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ABSTRACT 

Diophantine problems gave fewer equations than unknowns and involve 
finding integers that solve simultaneously all equations. The simplest linear 
Diophantine equation takes the form 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are given 
integers. In this paper, we presented some theorems that described solution 
to such equation. It also generalized various axioms of Diophantine m – 
tuples equation. 
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1.0  INTRODUCTION 
The Greek mathematician Diophantus of Alexandria first studied the problem of finding 
four numbers such that the product of any two of them increased by unity is a perfect 
square. He found a set of four positive rationals with the this property: � 1

16
, 33

16
, 17

4
, 105

16
�. 

However, the first set of four positive integers with the above property. {1, 3, 8, 120}, was 
found by Fermat. Indeed, we have  

1 · 3 + 1 = 22,         1 · 120 + 1 = 112, 
1 · 8 + 1 = 32,         3 · 120 + 1 = 192, 
3 · 8 + 1 = 52,         8 · 120 + 1 = 312. 

Euler found the infinite family such sets: 

GSJ: Volume 10, Issue 5, May 2022 
ISSN 2320-9186 2329

GSJ© 2022 
www.globalscientificjournal.com

mailto:fssalai@gmail.com


{a, b, a + b + 2r, 4r(r + a)(r + b) }, where 𝑎𝑎𝑏𝑏 + 1 = 𝑟𝑟2. He was also able to add the fifth 
positive rational, 777480 / 8288641, to the Fermat set. In 2019, Stoll [1] proved that 
extension of Fermat’s set to rational quintuples with the same property is unique. 

In 1999, the first example of a set of six positive rationals with the property of Diophantus 
and Fermat was found by Gibbs [3, 2]: 

{11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16}. 

These examples motivate the following definitions: 

Definition 1.1: A set of m positive integers {a1, a2, ... , am} is called a Diophantine m-
tuple if ai · aj + 1 is a perfect square for all 1 ≤ i < j ≤ m. 

Definition 1.2: A set of m non-zero rationals {a1, a2, ... , am} is called a rational 
Diophantine m-tuple if ai · aj + 1 is a perfect square for all 1 ≤ i < j ≤ m. 

It is natural to ask how large these sets, i.e. (rational) Diophantine tuples, can be. On the 
other hand, it seems that in the rational case we do not have even a widely accepted 
conjecture. In particular, no absolute upper bound for the size of rational Diophantine m-
tuples is known. 

In the integer case we have the following folklore "Diophantine quintuple conjecture". 

Conjecture 1.1: There does not exist a Diophantine quintuple. 

The first important result concerning this conjecture was proved in 1969 by Baker and 
Davenport [8]. Using Baker's theory on linear forms in logarithms of algebraic numbers 
and a reduction method based on continued fractions, they proved that if d is a positive 
integer such that {1, 3, 8, d} forms a Diophantine quadruple, then d = 120. It implies that 
the Fermat's set {1, 3, 8, 120} cannot be extended to a Diophantine quintuple. This 
problem was stated in 1967 by Gardner [4] and in 1968 by van Lint [5]. The same result 
was proved later, with different methods, by Kanagasabapathy & Ponnudurai [6]. 

2.0    BACKGROUND OF THE STUDY 
In 1979 Arkin, Hoggatt and Strauss [7] proved that every Diophantine triple can be 
extended to a Diophantine quadruple. More precisely, let {a, b, c} be a Diophantine triple 
and ab + 1 = r2,     ac + 1 = s2,     bc + 1 = t2, where 𝑟𝑟, 𝑠𝑠, 𝑡𝑡 are positive integer. Define  
d+ = a + b + c + 2abc + 2rst. 

Then {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑+} is a Diophantine quadruple. Indeed   

ad+ + 1 = (at + rs)2,     bd+ + 1 = (bs + rt)2,     cd+ + 1 = (cr + st)2. 

Now we can give a stronger version of the Diophantine quintuple conjecture  

Conjecture 2.1: If {a, b, c, d} is a Diophantine quadruple and d > max {a, b, c}, then d = d+. 
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It is clear that Conjecture 2.1 implies that there does not exist a Diophantine quintuple. 

