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Abstract 

In this paper, we focused our attention on the theoretical investigation of integer-valued first 

order moving average (INMA(1)) model with negative binomial (NB) innovation for the 

forecasting accuracy of time series of count data. We employed the method of the Conditional 

Least squares (CLS) estimator to estimate the parameter of INMA(1) model, and Maximum 

Likelihood Estimator (MLE) to estimate the mean (𝜇𝜇) and the dispersion parameter (k) of the NB 

distribution. The study is based on simulation experiment used to addressed the  theoretical 

generated dataunder different parameter values𝛽𝛽=0.2, 0.6, 0.8, different sample sizesn=30, 90, 

120, 600 for the class of INMA(1) model, and 𝜇𝜇 =0.85, 1.5, 2,  k=1,2, 4 for the NB distribution. 

The Monte Carlo simulations were conducted with codes written in R, all results were based on 

1000 runs.With small number of observations and high parameter value, the estimation of 
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parameter for the class of INMA(1) model gives a better results. Similarly, theestimation of the 

dispersion parameter (k) of the NB distribution gives a better result when the number of 

observations is small and with large k values.The forecasting accuracy of the INMA(1) model 

with the mean of NB distribution at different lead time period 𝑙𝑙=1, 3, 5, 7, 9, 15 were 

investigated with codes written in R. The results showed that the minimum mean square 

error(MMSE) produced when the number of lead times forecasts is between one and five were 

less than that produced when the numbers of lead times forecast were greater than five. The 

MMSE increased when the number of lead time periods increases. This result indicates that 

forecasting with this class of model is better with short time frame of predictions. The study is 

applied to the number of Measles laboratory confirmed cases in Nigeria which consist of count 

time series data of 37 observations (monthly data), from January 2021 to December 2021. The 

application results corroborate the theoretical investigation.  

Keywords:INMA(1) model, NB distribution, count data, CLS estimation, MLE estimation, 

Accuracy, Measles,Forecasting  

1.Introduction  

The Integer-valued Moving Average (INMA) models is a special case of Integer Autoregressive 

Moving Average (INARMA) models which has recently received wider attention in the 

literature. The INARMA models are capable of modelling and forecasting Time Series of Count 

data that appears in several diverse scientific especially for low frequency count with 

overdispersed data. A time series of count data is an integer-valued non-negative sequence of 

count observations observed at equidistant instants of time.  

The INARMA model was originally introduced in the 1980s (Mc Kenzie, 1985, Al-Osh and 

Alzaid, 1987). The INARMA models have been proposed for forecasting time series of counts, 

and have received wider attentions in the last three decades. This model has been shown to be 
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analogous to well-known conventional time series model namely Autoregressive Moving 

Average (ARMA) models (Box et al, 1994), for modelling continuous data.  

The most distinguish feature that makes the Integer-valued Moving Average (INMA) models 

class different from its continuous Moving Average (MA) counterpart is that multiplication of 

the models with real valued parameter no longer remains a viable operation when the result is to 

be integer-valued.  

The study and analysis of count time series poses several problems and questions. For instance, a 

common distribution that is used in practice to model the response time series, is the Poisson 

distribution. Such an assumption is sensible because the Poisson distribution is the simplest 

discrete distribution, yet its properties are satisfactory to cover a large class of problems (Vasiliki 

Christou, 2013).  

Several investigations into the classes of INARMA models with the assumption that the 

innovation distribution are Poisson distribution have been carried out. But the Poisson 

distribution has a feature of equal mean-variance relationship which makes it inadequate for 

modeling time series count data because most of the count data have properties of 

overdispersion. In this paper, we investigates theINMA(1) model with the assumption that the 

innovation distribution is the Negative Binomial distribution. The Negative Binomial distribution 

is capable of taking into account the overdispersion found in time series count data. Hence, the 

justification.  

Modeling discrete -valued time series is the most challenging and, yet, least well-developed of 

all areas of research in time series. The fact that variate values are integer, renders most 

traditional representations of dependence either impossible or impractical. In the past there have 

been a number of imaginative attempts to develop a suitable class of models (Eddie Mc Kenzie, 
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2000). In recent times, Fokianos (2012), Davis and Liu (2015) have made an effort to the 

development of models appropriate for discrete valued time series. Such data usually occur in the 

form of counts rendering the traditional ARMA-type models impractical. Steutel and Harn 

(1979), proposed the most popular count time series models that are based on the notion of 

binomial thinning. Brännäsand Quoreshi (2010), Quoreshi (2006, 2008, 2014), proposes a 

bivariate integer-valued moving average (BINMA) model, a vector integer-valued moving 

average (VINMA) model, and an integer-valued autoregressive fractionally integrated moving 

average (INARFIMA) model for analyzing high frequency financial data.   

