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ABSTRACT                        

                        This paper uses parametric study for providing essential information about the problem's behavior to the decision maker. Two 
novel algorithms are presented in this work. The first algorithm is obtained to find the complete stability set of the first kind for parametric 
multi- objective linear programming problems. It is based on the weighting method for scalarizing the multi- objective linear programming 
problems and Kuhn- Tucker conditions for mathematical programming in general. 
The second algorithm presents a technique to decompose of the parametric space in parametric linear programming problem according to 
the complete stability set of the first kind. 
Two numerical examples are introduced to clarify the obtained results. 
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1. INTRODUCTION 

                 Multi-objective optimization is concerned with mathematical optimization problems involving two or more objective func-
tions and constraints, which need to be optimized (minimized or maximized) simultaneously. A multi-objective problem is linear pro-
gram, if all objective functions and constrains are linear *5, 9+.  
These objectives are usually in incommensurate and conflicting with one another, there normally exist: 

1- Infinite number of efficient (non- dominated, Pareto- optimal, or non-inferior) solutions in the MOOPs. The non-dominated set 
of the entire feasible decision space is called the Pareto-optimal and the boundary defined by the set of all solutions mapped from 
the Pareto optimal set is called the Pareto-optimal front. 
2- Not all objectives can simultaneously arrive at their optimal levels. So, an assumed value function is used to choose appropriate 
solutions [6, 7, 8, 15]. 

In early work, the notions of the solvability set and the stability of the first kind are analyzed for parametric convex pro-
gramming problems *12+.  

The relation to the importance of the results in multi- objective convex programming problems can be seen by the funda-
mental role which parametric techniques play in multi- objective programming. 

In this paper, the basic concepts are defined and analyzed quantitatively for parametric multi- objective linear programming 
problems.  

Also, the connectedness nature of the efficient extreme solutions of such problems is utilized together with the fruitful rela-
tion that the Kuhn- Tucker conditions play in solving such problems. 

 
This paper is structured as follows: the parametric multi- objective linear programming problem is introduced in the second 

section. The third section covers the definitions with characterization of the basic notions of solvability, stability set of the first kind, 
and the complete stability set of the first kind for such problems. Also, an algorithm for determining the complete stability set of the 
first kind for a given parameter is presented. The fourth section is devoted to present an algorithm for decomposing parametric 
space according to the complete stability set of the first kind. Two examples are given which clarify the developed theory and algo-
rithms. Finally, conclusion is reported in the fifth section. 

 
         2. Parametric multi- objective linear programming problem 

Consider the following parametric multi-objective linear programming (MOLP) problem with parameters in the objective functions:  

(MOLP): 
Min F(λ , X) = ( ∑j=1

n
 C1j (λ1) xj, ∑j=1

n
 C2j (λ2) xj, ……, ∑j=1

n
 Ckj (λk) xj ),  

Subject to  
       G = ,X ∈ R

n
 | ∑j=1

n
  aij xj ≤  bi , i=1, 2, …, m-  

Where:  

Cij (λi), i=1, 2, …,k,  j=1, 2, …., n are continuous functions in λi,  

            ,     

                                                                                                                

It must be noted that the nonnegativity constraints xj ≥ 0, j=1, 2, …., n are included in the feasible region "G".  
Using the weighting method to solve (MOLP) problem, we get the following single objective parametric linear programming problem 
"P(W)" as follows: 
 
P(W):   Min ∑i=1

k
 ∑j=1

n
 wi cij (λi) xj , 

              Subject to 

                    G = , X ∈ R
n
 | ∑j=1

n
  aij xj ≤  bi , xj ≥ 0, i=1, 2, …, m, j=1, 2, …., n - *13+, 

                   ∑i=1
k
 wi = 1, wi ≥ 0,  i = 1, 2, ….., k, 

                    W= (w1, w2, ……, wk) ∈ R
k
. 

It is well known *4, 11+ that; if  X̅ is an efficient solution of (MOLP) for λ= λ̅, then there exists W̅ ≥ 0, such that X̅ solves P(W) for λ = λ̅, 
and if X̅ solves P(W) uniquely for λ = λ̅, W̅ ≥ 0, or if X̅ solves P(W) for λ = λ̅, W̅ > 0 then X̅ is an efficient solution of (MOLP) for λ = λ̅. 
Moreover, if we take λ = λ̅, then all the efficient solutions of (MOLP) could be generated from P(W) by taking only positive values of 
W.  

