discrete type of Optimization problems that satisfies the hypotheses in 
(8) below, the linear operator Q is readily determined in [4]. 
𝑓𝑓(𝑥𝑥) = 𝑓𝑓0 + 〈𝑎𝑎, 𝑥𝑥〉ℋ + 1

2
〈𝑥𝑥,𝑄𝑄𝑄𝑄〉ℋ ,                                                                                           (8) 

Such problems enjoyed the beauty of the MCGM as a computational scheme since MCGM 
exhibit quadratic convergence and require only a little more computation per iteration. 
According to [4], the operator Q is such that: 

 (𝑄𝑄�𝑧𝑧)(𝑡𝑡) ≡ �𝑄𝑄11 𝑄𝑄12
𝑄𝑄21 𝑄𝑄22

� �
𝑥𝑥(𝑡𝑡)
𝑢𝑢(𝑡𝑡)� = �(𝑄𝑄11𝑥𝑥)(𝑡𝑡) +

(𝑄𝑄21𝑥𝑥)(𝑡𝑡) + (𝑄𝑄12𝑢𝑢)(𝑡𝑡)
(𝑄𝑄22𝑢𝑢)(𝑡𝑡)�                   (9) 

with the composite operators 𝑄𝑄11,   𝑄𝑄12,  𝑄𝑄21  𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄22 explicitly given by 

(𝑄𝑄11𝑥𝑥)(𝑡𝑡) = −𝜇𝜇�𝑥̇𝑥(0) −  𝐶𝐶𝐶𝐶(0)�𝑆𝑆𝑆𝑆𝑆𝑆ℎ + 𝜇𝜇 ∫ �𝑥̇𝑥(𝑠𝑠) −  𝐶𝐶𝐶𝐶(𝑠𝑠)�𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 − ∫ [(𝐴𝐴 +𝑡𝑡

0

  𝜇𝜇𝐶𝐶2)𝑥𝑥(𝑠𝑠) − 𝜇𝜇𝜇𝜇𝑥̇𝑥(𝑠𝑠)]𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑑𝑑 + [(𝑎𝑎 + 𝜇𝜇𝐶𝐶2)𝑥𝑥(0) − 𝜇𝜇𝜇𝜇𝑥̇𝑥(0)]𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑡𝑡) + 𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑡𝑡)
𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑇𝑇) �(𝑎𝑎 +

𝜇𝜇𝐶𝐶2)𝑥𝑥(𝑇𝑇) − 𝜇𝜇𝜇𝜇𝑥̇𝑥(𝑇𝑇) + 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇ℎ(𝑇𝑇)�𝑥̇𝑥(0) −  𝐶𝐶𝐶𝐶(0)� −  𝜇𝜇 ∫ �𝑥̇𝑥(𝑠𝑠) −  𝐶𝐶𝐶𝐶(𝑠𝑠)�𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑇𝑇
0 (𝑇𝑇 − 𝑠𝑠)𝑑𝑑𝑑𝑑 +
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∫ [(𝐴𝐴 + 𝜇𝜇𝐶𝐶2)𝑥𝑥(𝑠𝑠) − 𝜇𝜇𝜇𝜇𝑥̇𝑥(𝑠𝑠)]𝑇𝑇
0 𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑇𝑇 − 𝑠𝑠)𝑑𝑑𝑑𝑑 −  [(𝐴𝐴 + 𝜇𝜇𝐶𝐶2)𝑥𝑥(0) − 𝜇𝜇𝜇𝜇𝑥̇𝑥(0)]𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑇𝑇)�, 0 ≤

𝑡𝑡 ≤ 𝑇𝑇                           (10) 

(𝑄𝑄21𝑥𝑥)(𝑡𝑡) = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑡𝑡) −  𝜇𝜇𝜇𝜇𝑥̇𝑥(t),0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                    (11) 