For the Innovation distribution 𝜀𝜀𝑡𝑡 ,  of INARMA models, many models have been proposed in the 

literature for the integer-valued time series count data. The Poisson distribution is often assumed 

as the distribution of 𝜀𝜀𝑡𝑡  in the INARMA models. The Poisson distribution has a characteristic of 

equidispersion. In practice, however, count data are overdispersed in nature relative to the 

Poisson distribution. For this reason, the INARMA models with Poisson innovations is not always 

suitable for modeling integer-valued time series, therefore, several models which describe the 

over-dispersion phenomena have been discussed in the statistical literature.  

Changing the distribution of innovations is also used to modify the INAR(1) model. Jung et al. 

(2005) indicated that the INAR(1) model with negative binomial innovation (NB- INAR(1)) is 

appropriate for generating overdispersion. Jazi et al.(2012) defined a zero-inflated Poisson ZIP(p, 

𝜆𝜆)for innovation (ZIP- INAR(1)), because a frequent occurrence in overdispersion is that the 

incidence of zero counts is generated than expected from the Poisson distribution. Jazi et al. 

(2012) proposed a modification of INAR(1) model with Geometric innovation (G-INAR(1)) for 

modeling overdispersed count data. Schwer and Weiß (2014) investigated the compound Poisson 

INAR(1) (CP- INAR(1)) model, which is suitable for fitting data sets with overdispersion. 

According to Schwer and Weiß (2014) the negative binomial distribution and the geometric 
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distribution both belonging to the compound Poisson distribution. Livio et al. (2018) presented 

the INAR(1) model with the Poisson-Lindely innovations, that is, PL-INAR(1) model. 

Bourgnignon et al. (2019) introduced the INAR(1) model with double Poisson (DP- INAR(1)) 

and generalized Poisson innovations (GP- INAR(1)) model. Qi et al. (2019) considered zero-

order one-inflated INAR(1)-type models, and Cunha et al. (2021) introduced an INAR(1) model 

with Borel innovation to model zero truncated count time series.  Huang and Zim (2021) 

introduced a new INAR(1) model with Bell innovations (BL- INAR(1)). Huang and Zim (2021) 

used a relative simple distribution introduced by Castellares et al. (2018) for innovation. 

Mahmoudiand  Rostami (2020) introduced a first-order nonnegative integer-valued moving 

average process with power series innovations based on a Poison thinning operator 

(PINMAPS(1)) for modeling overdispersed and underdispersed count time series. Bouguinon 

and Vasconcellos (2015) introduced INAR(1) processes with power series innovations. Yu and 

Wang (2021) introduced a new overdispersed integer-valued moving average model with 

dependent counting series.Nasiru and Olanrewaju (2023) employed a simulation procedure to 

investigate the properties of INAR(1) model with NB innovation. In this paper we investigate the 

theoretical properties of INMA(1) model with NB innovation, and assess the practical validity 

and applicability of the main results of the study on real life data.  

2. Methodology 

2.1 The Binomial Thinning Operator  

Before introducing the INMA(1) model, we first introduced the meaning of Binomial thinning 

operation and it properties.  

The binomial thinning operation was defined by Steutel and Harn (1979). Suppose Y is a 

non-negative integer-valued random variable. Then, for any 𝛼𝛼∈ [0,1], the thinning 

operation “∘” is definedby: 
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𝛼𝛼∘Y = ∑ 𝑥𝑥𝑖𝑖
𝑦𝑦
𝑖𝑖=1 (2.1) 

Where {𝑋𝑋𝑖𝑖} is a sequence of i.i.d. Bernoulli random variables, independent of 𝑌𝑌, and with a 

constant probability that the variable will take the value of unity: 

𝑃𝑃𝑋𝑋𝑖𝑖= 1 − 𝑃𝑃𝑋𝑋𝑖𝑖 = 0= 𝛼𝛼    (2.2) 

Some of the properties of the thinning operation can be obtained as follows: 

(1) 0 ∘Y =0 

(2) 1 ∘Y =𝑌𝑌 

(3)𝛼𝛼∘ (𝛽𝛽∘𝑌𝑌)=d(𝛼𝛼𝛽𝛽)∘𝑌𝑌 

(4) (∘𝑌𝑌)= 𝛼𝛼𝐸𝐸(𝑌𝑌) 

(5) 𝐸𝐸 (𝛼𝛼∘𝑌𝑌)2 = 𝛼𝛼2(𝑌𝑌2 + 𝛼𝛼1 − 𝛼𝛼(𝑌𝑌) 

(6) var𝛼𝛼∘𝑌𝑌= 𝛼𝛼2var𝑌𝑌+ 𝛼𝛼1 − 𝛼𝛼𝐸𝐸(𝑌𝑌)  

2.2 Integer-Valued First Order Moving Average (INMA(1)) Model 

Al-Osh and Alzaid (1988) developed a class of models for integer-valued moving average 

(INMA) processes. In INMA models, a stationary sequence of random variables {𝑌𝑌𝑡𝑡} is formed 

from a sequence {𝑍𝑍𝑡𝑡} of i.i.d. random variables which are non-negative and also integer-valued. 