 
λ = (λ1, λ2, ……. ,λk) ∈ R           R          …,          R

 
. 

ll l2 lk 
× × × 

lk 
λi  ∈ R  , i= 1, 2, …., k are real valued parameters, 

(1) 
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              3- The complete stability set of the first kind 

For the parametric multi- objective linear programming problem, the following basic notions can be defined: 

Definition (The solvability set)  

The solvability set of problem (MOLP) which is denoted by B, is defined by:  

B = ,                                                         | there exists an efficient solution of problem (MOLP) for the given λ-.                   (2) 

It is clear that if G is bounded then                                                                                                                                                   (3)
 

Definition (The stability set of the first kind) 

Assume that for λ̅ ∈ B, X̅ is an efficient solution of problem (MOLP) corresponding to λ̅, then the stability set of the first kind of prob-
lem (MOLP) corresponding to X̅ which is denoted by S( X̅ ) is defined by: 
S(X̅) =, λ ∈ B | X̅ is an efficient solution of the problem (MOLP) corresponding to λ-.                                                               (4) 

Definition (The complete stability set of the first kind) 

Assume that for λ̅ ∈ B, all the corresponding efficient solutions of the problem (MOLP) are the points Xi, i ∈ L1 then the complete sta-

bility set of the first kind of problem (MOLP) denoted by SC ( λ̅ ) is defined by:  

 

 

It must be noted that the efficient solutions of problem (MOLP) for any λ̅ ∈ B is connected *1, 9+, then SC ( λ̅ ) can be obtained by:  

 

 

Where L is a finite set, Xi, i= 1, 2, ...., L are the efficient extreme solutions of (MOLP) corresponding to λ = λ̅.  

Assume that X̅ is an efficient solution of problem (MOLP) for λ̅ ∈ B, and   I = , i | ∑j=1
n
  aij  xj = bi, i=1, 2, …, m-.                 (7) 

i.e., i denote the set of all indices corresponding to the active constraints of G at  X̅ , with cardinality r.  

Then the corresponding Kuhn- Tucker (K.T.) conditions *3, 10+ of the P(W) for λ ϵ B takes the form:  

 

∑i=1
k
  wi cij (λi) + ∑   aij ui = 0,   j=1, 2, ….. , n,     

ui  ≥ 0, i ∈ I,  

where  

ui , i ∈ I  are  the corresponding multipliers of the K.T. problem. 

The equations in K.T. problem is a linear system of equations in the multipliers ui , i ∈ I which could be solved by any suitable tech-

nique from which either one of the following three cases can arise assuming the linear independence of the equations: 

1) r = n 

In this case ui , i ∈ I could be obtained from the equations in K.T. problem, substituting in ui ≥ 0, we get r conditions on wi , λi , i =1, 2, 

…., k. 

2) r < n 

In this case, we use r of the n equations to get ui, i ∈ I and substituting in the rest of the equations and in the inequalities u i ≥ 0, we 

get n conditions on wi , λi , i=1, 2, ….. , k. 

3) r > n  

In this case, n of multipliers ui, i ∈ I are obtained from the equations, and substituting in the inequalities u i ≥ 0, i ∈ I we get r condi-

tions on wi , λi , i= 1, 2, …., k. 

Let A( X̅ ) = ,(W, λ) ∈ R
k
 × B | (W, λ) solves K.T. problem-, then the stability set of the first kind S( X̅ ) can be obtained by:   

S( X̅ ) = , λ ∈ B | (W, λ) ∈ A( X̅ )-.                                                                                                                                                          (9) 

In the following, the algorithm ALg.(I) is presented to obtain the complete stability set of the first kind of problem (MOLP) for a given  

λ ∈ B.  

ALg. (I)  

1. Start with any  λ̅ ∈ B. 

 

ll l2 lk × × × 
 
B = R           R          …,            R. 

ll l2 lk × × × 
 
λ ∈ R          R          …,         R 

i ∈ I 

i ∈ L 

SC ( λ̅ ) = ∩ S( Xi ), 

i ∈ L1 
SC ( λ̅ )  = ∩ S( Xi ). 

 K.T. problem 

(5) 

(6) 

(8) 
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2. Solve problem (MOLP) for λ = λ̅ using the multicriteria simplex method *16+ to get all the efficient extreme points of the problem 

"Xi", i ∈ L.  

3. Put i = 1, get I1 such that  

      I1 =  , i  | ∑j=1
n
  aij x1j = bi, i=1, 2, …., m-.                                                                                                                       (10) 

4. Solve K.T. problem to get A(X1) from which we obtain S(X1). 

5. Go to step (3) and put i= 2, repeat step (4) to get the set S(X2). 

6. The process is repeated till all the efficient extreme points Xi, i ∈ L are exhausted. 
7. The complete stability set of the first kind is obtained from the relation:  
 
                                                                                                                                                                                                 (11) 
 
Example 1: 

Let us consider the following bicriterion parametric linear programming problem with two parameters λ1, λ2 in the first objective 
function f1 and one parameter λ3 in the second objective function f2. λ1, λ2, λ3 ∈ R.          