(𝑄𝑄12𝑢𝑢)(𝑡𝑡) = 𝜇𝜇𝜇𝜇𝜇𝜇(0)𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑡𝑡) −  𝜇𝜇 ∫ 𝐷𝐷𝐷𝐷(𝑠𝑠)𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 + 𝜇𝜇 ∫ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠)𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑡𝑡 − 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 +

 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(0)𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑡𝑡) + 𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑡𝑡)
𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑇𝑇) �𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑇𝑇) −  𝜇𝜇𝜇𝜇𝜇𝜇(0)𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑇𝑇) + 𝜇𝜇 ∫ 𝐷𝐷𝐷𝐷(𝑠𝑠)𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑇𝑇 − 𝑠𝑠)𝑑𝑑𝑑𝑑𝑇𝑇

0  +

𝜇𝜇 ∫ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠)𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑇𝑇 − 𝑠𝑠)𝑑𝑑𝑑𝑑𝑇𝑇
0 +  𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(0)𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑇𝑇)�, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                (12) 

(𝑄𝑄22𝑢𝑢)(𝑡𝑡) = 𝐵𝐵𝐵𝐵(𝑡𝑡) + 𝜇𝜇𝐷𝐷2𝑢𝑢(𝑡𝑡), 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                     (13) 

2.3 Extended Modified Conjugate Gradient Method (EMCGM) Algorithm 
By embedding the control operator Q in the Modified Conjugate Gradient Method, we have the 
algorithm as follows: 

 Step 1:  Guess the initial element, 𝑥𝑥0, 𝑢𝑢0 ∈ ℋ 

Step 2:  Compute the descent direction, 𝑝𝑝𝑥𝑥 ,0 = −𝑔𝑔𝑥𝑥 ,0 and     𝑝𝑝𝑢𝑢 ,0 = −𝑔𝑔𝑢𝑢 ,0 

Step 3:  Set 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 𝛼𝛼𝑥𝑥 ,𝑖𝑖𝑝𝑝𝑥𝑥 ,𝑖𝑖  ,   

where  𝛼𝛼𝑥𝑥 ,𝑖𝑖 = 𝑔𝑔𝑥𝑥 ,𝑖𝑖
𝑇𝑇𝑔𝑔𝑥𝑥 ,𝑖𝑖

𝑝𝑝𝑥𝑥 ,𝑖𝑖𝑇𝑇𝑄𝑄𝑝𝑝𝑥𝑥 ,𝑖𝑖
     and 

Set 𝑢𝑢𝑖𝑖+1 = 𝑢𝑢𝑖𝑖 + 𝛼𝛼𝑢𝑢 ,𝑖𝑖𝑝𝑝𝑢𝑢 ,𝑖𝑖  ,   

where  𝛼𝛼𝑢𝑢 ,𝑖𝑖 = 𝑔𝑔𝑢𝑢 ,𝑖𝑖
𝑇𝑇𝑔𝑔𝑢𝑢 ,𝑖𝑖

𝑝𝑝𝑢𝑢 ,𝑖𝑖𝑇𝑇𝑄𝑄𝑝𝑝𝑢𝑢 ,𝑖𝑖
,    

Step 4:  Compute 𝑔𝑔𝑥𝑥 ,𝑖𝑖+1 = 𝑔𝑔𝑥𝑥 ,𝑖𝑖 + 𝛼𝛼𝑥𝑥 ,𝑖𝑖𝑄𝑄𝑝𝑝𝑥𝑥 ,𝑖𝑖 ,    ∀ 𝑖𝑖 = 0,  1,  2,  .  .  . ,  𝑛𝑛 

and Compute 𝑔𝑔𝑢𝑢 ,𝑖𝑖+1 = 𝑔𝑔𝑢𝑢 ,𝑖𝑖 + 𝛼𝛼𝑢𝑢 ,𝑖𝑖𝑄𝑄𝑝𝑝𝑢𝑢 ,𝑖𝑖 ,    ∀ 𝑖𝑖 = 0,  1,  2,  .  .  . ,  𝑛𝑛 