The first order model which is the case in which adjacent members of the sequence are 

correlated. A process {𝑌𝑌𝑡𝑡} is called an INMA(1) process if it satisfies the equation: 

𝑌𝑌t = β oZt-1+ Zt        (2.3) 

where 𝛽𝛽∈[0,1] and {𝑍𝑍𝑡𝑡} are as before and the thinning operation is defined via: 
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𝛽𝛽 ∘Z = ∑ 𝑋𝑋𝑧𝑧
𝑖𝑖=1 I          (2.4) 

where {𝑋𝑋𝑖𝑖} is a sequence of i.i.d. Bernoulli random variables, independent of 𝑌𝑌 and satisfying: 

P(Xi = 1) = 1- p(Xi = 0) = 𝛽𝛽        (2.5) 

The INMA(1) model defined by equation (2.3) is similar to the Gaussian MA(1) process except 

that scalar multiplication is replaced by the thinning operation.  

Jung and Tremayne (2006a) present a physical interpretation of this model as follows. If we 

consider 𝑌𝑌𝑡𝑡 as the number of particles in a well-defined space at time point 𝑡𝑡, it can be assumed 

that this number is made of two components: (i) particles entering during (𝑡𝑡−1,], and (ii) 

survivors of those who entered the space during (𝑡𝑡−2,𝑡𝑡−1]. Therefore, the thinning at time 𝑡𝑡, is 

applied to only immigrants at time 𝑡𝑡−1, not all particles in space, as in an INAR(1) process. 

Examples of this process include the number of patients staying in a hospital or the number of 

customers in a department storeas has been shown (Al-Osh and Alzaid, 1988).  

It can be inferred from the equation (2.3) that each element stays in the system no longer than 

two periods. This is in contrast to the INAR(1) process in which there is no limit on the survival 

of elements in the system as has been shown (Mohammadipour and Brunel University, 2009). 

The unconditional first and second moments of the INMA(1) process are: 

E(Yt) = (1 + 𝛽𝛽)𝜇𝜇𝑧𝑧          (2.6) 

Var(Yt) = 𝛽𝛽(1 − 𝛽𝛽)𝜇𝜇𝑧𝑧  + (1 + 𝛽𝛽2)𝜎𝜎𝑧𝑧2      (2.7) 

 Al-Osh and Alzaid (1988) shows that the autocorrelation function (ACF) of this process is given 

by: 

𝜌𝜌𝑘𝑘  = � 𝛽𝛽𝜎𝜎𝑧𝑧2

𝛽𝛽(1−𝛽𝛽)𝜇𝜇𝑧𝑧  + (1+𝛽𝛽2)𝜎𝜎𝑧𝑧2
�, for k=1, and 0 for k>1     (2.8) 
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2.3 Method of Estimation  

The Conditional Least Square (CLS) estimation method was employed in this research. 

Lawrence and Paul (1978) developed the Conditional Least Square (CLS) estimation procedure 

for stochastic processes based on the minimization of a sum of squared deviations about 

conditional expectation.  

 

The conditional expected value of 𝑌𝑌𝑡𝑡 given 𝑌𝑌𝑡𝑡−1 for an INMA(1) process is given by: 

E(Yt/Yt-1 ) = 𝛽𝛽Zt-1 + 𝜆𝜆         (2.9) 

The prediction error is: 

𝑒𝑒𝑡𝑡  = 𝑌𝑌𝑡𝑡- 𝛽𝛽𝑍𝑍𝑡𝑡−1- 𝜆𝜆         (2.10) 

The CLS estimates of 𝛽𝛽 and 𝜆𝜆 can then obtained by minimizing the following function: 

Qn(𝛉𝛉) = ∑ [𝑌𝑌𝑡𝑡 − (βZt−1 + 𝜆𝜆)] 𝑛𝑛
𝑡𝑡=1

2       (2.11) 

with respect to 𝛉𝛉, where 𝛉𝛉=(𝛽𝛽, 𝜆𝜆)′ is the parameter vector to be estimated. The CLS estimates for 

𝛽𝛽 and 𝜆𝜆 are:  

𝛽̂𝛽 = ∑ 𝑌𝑌𝑡𝑡𝑍𝑍𝑡𝑡−1−(∑ 𝑌𝑌𝑡𝑡𝑛𝑛
𝑡𝑡=1 ∑ 𝑍𝑍𝑡𝑡−1

𝑛𝑛
𝑡𝑡=1 )/𝑛𝑛𝑛𝑛

𝑡𝑡=1
∑ Zn

t=1
2

t−1− (∑ Zt−1
n
t=1 )2 n�

      (2.12) 

𝜆̂𝜆  = [∑ 𝑌𝑌𝑡𝑡𝑛𝑛
𝑡𝑡=1 − 𝛽𝛽∑ 𝑍𝑍𝑡𝑡−1

𝑛𝑛
𝑡𝑡=1 ]/n       (2.13) 

 

2.4 Forecasting Method  

One of the objectives of a time series models is to forecast the future values of a time series 

observations. 
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2.4.1 Minimum Mean Square Error (MMSE) Forecasts 

The conditional expectation has been the most commonly used forecasting procedure discussed 

in the time series literature as has been shown (Freeland and McCabe, 2004b). The main 

advantage of this method, apart from being simple, is that it produces forecasts with minimum 

mean square error (MMSE). 

