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Abstract 

In this paper we single out some of the crucial contributions of the Arzela- Ascoli theorem to 

Analyis. It is demonstrated on how it resonates in the proof of Peano existence theorem, Peter-

Weyl theorem and establishment of Bolzano-Weistrass theorem. It is also justified that in 

mathematics, the Arzela- Ascoli theorem of functional analysis gives necessary and sufficient 

condition of equicontinuity to the family of functions. 
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Introduction: 

The notion of equicontinuity was introduced at around the same time by Ascoli (1883-1884) and 

Arzela (1882-1883). A weak form of the theorem was proved by Ascoli (1883-1884), who 

established the sufficient condition for compactness and by Arzela (1895), who established the 

necessary condition and the gave the first clear presentation of the result. 

A further generalization of the theorem was proven by Frechet (1906) to sets of real-valued 

continuous functions with domain a compact metric space (Dunford and Schwartz,1958). 

Modern formulations of the theorem allow for the domain to be compact Hausdorff and for the 

range to be an arbitrary metric space. 

More general formulations of the theorem exist that give necessary and sufficient conditions for 

a family of functions from a compactly generated Hausdorff space into a uniform space to be 

compact in the compact-open topology, Kelley (1991, page234). 

Research Methodology 

Definition 1.0 (Equicontinuity) 

A family of functions Ϝ is said to be equicontinuos on [a,b] if for any given 𝜀 > 0 , there exists a 

number 𝛿 > 0 such that ∥ 𝑥(𝑡) − 𝑥(𝑠) ∥< 𝜀, whenever |𝑡 − 𝑠| < 𝛿 for every function x∈F and 

t,s∈[a,b]. 

Definition 1.1(Initial value problem) 

Let X(x,t) be a continuous function. Then a function x(t) is a solution of the initial value problem 

{
𝑑𝑥

𝑑𝑡
= 𝑋(𝑥, 𝑡)

𝑥(𝑎) = 𝐶
……………………………….∗ 

GSJ: Volume 7, Issue 12, December 2019 
ISSN 2320-9186 

1411

GSJ© 2019 
www.globalscientificjournal.com 

mailto:awanjara78@gmail.com
ashish
Typewritten Text
GSJ: Volume 7, Issue 12, December 2019, Online: ISSN 2320-9186 	         www.globalscientificjournal.com 

ashish
Typewritten Text

ashish
Typewritten Text

ashish
Typewritten Text



If and only if it is a solution of the integral equation 

𝑥(𝑡) = 𝐶 + ∫ 𝑋(𝑥(𝑠), 𝑠)𝑑𝑠
𝑡

𝑎
…………………∗∗ 

Theorem1.2(The Arzela- Ascoli theorem) 

If a sequence {𝑓𝑛 }1
∞ in C(x) is bounded and equicontinuous then it has a uniformly convergent 

subsequence. 

Theorem 1.3 (The Arzela-Ascoli theorem) 

Assume that the sequence {𝑥𝑛(𝑡)} is bounded and equicontinuous on [a,b], then there exists a 

subsequence  {𝑥𝑛𝑖(𝑡)} that is uniformly convergent on [a,b] 

Theorem 1.4(Peano Existence theorem) 

Assume that X(x,t) is continuous in the closed domain ∥ 𝑥 − 𝑐 ∥≤ 𝑇. Then the initial value 

problem …∗ has at least one solution in the interval |t-a|≤ min{T,
𝑘

𝑚
} where 

𝑚 = 𝑆𝑢𝑝⏟
∥𝑥−𝑐∥≤𝑘
|𝑡−𝑎|=𝑇

∥ 𝑋(𝑥, 𝑡) ∥ 

Theorem 1.5 (Peter-Weyl theorem) 

The theorem has three parts: 

i. The first part states that the matrix coefficients of irreducible representations of compact 

topological group G are dense in the space C(G) of continuous complex-valued functions 

on G and thus also in the L2(G) of square-integrable functions. 