Baker & Davenport [8] verified Conjecture 2.1 for the Diophantine triple {1, 3, 8}. They 
verified the conjecture for the triple {2, 4, 12} and Kedlaya [9] for the triples {1, 3, 120}, {1, 
8, 120}, {1, 8, 15}, {1, 15, 35}, {1, 24, 35} and {2, 12, 24}. In [10], the conjecture was verified 
for all triples of the form {k - 1, k + 1, 4k} and {F2k, F2k+2, F2k+4}, respectively. Furthemore, 
in [11], Dujella & Pethő proved that the pair {1, 3} cannot be extended to a Diophantine 
quintuple. In 2008, Fujita [12] proved that for k ≥ 2, the Diophantine pair {k - 1, k + 
1} cannot be extended to a Diophantine quintuple. 

Baker & Davenport [8] verified Conjecture 2.1 for the Diophantine triple {1, 3, 8}. They 
verified the conjecture for the triple {2, 4, 12} and Kedlaya [9] for the triples {1, 3, 120}, {1, 
8, 120}, {1, 8, 15}, {1, 15, 35}, {1, 24, 35} and {2, 12, 24}. In [10], the conjecture was verified 
for all triples of the form {k - 1, k + 1, 4k} and {F2k, F2k+2, F2k+4}, respectively. Furthemore, 
in [11], Dujella & Pethő proved that the pair {1, 3} cannot be extended to a Diophantine 
quintuple. In 2008, Fujita [12] proved that for k ≥ 2, the Diophantine pair {k - 1, k + 
1} cannot be extended to a Diophantine quintuple. 

A Diophantine quadruple D = {a, b, c, d}, where a < b < c < d, is called regular if d = d+. 
Equivalently, D is regular iff (a + b - c - d)2 = 4(ab + 1)(cd + 1) 

This equation is a quadratic equation in d. one root of this equation is d+  and the other 
root is 

 d_ = a + b + c + 2abc - 2rst. 

It is easy to check all “small” Diophantine quadruples are regular. Examples there are 
exactly 207 quadruples with max {a, b, c, d}< 106 and all of them are regular. 

Since the number of integer points on an elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) is finite, 
it follows that there does not exist an infinite set of positive integers with the property of 
Diophantus and Fermat. However, bounds for the size and for the number of solutions 
depend on 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and, accordingly, they do not immediately yield an absolute bound for the 
size of such set.  

Baker & Davenport [8] verified Conjecture 2.1 for the Diophantine triple {1, 3, 8}. They 
verified the conjecture for the triple {2, 4, 12} and Kedlaya [9] for the triples {1, 3, 120}, {1, 
8, 120}, {1, 8, 15}, {1, 15, 35}, {1, 24, 35} and {2, 12, 24}. In [10], the conjecture was verified 
for all triples of the form {k - 1, k + 1, 4k} and {F2k, F2k+2, F2k+4}, respectively. Furthemore, 
in [11], Dujella & Pethő proved that the pair {1, 3} cannot be extended to a Diophantine 
quintuple. In 2008, Fujita [12] proved that for k ≥ 2, the Diophantine pair {k -
1, k +1} cannot be extended to a Diophantine quintuple. 

A Diophantine quadruple D = {a, b, c, d}, where a < b < c < d, is called regular if d = d+. 
Equivalently, D is regular iff (a + b - c - d)2 = 4(ab + 1)(cd + 1) 
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This equation is a quadratic equation in d. one root of this equation is d+  and the other 
root is 

 d_ = a + b + c + 2abc - 2rst. 

It is easy to check all “small” Diophantine quadruples are regular. Examples there are 
exactly 207 quadruples with max {a, b, c, d}< 106 and all of them are regular. 

Since the number of integer points on an elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1) is finite, 
it follows that there does not exist an infinite set of positive integers with the property of 
Diophantus and Fermat. However, bounds for the size and for the number of solutions 
depend on 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and, accordingly, they do not immediately yield an absolute bound for the 
size of such set.  