Minimum mean square error (MMSE) forecasts are used to find 𝑌𝑌�𝑇𝑇+ℎ ,ℎ = 1,2, … ,𝐻𝐻 of the 

processes 𝑌𝑌𝑡𝑡  based on the observed series of {𝑌𝑌1, … ,𝑌𝑌𝑇𝑇}. The MMSE forecast of the process is 

given by: 

𝑌𝑌�𝑇𝑇+ℎ , = 𝐸𝐸(𝑌𝑌𝑇𝑇+ℎ |𝑌𝑌𝑇𝑇 , … ,𝑌𝑌1)       (2.14) 

This method yields forecasts with minimum MSE. For an INAR(𝑝𝑝) model, we have: 

𝑌𝑌�𝑇𝑇+ℎ = 𝛼𝛼1𝑌𝑌𝑇𝑇+ℎ−1 + 𝛼𝛼2𝑌𝑌𝑇𝑇+ℎ−2 + ⋯+ 𝛼𝛼𝑝𝑝𝑌𝑌𝑇𝑇+ℎ−𝑝𝑝 + 𝜇𝜇    (2.15) 

Where the Y values on the RHS of equation (2.15) may be either actual or forecast values as has 

been shown (Du and Li, 1991; Jung and Tremayne, 2006b).  

 

2.4.2 Lead Time Forecasts for an INMA(1) Model 

For the INMA(1) process of 𝑌𝑌𝑡𝑡 =  𝛽𝛽 ° 𝑍𝑍𝑡𝑡−1 + 𝑍𝑍𝑡𝑡 , the cumulative 𝑌𝑌 over lead time 𝑙𝑙 is given 

∑ 𝑌𝑌𝑡𝑡+𝑗𝑗
𝑙𝑙+1
𝑗𝑗=1 = 𝑌𝑌𝑡𝑡+1 + 𝑌𝑌𝑡𝑡+2 + ⋯+ 𝑌𝑌𝑡𝑡+𝑙𝑙+1 = (𝛽𝛽 ° 𝑍𝑍𝑡𝑡 + 𝑍𝑍𝑡𝑡+1) + (𝛽𝛽 ° 𝑍𝑍𝑡𝑡+1 + 𝑍𝑍𝑡𝑡+2) 

+ … . +(𝛽𝛽 ° 𝑍𝑍𝑡𝑡+1 + 𝑍𝑍𝑡𝑡+𝑙𝑙+1)       (2.16) 

The above equation(2.16) can be written as: 

∑ 𝑌𝑌𝑡𝑡+𝑗𝑗
𝑙𝑙+1
𝑗𝑗=1 = ∑ ∑ Ψ𝑖𝑖𝑖𝑖𝑛𝑛𝑗𝑗

𝑖𝑖=1
𝑙𝑙+1
𝑗𝑗=1 ° 𝑍𝑍𝑡𝑡+𝑘𝑘𝑖𝑖𝑖𝑖       (2.17) 
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Where 𝑛𝑛𝑗𝑗  is the number of  𝑍𝑍𝑡𝑡+𝑘𝑘𝑖𝑖𝑖𝑖  terms in each of �𝑌𝑌𝑡𝑡+𝑗𝑗 �𝑗𝑗=1
𝑙𝑙+𝑗𝑗

 and Ψ𝑖𝑖𝑖𝑖  is the corresponding 

coefficient for  𝑍𝑍𝑡𝑡+𝑘𝑘𝑖𝑖𝑖𝑖  

It can be seen from equation (2.16) that because the process is an integer moving average of 

order one, each of �𝑌𝑌𝑡𝑡+𝑗𝑗 �𝑗𝑗=1
𝑙𝑙+𝑗𝑗

 only has two  𝑍𝑍𝑡𝑡+𝑘𝑘𝑖𝑖𝑖𝑖  and therefore 𝑛𝑛𝑗𝑗 = 2  The corresponding 

coefficient for each  𝑍𝑍𝑡𝑡+𝑘𝑘𝑖𝑖𝑖𝑖 , is shown by Ψ𝑖𝑖𝑖𝑖  is :  

�Ψ𝑖𝑖𝑖𝑖 = 𝛽𝛽 Ψ2𝑗𝑗 � = 1. 𝑡𝑡 + 𝑘𝑘𝑖𝑖𝑖𝑖  is the subscript of innovation terms in each of �𝑌𝑌𝑡𝑡+𝑗𝑗 �𝑗𝑗=1
𝑙𝑙+𝑗𝑗

 From 

equation (2.16), it can be seen that �𝑘𝑘𝑖𝑖𝑖𝑖 = 𝑗𝑗 − 1,𝑘𝑘2𝑗𝑗 = 𝑗𝑗� Therefore, 

𝑘𝑘𝑖𝑖𝑖𝑖 = � 𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖=2
𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖=1