ii. The second part asserts the complete reducibility of unitary representations of G.Let P be 

a unitary representation of a compact group G on a complex Hilbert space H.Then H 

splits into an orthogonal direct sum of irreducible finite-dimensional unitary 

representation of G. 

iii. The third part asserts that the regular representation of G on L2(G) decomposes as the 

direct sum of all irreducible unitary representations, Moreover, the matrix coefficients of 

the irreducible unitary representations form an orthogonal basis of L2(G) 

Theorem 1.6(Bolzano-Weierstrass theorem) 

Every bounded infinite set has at least one limit point 

2.0 MAIN RESULT (CONTRIBUTIONS TO ANALYSIS) 

2.0.1: The Arzela-Ascoli theorem is a fundamental result in mathematics. In particular, it forms 

the basis for the proof of the Peano existence theorem, theorem 1.4 in the theory of ordinary 

differential equations as below: 

Proof of the Peano existence theorem: 
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Denote 𝑇1 = min {𝑇,
𝑘

𝑚
}.Let 𝑀 = 𝑆𝑢𝑝⏟

|𝑡−𝑎|≤𝑇

|𝑋(𝑐, 𝑡| < +∞. Without loss of generality, we can 

assume that a=0 and t≥ 𝑎. We need to prove the theorem on 0 ≤ 𝑡 ≤ 𝑇1 with a=0. We first 

construct a sequence of bounded equicontinuous  functions {𝑥𝑛(𝑡)} on [0, 𝑇1]. For each n, define  

𝑥𝑛(𝑡) =

{
 
 

 
 𝐶                                      ∀ 0 ≤ 𝑡 ≤

𝑇1
𝑛.

𝐶 + ∫ 𝑋(

𝑡−
𝑇1
𝑛.

0

𝑥𝑛(𝑠), 𝑆)𝑑𝑠 ∀ 
𝑇1
𝑛.
 ≤ 𝑡 ≤ 𝑇1

 

The above formula defines the value of 𝑥𝑛(𝑡) recursively in terms of the previous values of 

𝑥𝑛(𝑡). We can use mathematical induction to show that  

∥ 𝑥𝑛(𝑡) − 𝑐 ∥≤ 𝐾 on [0, 𝑇1]. 

Indeed on [0, 
𝑇1

𝑛.
], it is trivial since 𝑥𝑛(𝑡) = 𝐶. If we assume that the inequality holds on [0, k

𝑇1

𝑛.
] 

0 ≤ 𝑘 < 𝑛, then on [k
𝑇1

𝑛.
, (k+1) 

𝑇1

𝑛.
],  ∥ 𝑥𝑛(𝑡) − 𝑐 ∥= ∫ 𝑋(

𝑡−
𝑇1
𝑛.

0
𝑥𝑛(𝑠), 𝑆)𝑑𝑠 

∥ 𝑥𝑛(𝑡) − 𝑐 ∥≤ 𝑀|𝑡 −
𝑇1
𝑛.
| ≤ 𝑀𝑇1 ≤ 𝐾 

Hence the sequence{𝑥𝑛(𝑡)} is uniformly bounded on [0, 𝑇1] : ∥ 𝑥
𝑛(𝑡) ∥≤∥ 𝐶 ∥ +𝐾 

The equicontinuity of the sequence  {𝑥𝑛(𝑡)} on [0, 𝑇1] can be proven by the following estimates: 

∀ 𝑡1, 𝑡2 ∈0, [0, 𝑇1] 

∥ 𝑥𝑛(𝑡1) − 𝑥
𝑛(𝑡𝑛) ∥=

{
 
 
 
 
 
 

 
 
 
 
 
 0                                                                  𝑖𝑓   𝑡1, 𝑡2 ∈ [0,

𝑇1
𝑛.
] ,

∥ ∫ 𝑋(

𝑡2−
𝑇1
𝑛.