Step 5:  Set 𝑝𝑝𝑥𝑥 ,𝑖𝑖+1 = −𝑔𝑔𝑥𝑥 ,𝑖𝑖+1 + 𝛽𝛽𝑥𝑥 ,𝑖𝑖𝑝𝑝𝑥𝑥 ,𝑖𝑖 ,       

where 𝛽𝛽𝑥𝑥 ,𝑖𝑖 = −�𝑔𝑔𝑥𝑥 ,𝑖𝑖+1+𝑔𝑔𝑥𝑥 ,𝑖𝑖�
𝑇𝑇
𝑔𝑔𝑥𝑥 ,𝑖𝑖+1 

𝑝𝑝𝑥𝑥 ,𝑖𝑖𝑇𝑇𝑔𝑔𝑥𝑥 ,𝑖𝑖
                 

and Set 𝑝𝑝𝑢𝑢 ,𝑖𝑖+1 = −𝑔𝑔𝑢𝑢 ,𝑖𝑖+1 + 𝛽𝛽𝑢𝑢 ,𝑖𝑖𝑝𝑝𝑢𝑢 ,𝑖𝑖 ,       

where 𝛽𝛽𝑢𝑢 ,𝑖𝑖 = −�𝑔𝑔𝑢𝑢 ,𝑖𝑖+1+𝑔𝑔𝑢𝑢 ,𝑖𝑖�
𝑇𝑇
𝑔𝑔𝑢𝑢 ,𝑖𝑖+1 

𝑝𝑝𝑢𝑢 ,𝑖𝑖𝑇𝑇𝑔𝑔𝑢𝑢 ,𝑖𝑖
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Step 6:  If 𝑔𝑔𝑖𝑖 = 0 for some i then, terminate the sequence;  

else Set  𝑖𝑖 = 𝑖𝑖 + 1  and go to Step 3 

In the iterative steps 2 through 6 above, 𝑔𝑔𝑖𝑖  denotes the gradient of the function f at 𝑥𝑥𝑖𝑖 , 𝑝𝑝𝑖𝑖  denotes 
the descent direction at i-th step of the algorithm and 𝛼𝛼𝑖𝑖  denotes the step length of the descent 
sequence {𝑥𝑥𝑖𝑖}. Step 3, 4, 5, and 6 of the algorithm reveal the crucial role of the linear operator Q 
in determining the step length of the descent sequence and also in generating a conjugate 
direction of search. 
 

3.0 COMPUTATIONAL RESULTS  
 

Problem 1 

min
(𝑥𝑥 ,𝑢𝑢)

�{𝑥𝑥2(𝑡𝑡) + 𝑢𝑢2(𝑡𝑡)}𝑑𝑑𝑑𝑑; 0 ≤ 𝑡𝑡 ≤ 1
1

0

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:  𝑥̇𝑥(𝑡𝑡) = 3𝑥𝑥(𝑡𝑡) + 2𝑢𝑢(𝑡𝑡);  0 ≤ 𝑡𝑡 ≤ 1 

𝑥𝑥(0) = 1,  u(0) = 1 

Table 1: Solution to Problem 1 

ITR X U FV NORM 

0 1.00000000 1.00000000 127.000000 2.82842712 

1 0.94459164 0.94459164 113.316178 0.3843021100 

2 0.99207674 0.89744997 115.608048 0.2511465700 

3 0.99702840 0.90252829 116.823502 0.25336093e-1 

4 0.99346609 0.90596876 116.640165 0.1575323e-1 

5 0.99316228 0.90564622 116.564396 0.13720856e-2 

6 0.99335280 0.90546863 116.574820 0.6408406e-3 
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7 0.99336482 0.90548199 116.577876 0.42015591e-4 