𝑗𝑗
𝑗𝑗−1 � 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … , 𝑙𝑙 = 1 (2.18) 

Based on equation(2.17), the conditional expected value of the aggregated process is: 

𝐸𝐸�∑ 𝑌𝑌𝑇𝑇+𝑗𝑗
𝑙𝑙+1
𝑗𝑗=1  | 𝑌𝑌𝑇𝑇� = + �∑ ∑ ΨIJ

2
𝑖𝑖=1

𝑙𝑙+1
𝑗𝑗=1 �𝜇𝜇�∑ (1 + 𝛽𝛽)𝑙𝑙+1

𝑗𝑗=1 �𝜇𝜇 = (𝐿𝐿 + 1)(1 + 𝛽𝛽)𝜇𝜇  (2.19) 

2.5 The Negative Binomial (NB) Distribution  

The innovation distribution assumed in this research is the negative binomial distribution. The negative 

binomial distribution has two parameters: the mean  𝜇𝜇and the shape parameter or the dispersion parameter 

k, which is commonly considered to be fixed to measure overdispersion.   For a sample of counts Xthat 

fits a negative binomial distribution ( X~ NB(𝜇𝜇, k) ), the variance of the distribution is  

𝜇𝜇 + 𝜇𝜇2 / k. The probability that the variable X takes the value xis: 

Prb[X=x]= Г(𝑥𝑥+𝑘𝑘)
𝑥𝑥 !Г(𝑘𝑘) �

𝜇𝜇
𝜇𝜇+𝑘𝑘

�
𝑥𝑥
�1 + 𝜇𝜇

𝑘𝑘
�
−𝑘𝑘

= (𝑥𝑥+𝑘𝑘−1)(𝑥𝑥+𝑘𝑘−2) … (𝑘𝑘+1)𝑘𝑘
𝑥𝑥 !

� 𝜇𝜇
𝜇𝜇+𝑘𝑘

�
𝑥𝑥
�1 + 𝜇𝜇

𝑘𝑘
�
−𝑘𝑘

, 𝜇𝜇,𝑘𝑘>0, 

x=0,1,2,…                                                                                                                        (2.20) 

Where Г(. )   denotes the gamma function defined by: 

Г(𝑧𝑧) = ∫ е−𝑡𝑡𝑡𝑡𝑧𝑧−1𝑑𝑑𝑑𝑑∞
0 .             (2.21) 
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From the probability density function of the negative binomial distribution, it can be seen that 

k is an essential part of the model. Estimation of k is thus important given a sample of counts.  

In this research, the method of maximum likelihood estimator (MLE) is adopted to estimate the 

mean and the dispersion parameter of the NB. According to Fisher, the log-likelihood function from a 

sample of independent identically distributed (i.i.d.) variate (𝑥𝑥𝑖𝑖′ , 𝑠𝑠) is proportional to: 

Ɩ(k,𝜇𝜇) = 1
𝑛𝑛
∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �Г(𝑥𝑥𝑖𝑖+𝑘𝑘)

Г(𝑘𝑘) �𝑛𝑛
𝑖𝑖=1 +𝑥̅𝑥log(u)-(𝑥̅𝑥 + 𝑘𝑘)log⁡(1 + 𝜇𝜇

k
)                               (2.22) 

Where 𝜇𝜇 is again the mean of the negative binomial distribution. The sample variate are 

integers in practice, which yields: 

Г(𝑥𝑥+𝑘𝑘)
Г(𝑘𝑘) = (x+k-1)(x+k-2)…(k+1)k. the term 𝑙𝑙𝑙𝑙𝑙𝑙 �Г(𝑥𝑥𝑖𝑖+𝑘𝑘)

Г(𝑘𝑘) �                    (2.23) 

then can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙 �Г(𝑥𝑥𝑖𝑖+𝑘𝑘)
Г(𝑘𝑘) �=∑ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 �1 + 𝑣𝑣

𝑘𝑘
�𝑥𝑥𝑖𝑖−1

𝑣𝑣=0                       (2.24) 

Without call to the gamma function. 

Thus, the log-likelihood function can finally be expressed by: 

Ɩ(k,𝜇𝜇)=1
𝑛𝑛
∑ ∑ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 �1 +  𝜇𝜇

𝑘𝑘
�𝑥𝑥𝑖𝑖−1

𝑣𝑣=0
𝑛𝑛
𝑖𝑖=1 +𝑥̅𝑥log(𝜇𝜇)-(𝑥̅𝑥 + 𝑘𝑘)log⁡(1 + 𝜇𝜇

k
)                           (2.25) 

With gradient elements  

∇𝜇𝜇 Ɩ=
𝑥𝑥̅
𝜇𝜇  

-1+𝑥𝑥̅/𝑘𝑘
 1+𝜇𝜇/𝑘𝑘

 and  

∇𝑘𝑘Ɩ=
1
𝑛𝑛
∑ ∑ � 𝑣𝑣

1+𝑣𝑣/𝑘𝑘
�𝑥𝑥𝑖𝑖−1

𝑣𝑣=0
𝑛𝑛
𝑖𝑖=1 +𝑘𝑘2log⁡(1 + u

k
) - 𝜇𝜇(𝑥𝑥̅+𝑘𝑘)

1+𝜇𝜇/𝑘𝑘
.                             (2.26) 

From the gradient element, setting ∇𝜇𝜇 Ɩ=0 yields 𝜇̂𝜇=𝑥̅𝑥. Then the MLE of k can be obtained via a nonlinear 
root-finder by setting ∇𝑘𝑘Ɩ=0 and given 𝜇𝜇 = 𝜇̂𝜇. 