           Min F = ( f1 = λ1 x1+ λ2 x2,    f2 = - 3 x1 + λ3 x2 ),  

           Subject to 

               G =  , X ∈ R
2 

| x1+ x2 ≤ 4,    

                                    x1+ 2 x2 ≤ 6,    

                                    x1 ≥ 0,      

                                    x2 ≥ 0-. 

Since G is bounded then B = R
3
. If we take λ = ( λ1, λ2, λ3) = (1, 1, 1), the problem will have two efficient extreme solutions X1 = (0, 0), 

X2 = (4, 0), (see Figure (1)). 
 
 
   
 
                                              
 
             
 
     
 
 
 
 
 
 
 
 
 
 
 
 
  

 (1)  For X1 = (0, 0) 

It is clear that I( X1) = ,3, 4-. 

The Kuhn- Tucker conditions at X1 for the corresponding weighting problem take the form: 

   w λ1 – 3(1– w) – u3 = 0, 
   w λ2 + (1– w) λ3 – u4 = 0, 
                               u3 ≥ 0,  
                               u4 ≥ 0. 

From which, we get: 

 

Figure (1): G and F(G) When ( λ1, λ2, λ3) = (1, 1, 1).    

i ∈ I 
SC ( λ̅ )  = ∩  S( Xi ). 
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A(X1) =,(w, λ) ∈ R

4 
| w(λ1 + 3)  ≥ 3, w(λ3 - λ2) ≤ λ3, 0 < w < 1-.                                                                                                       (12) 

Therefore,  

S( X1) =, λ ∈ R
3
 | (w, λ) ∈ A(X1)-.                                                                                                                                                         (13) 

(2)  For X2 = (4, 0) 

It is clear that I(X2) = ,1, 4-. 

The Kuhn- Tucker conditions at X2 for the corresponding weighting problem take the form: 
   w λ1 – 3(1– w) +  u1 = 0, 
   w λ2 + (1– w) λ3 + u1 – u4 = 0, 
                                   u1 ≥ 0,  
                                   u4 ≥ 0. 

From which, we get: 

A(X2) =,(w, λ) ∈ R
4 

| w(λ1 + 3)  ≤  3, w(3 + λ1- λ2 + λ3 ) ≤  λ1 +3, 0 < w < 1-.                                                                                 (14)                           

Therefore,  

 S( X2) =, λ ∈ R
3
 | (w, λ) ∈ A(X2) -.                                                                                                                                                      (15) 

The complete stability set of the first kind for the given problem for λ = (1, 1, 1) is given as  

SC (1, 1, 1) = S(X1) ∩ S(X2).                                                                                                                               

4- Decomposition of the parametric space 

It is clear that the parametric space is of dimension ∑i=1
k
 λi, the solvability set B which is a subset of this space could be decomposed 

according to the complete stability sets of first kind as well be clear from the following algorithm which  is denoted to ALg. (II):  

ALg. (II) 

1.  Start with any λ1 ∈ B. 
2.  Use ALg. (I) to get SC (λ1). 
3.  Choose λ2 ∈ B - SC (λ1), and use ALg. (1) to get SC (λ2). 
4.  The process is repeated by taking λi+1 ∈ B - SC (λi), i=1, 2, …., τ. 
5.  The algorithm is terminated when B - SC (λτ) = φ. 

It must be noted that, the complexity of determining the complete stability set of the first kind depends mainly on the structure of 
Cij(λi), i=1, 2, …, k and j=1, 2, ….., n.  

Remark 1: 

If for any λ̅ ∈ B, X̅ is the unique efficient extreme point of problem (MOLP), then it must be noted that there is a difference between 
the sets    S( X̅ ) and SC ( X̅ ) since S( X̅ ) gives the set of λ𝑠 that maintains X̅ as an efficient extreme point while SC ( λ̅ ) gives the set of 
 λ𝑠 that maintains X̅ as the unique efficient extreme point. In this case SC ( λ̅ ) = , λ̅ -.  

Remark 2: 

If at step1 of ALg. (II) for λ1 ∈ B, we get unique efficient extreme point, then choose λ2 ∈ B, λ2 ≠ λ1, and go to step1.                          

Example 2: 

Let us consider the following bicriterion parametric linear programming problem with the same parameter λ ∈ R in the two objective 
functions f1, and f2. 