0

𝑥𝑛(𝑠), 𝑆)𝑑𝑠 ∥ ,   𝑖𝑓 𝑡1  ∈ [0,
𝑇1
𝑛.
]𝑎𝑛𝑑 𝑡2 ∈ ( 

𝑇1
𝑛.
, 𝑇1),

∥ ∫ 𝑋(

𝑡1−
𝑇1
𝑛.

0

𝑥𝑛(𝑠), 𝑆)𝑑𝑠 ∥, 𝑖𝑓  𝑡2  ∈ [0,
𝑇1
𝑛.
] 𝑎𝑛𝑑  𝑡1  ∈ [ 

𝑇1
𝑛.
, 𝑇1],

∥ ∫ 𝑋(

𝑡2−
𝑇1
𝑛.

𝑡1

𝑥𝑛(𝑠), 𝑆)𝑑𝑠 ∥ ,   𝑖𝑓                    𝑡1, 𝑡2 ∈ [ 
𝑇1
𝑛.
, 𝑇1]

 

I                                         ≤M|t-s| 

By Arzela-Ascoli theorem, theorem 1.3, we know that there exists a uniformly convergent 

sequence {𝑥𝑛𝑖(𝑡)} that converges to a continuous function {𝑥∞(𝑡)} on [0,  𝑇1] as 𝑛𝑖 → ∞.We can 
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show that the function   𝑥∞(𝑡) is actually a solution of the initial value problem….∗. Indeed for 

any fixed  t ∈ [0,  𝑇1], we can take 𝑛𝑖 sufficiently large such that 
𝑇1

𝑛𝑖
< 𝑡. Thus by the definition of 

{𝑥𝑛(𝑡)}, we have  

                       𝑥𝑛𝑖(𝑡) =  𝐶 + ∫ 𝑋(
𝑡

0
𝑥𝑛𝑖(𝑠), 𝑆)𝑑𝑠 − ∫ 𝑋(

𝑡

𝑡−
𝑇1
𝑛𝑖

𝑥𝑛𝑖(𝑠), 𝑆)𝑑𝑠      

As 𝑛𝑖 → ∞, since X(x,t) is uniformly continuous, we have  

∫𝑋(

𝑡

0

𝑥𝑛𝑖(𝑠), 𝑆)𝑑𝑠 → ∫𝑋(

𝑡

0

𝑥∞(𝑠), 𝑆)𝑑𝑠; 

The second integral of the last equation tends to zero, since 

|∫ 𝑋(
𝑡

𝑡−
𝑇1
𝑛𝑖

𝑥𝑛𝑖(𝑠), 𝑆) 𝑑𝑠| ≤ ∫ 𝑀
𝑡

𝑡−
𝑇1
𝑛𝑖

𝑑𝑠 = 𝑀 
𝑇1

𝑛𝑖
 → 0 

Hence we know that the function 𝑥∞(𝑡) satisfies the integral equation  

𝑥∞(𝑡) = 𝐶 + ∫𝑋(

𝑡

0

𝑥∞(𝑠), 𝑆)𝑑𝑠                 

2.0.2: In mathematics, the Arzela-Ascoli theorem of functional analysis gives necessary and 

sufficient conditions to decide whether every sequence of a given family of real-valued 

continuous functions defined on a and bounded interval has a uniformly convergent sub-

sequence. The main condition is the equicontinuity of the family of functions. 

 

2.0.3 It also plays a decisive role in the proof of the Peter-Weyl theorem, theorem 1.5 

2.0.4 The Arzela-Ascoli theorem is the key to the following result: Asub-set F of C(X) is 

compact iff it is closed, bounded and equicontinuous. 

2.0.5 The establishing of the Bolzano-Weierstrass theorem, theorem 1.6 is a generalization of the 

Arzela-Ascoli theorem. 

Conclusion 

In this paper, we have summarized and singled out some of the contributions of the Arzela-

Ascoli theorem and how it resonates the field of mathematical analysis. 
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