3 Results and Interpretations  

This section focuses on the result which is based on the simulation study of theoretical 

investigation of the class ofINMA(1) model with NB innovation. The study makes use of the 

Conditional Least squares (CLS) estimate to estimate the parameter of INMA(1) model, and 
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Maximum Likelihood Estimate (MLE) to estimate the mean and the dispersion parameter of the 

NB distribution. 

3.1 Estimation of Parameters ForINMA(1) Model and NB Distribution   

A simulation experiment based on theoretical generated data were addressedunder different 

parameter values and different sample sizes. The Monte Carlo simulations were conducted with a 

code written in R, all results were based on 1000 runs. 

Equation (2.12) is used to estimate the parameter of INMA(1) model, with parameter values 

𝛽𝛽 =0.2, 0.6, and 0.8, different sample sizes n=30, 90, 120, and 600, and with number of 
replication r= 1000.  

In estimating the mean and dispersion parameter of the NB distribution, equation (2.25) is used 

with the following parameter values: 𝜇𝜇 =0.85, 1.5 and 2 respectively. K:1,2, and 4 for each 𝜇𝜇, 

with number of replication r= 1000 times. The results and interpretation are shown below:  

Table3.1: Parameter Estimate of CLS Estimator for INMA(1) Series             

Replication=1000 

Estimator 
Parameter 

setting (𝛽𝛽) 

Parameter 

Estimate 

and S.E 

Sample Size (n) 

30 90 120 600 

Conditional 

Least Square 

0.2 
𝜷𝜷� 0.1250 0.1247 0.1251 0.1244 

S.E 0.2341 0.2311 0.2354 0.2295 

0.6 
𝜷𝜷� 0.9286 0.6505 1.0222 0.6056 

S.E 0.0874 0.0212 0.0629 0.1985 

0.8 
𝜷𝜷� 1.0565 0.8875 0.9710 0.7861 

S.E 0.0294 0.1063 0.0491 0.1625 
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Table3.1 presents the results of the parameter estimates of the Integer Moving Average of order 

1 (INMA(1)) model. The first row reports the parameter estimates of the model, while the second 

row reports the standard errors (S.E) of each of the estimates obtained by simulation. Results are 

based on 1000 replication.   

The results show that, the standard error (SE) produced by the Conditional Least Squares (CLS) 

increases as the number of samples increases. The SE reduces as the parameter values increases. 

This means that estimating the parameter of INMA(1) model is better when the number of 

observations is small and the value of the parameter is high. 

Table3.2: Maximum Likelihood Estimation of K and 𝜇𝜇 of Negative Binomial Distribution for 

n=30,90,120, and 600 

Sample Size (n) 𝜇𝜇 K=1 K=2 K=4 

30 0.85 

 

 

𝑘𝑘�=0.4965 

𝜇̂𝜇=1.0666 

AIC=87.8352 

𝑘𝑘�=0.5387 

𝜇̂𝜇=0.600 

AIC=66.8343 

𝑘𝑘�=0.4967 

𝜇̂𝜇=0.5334 

AIC=62.7172 

1.5 

 

 

𝑘𝑘�=0.6576 

𝜇̂𝜇=1.7331 

AIC=87.8352 

𝑘𝑘�=0.5936 

𝜇̂𝜇=1.000 

AIC=84.8273 

𝑘𝑘�=0.9652 

𝜇̂𝜇=0.9667 

AIC=85.7712 

2.0 𝑘𝑘�=0.6942 

𝜇̂𝜇=2.2664 

AIC=123.8003 

𝑘𝑘�=0.4612 

𝜇̂𝜇=1.5340 

AIC=102.8366 

𝑘𝑘�=0.9775 

𝜇̂𝜇=1.3001 

AIC=98.4756 

90 0.85 

 

 

𝑘𝑘�=0.7585 

𝜇̂𝜇=0.9332 

AIC=244.4199 

𝑘𝑘�=3.1373 

𝜇̂𝜇=0.7999 

AIC=222.3790 

𝑘𝑘�=2.2996 

𝜇̂𝜇=0.8667 

AIC=232.7188 
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1.5 

 

 