 Min F = ( f1 = λ x1 + 3 x2,    f2 = 5 x1 - λ x2 ), 

 Subject to 

               G =  , X ∈ R
2 

| x1+ x2 ≤ 4,    

                                    x1+ 2 x2 ≤ 6,    

                                    x1 ≥ 0, 

                                    x2 ≥ 0-. 

Since G is bounded, then B ∈ R. 

(16) 
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(1)   If we take λ = 0, the problem will have one efficient extreme solution X1= (0, 0),  (see Figure (2)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is clear that I(X1) = ,3, 4-. The Kuhn- Tucker conditions at X1 for the corresponding weighting problem take the form: 
w λ + 5(1– w) – u3 = 0,   
3w – λ (1– w) – u4 = 0, 
                            u3 ≥ 0,  
                            u4 ≥ 0. 

From which, we get:   
                 
 
                                                   
Therefore,  

S( X1) =, λ ∈ R | (w, λ) ∈ A(X1) -.                                                                                                                                                         (18) 
From Figure (3), it is clear that S( X1) ≡ R.  
 
 
  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Then from remark 1, it follows that SC (0) = ,0-. 

A(X1) = ,(w, λ) ∈ R
2 

|            -5(1- w) 
             (w) 
 

λ ≥ , 
              (3w) 
           (1- w) 
 

, λ ≤ ,  0 < w < 1-. 

Figure (3): The Relation Between λ and W When  X1= (0, 0). 

 

 
      -5(1- w) 

          (w) 
 

λ ≥ 
            (3w) 

           (1- w) 
 

λ ≤ 

(17) 

 

Figure (2):  G and F(G) When  λ = 0. 
 

Objective space Decision space 

(0, 0) (0, 0) 

(0, 20) 

(0, 3) 

(4, 0) 

(2, 2) 

(9, 0) 

(6, 20) 
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(2)  Take λ = 1, the problem will have two efficient extreme solutions  X1 = (0, 0), X2 = (0, 3),  
        (see Figure (4)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is clear that I(X2) = ,2, 3-. 
The Kuhn- Tucker conditions at X2 for the corresponding weighting problem take the form:  
w λ + 5(1– w) + u2  – u3 = 0, 
3w – λ (1– w) + u2 = 0, 
                            u2 ≥ 0,  
                            u3 ≥ 0. 
From which, we get: 
 
                                  

Therefore, 

S( X2 ) =, λ ∈ R | (w, λ) ∈ A(X2) -.                                                                                                                                                        (20) 

From Figure (5), it is clear that  

S( X2 ) =, λ ∈ R | λ > 0-.                                                                                                                                                                        (21) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               (3w) 
              (1- w) 
 

λ ≥ A(X2) = ,(w, λ) ∈ R
2 

| ,  λ ≥ 8w- 5,  0 < w < 1-. 

              (3w) 
             (1- w) 
 

Figure (4): G and F(G) When  λ = 1. 

 

λ ≥  λ  ≥ 8w- 5  
 

Figure (5): The Relation Between λ and W When X1= (0, 0), and X2 = (0, 3). 
 

 

 

W W 

(19) 
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Then SC(1) = S(X1) ∩ S(X2) = , λ ∈ R | λ > 0-.                                                                                                                                    (22) 

3) Take λ = - 1, the problem will have two efficient extreme points 

     X1 = (0, 0), X3 = (4, 0), (see Figure (6)).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is clear that I(X3) =,1, 4-. The Kuhn- Tucker conditions at X3 for the corresponding weighting problem take the form: 
w λ + 5(1– w) + u1  = 0, 
3w – λ (1– w) + u1- u4 = 0, 
                            u1 ≥ 0,  
                            u4 ≥ 0. 
From which, we get:  
 
 
        
 Therefore, 

S( X3 ) =, λ ∈ R | (w, λ) ∈ A(X3) -.                                                                                                                                                        (24) 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

       -5(1- w) 
            (w) 
 

λ ≤ A(X3) = {(w, λ) ∈ R
2 
| ,  λ ≤ 8w- 5, 0 < w < 1}. 

 

 

           Figure (7): The Relation Between λ and W When X1= (0, 0), and X2 = (4, 0). 

λ ≤ 8w- 5  
       -5(1- w) 

           (w) 
 

λ ≤ 

W W 

(23) 

 

 

                Figure (6):  G and F(G) When  λ = - 1.    
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(0, 0) (0, 0) 

(0, 3) 
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(4, 0) 

(- 4, 20) 
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From Figure (7) , it is clear that  

S( X3 ) =, λ ∈ R | λ < 0-.                                                                                                                                                                        (25)    

Then SC(-1) = S(X1) ∩ S(X3) = , λ ∈ R , λ < 0-.                                                                                                                                    (26) 
 
A summary of these results are shown in the following figure. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  5-   Conclusion 

                        In this paper, the efficient set is studied for the parametric multi- objective linear programming problems. The aim was 

not only to measure and evaluate the solutions but also to determine the complete stability efficient sets of the first kind for such 

problems based on two new algorithms.  

