GSJ: Volume 12, Issue 3, March 2024, Online: ISSN 2320-9186
www.globalscientificjournal.com

On the construction of a fractional normal distribution and a related fractional Brownian motion

Mahmoud M. El-Borai and Khairia El-Said El-Nadi
Department of Mathematics and Computer Sciences-Faculty of Science
Alexandria University- Egypt
m_m_elborai@yahoo.com khairia_el_said@hotmail.com

Abstract

A fractional normal distribution is constructed. With the help of this new distribution a fractional Brownian motion is defined. A generalization of the Ito stochastic integration is given and some stochastic properties are studied. Formula Ito and the product rule are generalized.

Keywords: Fractional normal distribution- Riemann stochastic integralsFractional Brownian motion- Fractional product rule- Fractional formula Ito.

Mathematics Subject Classifications: 35A05, 47D60, 47D62, 77D09, 60H05, 60H10, 60G18.

1. Introduction

Let (Ω, \mathcal{F}, P) be a probability space , R be the set of all real numbers. If a random variable $X: \Omega \rightarrow R$ has a density :
$f(x)=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi t^{\alpha} \theta}} \zeta_{\alpha}(\theta) \exp \left(-\frac{-(x-m)^{2}}{2 t^{\alpha} \theta}\right) d \theta$, we say that X has a fractional Gaussian (or fractional normal) distribution with mean m and variance $\frac{t^{\alpha}}{\Gamma(\alpha+1)}$, where $\zeta_{\alpha}(\theta)$ is the stable probability density function, $o<\alpha \leq 1, \Gamma($.$) is the$ gamma function, see [1-5].

In this case let us write X is $N_{\alpha}\left(m, \frac{t^{\alpha}}{\Gamma(\alpha)}\right)$ random variable.

A real-valued stochastic process is called $\alpha-$ fractional Brownian if
(i) $W_{\alpha}(0)=0$,
(ii) $W_{\alpha}(t)-w_{\alpha}(s)$ is $N_{\alpha}\left(0, \frac{t^{\alpha}-s^{\alpha}}{\Gamma(\alpha+1)}\right)$,
(iii) for all times $0<t_{1}<\cdots t_{n}$ the random variables $W_{\alpha}\left(t_{1}\right), W_{\alpha}\left(t_{2}\right)-$ $W_{\alpha}\left(t_{1}\right), \ldots, W_{\alpha}\left(t_{n}\right)-W_{\alpha}\left(t_{n-1}\right)$ are independent.

Notice that $E\left(W_{\alpha}(t)=0 E\left(W_{\alpha}^{2}(t)\right)=\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right.$, where $E(X)$ is the expectation of X.

It is easy to prove that:
$E\left(W_{\alpha}(t) W_{\alpha}(s)\right)=\frac{s^{\alpha}}{\Gamma(\alpha+1)}, s \leq t$.
In section 2, we shall study some stochastic Riemann sums. In section 3 , we shall study stochastic integrals related to the considered fractional Brownian motion. In section 4, we generalize the product rule and the formula of Ito.

2- Stochastic Riemann sums

Let $[a, b]$ be an interval in $[0, \infty)$ and suppose that $\wp=\left\{a=t_{o}<t_{1}<\cdots<t_{m}\right.$ is an arbitrary partition of $[a, b]$ with mesh $|\wp|=M a x_{0 \leq k \leq m-1}\left|t_{k+1}^{\alpha}-t_{k}^{\alpha}\right|$.

Consider the following sum:
$\sum_{k=0}^{m-1}\left[W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right)\right]^{2}$ for any partition \wp.
Let us take the limit $|\wp| \rightarrow 0$ as $m \rightarrow \infty$ in $L^{2}(\Omega),\left(L^{2}(\Omega)\right.$ is the set of all random variables X such that $E\left(X^{2}\right)$ exis).

According to the properties of $W_{\alpha}(t)$, we get:
$E\left(\left(Q_{m}-\frac{b^{\alpha}-a^{\alpha}}{\Gamma(\alpha+1)}\right)\right)^{2}=\sum_{k=0}^{m-1} E\left(\left(Y_{k}^{2}-1\right)^{2}\left(\left(t_{k+1}^{\alpha}-t_{k}^{\alpha}\right) / \Gamma(\alpha+1)\right)^{2}\right.$,
Where $Q_{m}=\sum_{k=0}^{m-1}\left[W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right)\right]^{2}, Y_{k}=\frac{W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right)}{\sqrt{\left(t_{k+1}^{\alpha}-t_{k}^{\alpha}\right) / \Gamma(\alpha)}}$
Notice that Y_{k} is an $N_{\alpha}(0,1)$
Thus for some positive constant C we have
$E\left(\left(Q_{m}-\left(\frac{a^{\alpha}-b^{\alpha}}{\Gamma(\alpha)}\right)^{2} \leq C|\wp|(b-a) \rightarrow 0\right.\right.$ as $m \rightarrow \infty$.