𝑘𝑘�=0.8171 

𝜇̂𝜇=1.5669 

AIC=312.3411 

𝑘𝑘�=2.2563 

𝜇̂𝜇=1.4444 

AIC=296.6447 

𝑘𝑘�=2.7858 

𝜇̂𝜇=1.5556 

AIC=303.4139 

2.0 𝑘𝑘�=1.2249 

𝜇̂𝜇=1.9217 

AIC=341.3869 

𝑘𝑘�=1.5143 

𝜇̂𝜇=2.0444 

AIC=348.6402 

𝑘𝑘�=4.5232 

𝜇̂𝜇=2.1221 

AIC=335.6395 

120 0.85 

 

 

𝑘𝑘�=0.8268 

𝜇̂𝜇=0.9501  

AIC=327.8408 

𝑘𝑘�=2.9590 

𝜇̂𝜇=1.008 

AIC=331.9965 

𝑘𝑘�=2.5928 

𝜇̂𝜇=0.9418 

AIC=321.632 

1.5 

 

 

𝑘𝑘�=0.8957 

𝜇̂𝜇=1.6167 

AIC=421.4639 

𝑘𝑘�=2.1894 

𝜇̂𝜇=1.6752 

AIC=421.6663 

𝑘𝑘�=2.6640 

𝜇̂𝜇=1.5831 

AIC=406.9943 

2.0 𝑘𝑘�=1.1353 

𝜇̂𝜇=1.9331 

AIC=455.4091 

𝑘𝑘�=1.9922 

𝜇̂𝜇=2.2333 

AIC=476.1481 

𝑘𝑘�=2.8983 

𝜇̂𝜇=2.1333 

AIC=458.4345 

600 0.85 

 

 

𝑘𝑘�=1.0327 

𝜇̂𝜇=0.7931 

AIC=1481.292 

𝑘𝑘�=1.8040 

𝜇̂𝜇=0.8583 

AIC=1532.379 

𝑘𝑘�=1.7264 

𝜇̂𝜇=0.8099 

AIC=1443.602 

1.5 

 

 

𝑘𝑘�=1.0882 

𝜇̂𝜇=1.450 

AIC=1991.472 

𝑘𝑘�=2.2187 

𝜇̂𝜇=1.5402 

AIC=2010.441 

𝑘𝑘�=6.5003 

𝜇̂𝜇=1.4667 

AIC=1901.274 

2.0 𝑘𝑘�=1.0480 

𝜇̂𝜇=1.9848 

AIC=2287.914 

𝑘𝑘�=2.3424 

𝜇̂𝜇=2.0767 

AIC=2279.278 

𝑘𝑘�=5.2949 

𝜇̂𝜇=1.9482 

AIC=2149.624 
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Table 3.2 present the result of the maximum likelihood estimation results for K and 𝜇𝜇 of NB at 

different simple sizes. Comparing the AIC of the result at different K values and at different 

sample sizes, the estimation produced with minimum value of AIC andwith low sample sizes 

especially when n=30 is better. However, as the number of k increases the value of AIC 

decreases. This means that estimation of K of NB distribution is better when the number of 

observations is small and the more the dispersion the better for the estimation.  

3.2 Forecasting in INMA(1) Model With NB Innovation  

This section concentrate on the investigation of the forecasting accuracy of INMA(1) model, 

with NB innovation. The forecast accuracy at different lead time period 𝑙𝑙=1, 3, 5, 7, 9, and 15 

were investigated with codes written in R statistical package. All results were based on 1000 

runs. 

At time 𝑇𝑇, when 𝑌𝑌𝑇𝑇is observed, the lead time forecast is obtained using equation (2.19), with the 

following Parameter values: 𝑙𝑙=1, 3, 5, 7, 9, and 15. 𝛽𝛽= 0.81, 𝜇𝜇=0.75, 𝑗𝑗 = 1, … . , 𝑙𝑙 + 1, and 

𝑌𝑌𝑇𝑇=30, 90, 120, 600, number of replication r=1000. The result is summarized in the table 3.3.  

Table 3.3 MMSE of The Lead Time Forecasts For INMA(1) Series   

𝑌𝑌𝑇𝑇  𝑙𝑙=1 𝑙𝑙=3 𝑙𝑙=5 𝑙𝑙=7 𝑙𝑙=9 𝑙𝑙=15 

30 3.230813e-

05 

3.230813e-

05 

3.250729e-

05 

3.270645e-

05 

3.290561e-

05 

3.350309e-

05 

90 1.833389e-

05 

1.833389e-

05 

1.833389e-

05 

1.899000e-

05 

1.964611e-

05 

2.161444e-

05 

120 0.00017582 0.000175821 0.00017582 0.00019715 0.000218478 0.000282465
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12 2 12 8 2 

600 0.00112796

2 
0.001127962 

0.00112796

2 
0.001127962 0.00143882 0.00243985 

 

Table 3.3 presents the results of the MMSE forecasts for INMA(1) series with NB innovation. 

The results show that, the MMSE produced when the number of lead time forecasts is between 

one and five were less than that produced when the numbers of lead times forecast were greater 

than five. The MMSE increased when the number of lead time periods increases. This result 

indicates that, making forecasts with this class of model would be better with short time frame of 

predictions.  