The problem was treated for general parameters and many special cases can be derived from this general structure. The 

complexity of determining the complete stability efficient set of the first kind of this problem is depended on the structure nature of 

the parameters.  

This work could be generalized for parametric multi- objective linear programming problems with parameters in constraints, 

and quadratic programming problems. 

Finally, this study is essentially a new trend towards a good decision for multi- objective linear programming problems. 

 

Acknowledgment 

Thanks be to ALLAH for this guidance and support in showing me the path. 
 

References 

[1] Abo-Sinna M., Amer A. H., and El Sayed H. H., "An interactive algorithm for decomposing: The parametric space in fuzzy multi-objective dynamic 

programming problems", Springer Science + Business Media, LLC, 2008. 

[2] Armand, P., "Finding all maximal efficient faces in multi- objective linear programming", Mathematical Programming, North- Holland, 1993, (61): 

357-375. 

[3] Bazzaraa, M. S., Sherali, H. D., and Shetty, C. M., "Nonlinear programming: Theory and algorithms", John Wiley & Sons, Inc., Third edition 1979, 

1993, and 2006. 

[4] Chankong, V. and Haimes, Y. Y., " Multiobjective Decision Making: Theory and Methodology ", Elsevier Science Publishing, 1983. 

[5] De Oliveira L. Sartini, and Saramago, S. F. P.,"Multiobjective optimization techniques applied to engineering problem", J. of the Braz Soc. Of Mech. 

Sci. & Eng., Vol. XXXll, No. 1/105, 2010. 

The values of λ 

λ  =  0 

λ   >  0 λ  <  0 

,(0, 0), (0, 3)- 
 

Unique point 
(0, 0) 

,(0, 0), (4, 0)- 

The efficient extreme 
points: 

Figure (8): The Decomposition of The Parametric Space of The Example. 

http://www.abebooks.com/servlet/SearchResults?an=Chankong%2C+Vira+and+Haimes%2C+Yacov+Y.&cm_sp=det-_-bdp-_-author


GSJ: VOLUME 6, ISSUE 7, JULY 2018                                                                                                                                                                                                                346 

GSJ© 2018 
www.globalscientificjournal.com  

[6] Deb, K., Sundar J., Rao N. U. B. and Chaudhuri S., “Reference point based multi-objective optimization using evolutionary algorithms”, Interna-

tional Journal of Computational Intelligence Research, ISSN 0973-1873 Vol.2, No.3, PP. 273–286, 2006. 

[7] Huang Hong Zhong, Tian Zhigang, and Zuo Ming J., “Intelligent interactive multiobjective optimization method and application to reliability  

optimization”, IIE Tranction, 37, PP. 983- 993, 2005. 

[8] Internet: Lecture 9: Multi-Objective Optimization (2001). 

[9] Internet: McCarl Bruce A. and Spreen Thomas H., '' Chapter XI: Multi-objective programming", 1997. 

[10] Mangasarian, O. L.,"Nonlinear Programming", McGraw- Hill, Inc., 1969, and the Society for Industrial and Applied Mathematices, 1994. 

[11] Miettinen, K. M., "Nonlinear multiobjective optimization", Kluwer Academic Publishers, 1998, and Fourth printing 2004.                                                       
[12]  Osman, M. S. A., "Qualitative analysis of basic notions in parametric convex programming. II. Parameters in the objective function", Applications      

 of Mathematics, 1977, 5, (22): 333- 348. 

[13] Osman, M. S. A., "Lecture Notes of Operations Research: Advance linear programming", Institute of Statistical Studies and Research, Cairo Univer-
sity, 2013. 

[14] Saad, O. M. A., "On stability of proper efficient solutions in multiobjective fractional programming problems under fuzziness", Mathematical and   
Computer Modelling, 2007, (45): 221– 231. 

[15] Yang, Jian-Bio, and Sen P., "Preference modeling by estimating local utility functions for multiobjective optimization", European Journal of Opera-
tional Research, 95 (1996) 115- 138. 

[16] Yu, P. L., and ZELENY, M.," The set of all nondominated solutions in linear cases and a multicriteria simplex method", Journal of mathematical 
analysis and applications, 1975, (49): 430- 468. 

 
 
                                                    

 
                  
                                    
 
 
 
 