The first absolute bound (m ≤ 8) for the size of Diophantine m-tuples was given in 2001 
by Dujella [13]. In 2004, this result was significantly improved in [14]. The main results of 
[14] are the following theorems. 
 

Theorem 2.1: There does not exist a Diophantine sextuple. 

Theorem 2.2: There are only finitely many Diophantine quintuples. 

Moreover, the result from Theorem 2.2 is effective. Namely, it was proved in [14] that all 
Diophantine quintuples Q satisfy max Q < 1010 . This implies that there are at most 
101930 Diophantine quintuples. This bound was significantly improved by Fujita in [168] 
by showing that there exist at most 10276 Diophantine quintuples.  

Theorems 2.1 and 2.2 improve results from [16] where it is proved that there does not 
exist a Diophantine 9-tuple and that there are only finitely many Diophantine 8-tuples. 

Theorems 2.1 and 2.2 improve results from [16] where it is proved that there does not 
exist a Diophantine 9-tuple and that there are only finitely many Diophantine 8-tuples. 

As in [16], the main idea was to prove Conjecture 2.1 for a wide class of Diophantine 
triples, namely, for triples satisfying some gap conditions. However, in [14] these gap 
conditions are much weaker than  in [16]. Thus, the class of Diophantine triples for which 
Conjecture 2.1 can be proved is now so wide that in an arbitrary Diophantine quadruple 
(with sufficiently large elements), we may find a sub-triple belonging to that class. And 
this is just what is needed in order to prove Theorem 2.2. 

In the proof of Conjecture 2.1 for a triple {a, b, c}, the problem is first transformed into 
solving systems of simultaneous Pellian equations. This reduces to finding intersection of 
binary recursive sequences. Next step is the determination of initial terms of these 
sequences, under assumption that they have nonempty intersection which induces a 
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solution of the original problem. This part is considerable improvement of the 
corresponding part of [16]. This improvement is due to new "gap principles". 

Applying some congruence relations modulo c2, lower bounds for solutions are obtained. In 
obtaining these bounds, it is necessary to assume that our triple satisfies some gap 
conditions, e.g. b > 4a and c > b2.5. Let us note that these conditions are much weaker then 
conditions used in [16], and this is due to more precise determination of the initial terms.  

The comparison of these lower bounds with upper bounds obtained from the Baker's 
theory on linear forms in logarithms of algebraic numbers (the theorem of Baker and 
Wüstholz, or more recent theorem of Matveev) yields Theorem 2.2, and the comparison 
with upper bounds obtained from a theorem of Bennett on simultaneous approximations 
of algebraic numbers yields Theorem 2.1. 

We also mention a result by Fujita [12], who proved that any Diophantine quintuple 
contains a regular Diophantine quadruple, i.e. if {a, b, c, d, e} is a Diophantine quintuple 
and a < b < c < d < e, then d = d+. 

From the results of [12] and [13], it follows that any 
quintuple {a, b, c, d, e} with a < b < c < d < e must be of one of the following types: 

i.               4a < b   and   4ab + a + b < c < b3/2, 

ii.  4a < b   and   c = a + b + 2√ab+1, 

iii.          4a < b   and   c > b3/2, 

iv.          b < 4a   and   c = a + b + 2√ab+1. 

Theorem 2.3: There does not exist a Diophantine quintuple. 

The three new key arguments that lead to the proof are: 

the definition of an operator on Diophantine triples and their classification; 

the use of sharp lower bounds for linear forms in three logarithms obtained by applying a 
result due to Mignotte; 

the use of new congruences in the case of Euler quadruples {a,  b,  a + b + 2r,  4r(r + a)(r +
b)}. 

Conjecture 2.1 still remains open. In that direction, [9] proved that any fixed Diophantine 
triple can be extended to a Diophantine quadruple in at most 11 ways by joining a fourth 
element exceeding the maximal element in the triple, while [14] improved that result by 
replacing 11 with 8. 
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3.0  VARIOUS GENERALIZATIONS 

Theorem 3.1: Let k ≥ 3 be an integer and let 

C(k) = sup {|S| : S is a k-th power Diophantine tuple}. 