 

3.3 Application to Measles Data Set Laboratory Confirmed Cases in Nigeria  

The theoretical investigations result obtained in this study was applied to the number of Measles 

cases (Laboratory confirmed cases) in Nigeria. The count time series data consists of 37 

observations (Monthly data), from January 2021 to December 2021 across 36 states and FCT. 

The data was obtained from the Nigeria Centre for Disease Control (NCDC), and analyzed with 

the aid of R statistical package. The results and the interpretation of the analysis are presented 

below:  

Table3.4 Descriptive Statistic of Measles Cases 

 
Measles cases (Lab confirmed cases) 

Mean 47.48 

Median 36.50 

Maximum 159 

Minimum 7 

Variance 1298.78 
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Observations 37 

Table3.4 depicts the summary statistic of the number of Measles confirmed cases in Nigeria in 

the year 2021. From the table, the mean and the variance respectively are 47.48 and 1298.78 

which is an evident of overdispersion in the data.  

 

Table3.5 Preliminary Test 

Test type Test value p-value Decision 

Overdispersion Z=3.1074 0.0009438 Reject H0 

Autocorrelation Chi-square=3.0651 0.0003435 Reject H0 

 

Table3.5 presents the Preliminary test of the number of confirmed Measles in Nigeria in the year 

2021. The results suggest that the null hypotheses (H0) (i.e. no true dispersion and 

autocorrelation in the series and its residuals respectively) cannot be accepted, thus there is true 

dispersion in the data set and presence of autocorrelation in the residuals, which corroborates the 

descriptive analysis. Hence, a negative binomial distribution is assumed for the innovation. 

GSJ: Volume 11, Issue 12, December 2023 
ISSN 2320-9186 574

GSJ© 2023 
www.globalscientificjournal.com



 

Fig3.1 ACF Plot of Measles cases 

 

 

Fig3.2 PACF plot of Measles cases 
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Fig3.1 and Fig3.2 respectively depicts the plots of ACF and PACF respectively. Based on the 

information supplied by the plots, it is clear that moving average model is suggested. The 

candidates’ models in table3.6 were compared. Comparing the AIC of the models in table3.6. the 

INMA(1) model gives the minimum AIC and hence an INMA(1) model best fit the data set.  

Table3.6 Candidates of INARMA Models 

Candidate Models AIC 

INARMA(2,2) 422 

INARMA(0,1) 415 

INARMA(1,0) 416 

INARMA(1,1) 425 

 

Table3.7 Parameter Estimate of INMA(1) Model 

Model Parameter estimate Std. Error p-value 

INMA(1) -0.30899 1.13925 0.02649 

 

Table3.7 presents the estimate of parameter of INMA(1) model. In line with the simulation 

result, Conditional Least Square (CLS) estimation method was employed. The parameter of the 

model was tested and found to be statistically significant at 5% level of significance ( p< 0.05).  

Table3.8 Lead Time Forecast of Measles Cases Using INMA(1) Model 

Lead time  1 3 5 7 9 

Forecast  107.0171 107.0459 107.0486 107.0489 107.0489 

MMSE 1.971362 1.972074 1.972141 1.972148 1.972159 

 

GSJ: Volume 11, Issue 12, December 2023 
ISSN 2320-9186 576

GSJ© 2023 
www.globalscientificjournal.com



Table3.8 depicts the lead time forecast of the Measles cases in Nigeria, using the fitted INMA(1) 

model. The accuracy of the forecast is measured by the MMSE. The error of forecast increases as 

the number of lead time increased. This result is in line with the theoretical investigations 

obtained in this study. This shows that forecasting with this class of model is betterwith short 

time prediction.The results show that, the number of Measles forecasted shows an 

increasingtrend, but with an approximately equal values as the number of leads time increases, 

 

 

 

4.0 Conclusion 

From our findings, the following conclusions were drawn: 

 

The results of the estimation of parameter of the INMA(1) model confirmed that the standard 

error (SE) produced by the Conditional Least Squares (CLS) increases as the number of samples 

increases, the error reduced as the parameter values increases. This means that estimating the 

parameter of INMA(1) model is better when the number of observations is small and the 

parameter value is high. 

The result of the estimation of the parameters(K and 𝜇𝜇) of NB distribution at different simple 

sizes. Comparing the Akaike Information Criterial (AIC) of the result at different K values and at 

different sample sizes, the estimation produced less AIC with low sample sizes especially when 

n=30. However, as the number of k increases the result showed a decreased in the value of AIC. 

This means that estimation of K of NB distribution is better when the number of observations is 

small and the more the dispersion the better for the estimation. 

The forecasting accuracy were measured by the MMSE. The results showed that, the MMSE 

produced when the number of lead time forecasts between one and five were less than that 
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produced when the numbers of lead times forecast were greater than five. The MMSE increased 

when the number of lead time periods increases. This result indicates that, forecasts with this 

class of model is better with short time frame of predictions. 

Lastly, the theoretical investigations were validated with a real life data using the number 

Measles confirmed in Nigeria. The results obtained corroborates the results from the theoretical 

investigations.  
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