8 0.99335895 0.90548720 116.577530 0.11481269e-4 

9 0.99335875 0.90548695 116.577476 0.38605869e-6 

10 0.99335881 0.90548690 116.577479 0.51135172e-7 

 

Problem 2 

min
(𝑥𝑥 ,𝑢𝑢)

�{2𝑥𝑥2(𝑡𝑡) + 2𝑢𝑢2(𝑡𝑡)}𝑑𝑑𝑑𝑑; 0 ≤ 𝑡𝑡 ≤ 1
1

0

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:  𝑥̇𝑥(𝑡𝑡) = 3𝑥𝑥(𝑡𝑡) + 𝑢𝑢(𝑡𝑡);  0 ≤ 𝑡𝑡 ≤ 1 

𝑥𝑥(0) = 1,  u(0) = 1 

 

Table 2: Solution to Problem 2 

ITR X U FV NORM 

0 1.00000000 1.00000000 84.0000000 5.65685425000 

1 0.65660979 0.65660979 36.2154592 0.17067082000 

2 0.80765882 0.540223 45.7910629 1.10796240000 

3 0.75173267 0.49197846 39.3491829 0.33574668000 

4 0.65980865 0.59925232 34.8368095 0.27399550000 

5 0.67294755 0.60584264 36.0846718 0.20026079e-1 

6 0.67694711 0.59743355 36.1695126 0.32464018e-1 
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7 0.67854124 0.59830155 36.3245773 0.61276952e-2 

8 0.67735273 0.60040097 36.2877823 0.50764396e-2 

9 0.67711125 0.60025604 36.2638985 0.56479051e-3 

10 0.67722327 0.60007912 36.2679647 0.23378155e-3 

 

Problem 3 

min
(𝑥𝑥 ,𝑢𝑢)

�{−𝑥𝑥2(𝑡𝑡) − 𝑢𝑢2(𝑡𝑡)}𝑑𝑑𝑑𝑑; 0 ≤ 𝑡𝑡 ≤ 1
1

0

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:  𝑥̇𝑥(𝑡𝑡) = 3𝑥𝑥(𝑡𝑡) + 2𝑢𝑢(𝑡𝑡);  0 ≤ 𝑡𝑡 ≤ 1 

𝑥𝑥(0) = 1, u(0) = 1 

 

Table 3: Solution to Problem 3 

ITR X U FV NORM 

0 1.00000000 1.00000000 123.000000 2.8284271200 

1 1.05775675 1.05775675 137.618468 0.3571074700 

2 0.98757777 1.12735212 133.862040 0.5199856400 

3 0.97776469 1.11705675 131.306666 0.74244322e-1 

4 0.98854321 1.10685321 131.925267 0.06200040000 

5 0.9896995 1.10810198 132.229413 0.70059025e-2 
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6 0.98865632 1.10906026 132.166464 0.50916197e-2 

7 0.98856343 1.10895652 132.141675 0.48872354e-3 

8 0.98863549 1.10889256 132.146250 0.27767104e-3 

9 0.98864043 1.1088983 132.147590 0.21025203e-4 

10 0.98863733 1.10890093 132.147382 0.80774159e-5 

 

4.0 DISCUSSION OF RESULTS AND CONCLUSION 

From table 1 above, we can easily see that the functional value of problem 1 converges to 
116.577479 as the gradient norm tends to zero in just few iterations. The same is also true for 
problem 2 that converges to 36.2679647, in table 2, as the gradient norm tends to zero in just few 
iterations.  The result of problem 3 is shown in table 3 where the functional value converges to 
132.147382 in the tenth iteration.  

Therefore, with the penalty parameter 𝜇𝜇 = 5, the results obtained in each of the problems 
performs very well as we can see from the results in tables 1 to 3. Hence, all the problems 
considered converge appropriately in just few iterations by considering the repetition of the 
functional values and gradient norm as the basis of convergence. 
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