Then C(3) ≤ 7, C(4) ≤ 5, C(k) ≤ 4   for 5 ≤ k ≤ 176, and C(k) ≤ 3 for k ≥ 177. 

A slightly more general problem has been considered by [10]. Let N and k ≥ 3 be positive 
integers. Let A and B be subsets of {1, 2, ... ,N} such that ab + 1 is a perfect k-th power 
whenever a ∈ A and b ∈ B. What can be said about the cardinalities of the sets A and B? 
Gyarmati proved that min {|A|, |B|} ≤ 1+(log log N)/log(k-1).  

 In [12] estimates for the size of a set D ⊆ {1, 2, ... , N} with the property that ab + 1 is a 
perfect power for all a, b ∈ D, a ≠ b, are given. The best known bound is due to Fujita [12]: 
|D| ≪ (log N)2/3 (log log N)1/3. Luca [18] showed that the abc-conjecture implies that |D| 
is bounded by an absolute constant. 

In [19], A. Kihel & O. Kihel consired a different generalization of the problem of 
Diophantus and Fermat to higher powers. A Pn(k)-set of size m is a set {a1, 

 a2, ... , am} of distinct positive integers such that ∏j∈J aj + n is a k-th power of an integer, 
for each J ⊆ {1, 2, ..., m} where |J| = k. They proved that any Pn(k)-set is finite. 

3.1. POLYNOMIALS 

Let n be a polynomial with integer coefficients. Let D = {a1,  a2,  . . .  ,  am } be a set of m 
nonzero polynomials with integer coefficients satisfying the conditions that there does not 
exist a polynomial p ∈ Z[X] such that a1/p, a2/p, . . . am /p  and n/p are integers. The set D 
is called a polynomial D(n)-m-tuples if the product of any two of its distinct elements 
increased by n is a square of a polynomial with integer coefficients. 

A natural question is how large such sets can be. Let us define Pn = sup {|S| : S is a 
polynomial D(n)-tuple}. 

Theorem 2.2 implies that P1 = 4. Moreover, all polynomial D(1) – quadruples are regular, 
i.e. Conjucture 2.1 is valid for polynomials with integer coefficients. [12] Proved that the 
same result is valid for polynomials with real coefficients. On the other hand, [11] showed 
that there are regular D (1) – quadruples in polynomials with complex coefficients. 
Indeed, the D(1) – quadruples 

{√(-3)/2, -2√(-3)/3 (x2 - 1), (-3 + √(-3))/3 x2 + 2√(-3)/3, (3 + √(-3))/3 x2 + 2√(-3)/3} is regular. 

In [15] it follows that 𝑃𝑃𝑛𝑛  ≤  22 for all polynomials n of degree 0. These results also give a 
bound for 𝑃𝑃𝑛𝑛  in terms of the degree and the maximum of the coefficients of n.  
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Let us mention that a variant of the problem of Diophantus and Fermat for polynomials 
was first considered by [14]. He treated the classical case n = 1. Various polynomial 
Diophantine quadruples were systematically derived by Dujella [2, 3] and [17]. Here are 
some examples: 

{4x, 25x + 1, 49x + 3, 144x + 8}   for n = 16x +1; 
{4, 9x2 - 5x, 9x2 + 7x + 2, 36x2 + 4x}   for n = 8x + 1; 
{2x + 3, 3x2 + 4x + 2, 9x2 + 10x + 3, 24x2 + 26x + 7}   for n = 9x4 + 6x3 - 19x2 - 20x - 5. 