Consider now the following stochastic Riemann sum:
$R_{m}=\sum_{k=0}^{m-1} W_{\alpha}\left(t_{k}\right)\left(\left(W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right), a=0, b=T\right.\right.$.
It is clear that
$R_{m}=\frac{W_{\alpha}^{2}(T)}{2}-\frac{1}{2} \sum_{k=0}^{m-1}\left[W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right)\right]^{2} \rightarrow \frac{W_{\alpha}^{2}(T)}{2}-\frac{T^{\alpha}}{2 \Gamma(\alpha+1)}$ as the mesh tends to zero and $m \rightarrow \infty$.

We can write:
$\int_{0}^{T} W_{\alpha} d W_{\alpha}=\frac{W_{\alpha}^{2}(T)}{2}-\frac{T^{\alpha}}{2 \Gamma(\alpha+1)}$.

We can write

$$
d W_{\alpha}^{2}(t)=2 W_{\alpha} d W_{\alpha} \quad \text { (comp.[6-11]). }
$$

$$
+\frac{t^{\alpha-1}}{\Gamma(\alpha)} d t
$$

It can be proved also that
$d\left(t W_{\alpha}\right)=t d W_{\alpha}+W_{\alpha} d t$.

3- Stochastic α-fractional integrals

Let $\mathcal{L}^{2}(0, T)$ be the space of all real-valued, progressively measurable stochastic processes $\mathrm{G}($.$) such$ that $E\left(\int_{0}^{T} G^{2} d t\right)<\infty$

Denote by S the set of all bounded step processes $\mathcal{L}^{2}(0, T)$.
Let $G \in S$. Then following Ito, we define $\int_{0}^{T} G d W_{\alpha}$, by
$\int_{0}^{T} G d W_{\alpha}=\sum_{k=0}^{m-1} G_{k}\left(W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right)\right)$,
Where $G(t)=G_{k}$ for $t_{k} \leq t_{k+1}, k=0, \ldots, m-1$.
The random variables G_{1}, \ldots, G_{m} are independent of $W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right), k=0, \ldots, m-1$.

It is easy to see that for all real constants a, b and for all $G, H \in S$,
$\int_{0}^{T}(a G+b H) d W_{\alpha}=a \int_{0}^{T} G d W_{\alpha}+b \int_{0}^{T} H d W_{\alpha}$,
$E\left(\int_{0}^{T} G d W_{\alpha}\right)=0$.

Let us try to find $E\left[\left\{\int_{0}^{T} G d W_{\alpha}\right\}^{2}\right]$.
According to the properties of W_{α}, G we can prove that
$\left.E\left[\left\{\int_{0}^{T} G d W_{\alpha}\right\}^{2}\right]=\sum_{k=0}^{m-1} E\left(G^{2}\right) E\left(W_{\alpha}\left(t_{k+1}\right)-W_{\alpha}\left(t_{k}\right)\right)^{2}\right)=\frac{1}{\alpha \Gamma(\alpha)} \int_{0}^{T} E\left(G^{2}\right) d t^{\alpha}$.

Also, we can see that
$E\left(\int_{0}^{T} G d W_{\alpha} \int_{0}^{T} H d W_{\alpha}\right)=\frac{1}{\Gamma(\alpha)} \int_{0}^{T} t^{\alpha-1} G H d d t$.
Using the fact that S is dense in $\mathcal{L}^{2}(0, T)$, we can see that all the previous relations are valid for all $G, H \in \mathcal{L}^{2}(0, T)$.

4-The fractional product rule

Theorem. (fractional product rule). Suppose
$d X_{1}=F_{1} d t+G_{1} d W_{\alpha}, d X_{2}=d F_{2} d t+G_{2} d W_{\alpha}, 0 \leq t \leq T$,
Where $G_{1}, G_{2} \in \mathcal{L}^{2}(0, T), F_{1}, F_{2} \in \mathcal{L}^{1}(0, T),\left(\mathcal{L}^{1}(0, T)\right.$ is the space of all real-valued, progressively measurable stochastic processes F such that $\left.E\left[\int_{0}^{T}|F| d t\right]<\infty\right)$.