In [19], the author considered the higher power variant of the problem of Diophantus and 
Fermat for polynomials. Let K be an algebraically closed field of characteristic zero. They 
proved that for every k ≥ 3 there exist a constant P(k), depending only on k, such that 
if {a1, a2, ... , am} is a set of polynomials, not all of them constant, with coefficients in K, 
with the property that ai aj + 1 is a k-th power of an element of K[X] for 1 
≤ i < j ≤ m, then m ≤ P(k). More precisely, they proved that: 

m ≤ 5     if k = 3; 
m ≤ 4     if k = 4; 
m ≤ 3     for k ≥ 5; 
m ≤ 2     for k even and k ≥ 8. 

Furthermore, in [20], Dujella and Jurasic proved that m ≤ 10 if k = 2. They also obtained 
an absolute upper bound for the size of a set of polynomials with the property that the 
product of any two elements plus 1 is a perfect power. 
 

3.2 GAUSSIAN INTEGERS AND INTEGERS IN QUADRATIC FIELDS 

Let z = a + bi be a Gaussian integer. A set of m Gaussian integers is called a complex 
Diophantine m-tuple with the property D(z) if the product of any two of its distinct 
elements increased by z is a square of Gaussian integer. In [63], the problem of existence 
of complex Diophantine quadruples was considered. 

It was proved that if b is odd or 𝑎𝑎 ≡  𝑏𝑏 ≡  2 (𝑚𝑚𝑚𝑚𝑑𝑑 4), then there does not exist a complex 
Diophantine quadruple with the property D(a + bi). It is interesting that this condition is 
equivalent to the condition that a + bi is not representable as a difference of the squares of 
two Gaussian integers. In that way, this result becomes an analogue of Theorem 3.1, since 
an integer n is of the form 4k + 2 if and only if n is not representable as a difference of the 
squares of two integers. 

It was also proved that if a + bi is not of the above form and a + bi ∉ {2, -2, 1 + 2i, -1 - 2i, 
4i, -4i}, then there exists at least one complex Diophantine quadruple with the 
property D(a + bi). 
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In [17], the researchers considered the analogous problem in the ring Z[√-2]. They proved 
that there exists a Diophantine quadruple with the property D(a + b√-2) if a and b satisfy 
some congruence conditions. Their result was improved in [|6] and [14]. In [1], Gardener 
solved completely the analogous problem in the ring Z[√2]. She proved that there exist 
infinitely many Diophantine quadruples with the property D(z) if and only if z can be 
represented as a difference of two squares in Z[√2].  

4.0 CONNECTIONS WITH FIBONACCI NUMBERS 

4.1  Hoggatt-Bergum conjecture 

There are many formulae for Diophantine quadruples with elements represented in terms 
of Fibonacci numbers. The most popular such quadruple was founded in 1977 by Hoggatt 
& Bergum [21]: 

{F2k, F2k+2, F2k+4, 4F2k+1 F2k+2F2k+3}. 

Hoggatt & Bergum conjecture that the fourth element in the above set is unique. The 
conjecture was proved by [7] and this result also implies that if  

{F2k, F2k+2, F2k+4, d} is a Diophantine quadruples, then d cannot be a Fibonacci number 

The main step in the proof of Hoggatt-Bergum conjecture is a comparison of the upper 
bounds for solutions obtained from a theorem of Baker and Wüstholz with the lower 
bounds obtained from the congruence conditions modulo 2F2k F2k+2. This comparison 
finishes the proof for 𝑧𝑧𝑎𝑎𝑧𝑧 > 48. The statement for 2 ≤ k ≤ 48 was proved by a version of 
the reduction procedure due to Baker & Davenport [8]. 

Motivated by the Hoggatt-Bergum set, several authors considered the question how large 
Diophantine tuples consisting of Fibonacci numbers can be. [4] Proved that if 
{F2n, F2n+2, Fk} is a Diophantine triple, then 𝑧𝑧 =  2𝑛𝑛 +  4 or 𝑧𝑧 =  2𝑛𝑛 −  2 (when n > 1), 
except when n = 2, in which case 𝑧𝑧 =  1 is also possible. Van Lint in [5] proved that there 
are only finitely many Diophantine quadruples consisting of Fibonacci numbers, and in [3] 
they proved that there are no such quadruples. 
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