Then
$d\left(X_{1} X_{2}\right)=X_{2} d X_{1}+X_{1} d X_{2}+\frac{t^{\alpha-1}}{\Gamma(\alpha)} G_{1} G_{2} d t$.
Proof. We can write $X_{i}(t)=X_{i}(0)+\int_{0}^{t} F_{i}(r) d r+\int_{0}^{t} G_{i}(r) d W_{\alpha}(r), i=1,2, \quad 0 \leq t \leq T$.
I- Let us first consider the case $X_{1}(0)=X_{2}(0)=0, F_{i}(t)=F_{i}, G_{i}(t)=G_{i}$, where F_{i}, G_{i} are time independent. Then
$X_{i}(t)=F_{i} t+G_{i} W_{\alpha}(t), 0 \leq t \leq T, i=1,2$.
Thus

$$
\begin{aligned}
\int_{0}^{t}\left[X_{2}(r) d X_{1}(r)\right. & \left.+X_{1}(r) d X_{2}(r)+\frac{r^{\alpha-1}}{\Gamma(\alpha)} G_{1} G_{2}\right] d r \\
& =F_{1} F_{2} t^{2}+\left(G_{1} F_{2}\right. \\
& \left.+G_{2} F_{1}\right) \int_{0}^{t} d\left(r W_{\alpha}(r)\right)+2 G_{1} G_{2} \int_{0}^{t} W_{\alpha}(r) d W_{\alpha}(r)+G_{1} G_{2} \frac{t^{\alpha}}{\Gamma(\alpha+1)} .
\end{aligned}
$$

Using the results in section 2 , we get

$$
\int_{0}^{t}\left[X_{2}(r) d X_{1}(r)+X_{1}(r) d X_{2}(r)+\frac{r^{\alpha-1}}{\Gamma(\alpha)} G_{1} G_{2}\right] d r=X_{1}(t) X_{2}(t)
$$

This is the fractional product formula for the special case that $X_{1}(0)=X_{2}(0)=0$ and F_{i}, G_{i} time independent random variables. The case that $X_{1}(0) \neq 0, X_{2}(0) \neq 0$ and F_{i}, G_{i} are time independent random variables has a similar proof.
II- If F_{i}, G_{i} are step processes, we apply step I on each subinterval (t_{k}, t_{k+1}) on which F_{i} and G_{i} are constant random variables, and add the resulting integral expressions.
III- In the general situation, we select step processes $F_{i}^{n} \in \mathcal{L}^{1}(0, T), G_{i}^{n} \in \mathcal{L}^{2}(0, T)$ such that
$E\left[\int_{0}^{T}\left|F_{i}^{n}-F_{i}\right| d t \rightarrow 0\right.$, as $n \rightarrow \infty, E\left[\int_{0}^{T}\left\{G_{i}^{n}-G_{i}\right\}^{2} d t\right] \rightarrow 0$, as $n \rightarrow \infty$.
Define

$$
X_{i}^{n}(t)=X_{i}(0)+\int_{0}^{t} F_{i}^{n} d r+\int_{0}^{t} G_{i}^{n} d W_{\alpha}, i=1,2 .
$$

We apply step II to $X_{i}^{n}($.$) on [0, \mathrm{~T}]$ and pass to limits to obtain the required formula.
This completes the proof of the theorem.

Theorem (Fractional Ito formula). Suppose that $X($.$) has a fractional stochastic$ differential
$d X=F d t+G d W_{\alpha}, F \in \mathcal{L}^{1}(0, T), \quad G \in \mathcal{L}^{2}(0, T)$.
Assume $u:(-\infty, \infty) x[0 . T] \rightarrow(-\infty, \infty)$ is a continuous such that $\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, \frac{\partial^{2} u}{\partial x^{2}}$ exist and are continuous.
Set

$$
Y(t)=u(X(t), t)
$$

Then Y has the fractional stochastic differential

$$
d Y=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d X+\frac{1}{2} \frac{t^{\alpha-1}}{\Gamma(\alpha)} \frac{\partial^{2} u}{\partial x^{2}} G^{2} d t
$$

Proof. I- We start with the special case $\left(x^{m}\right), m=0,1,2, \ldots$ and first of all claim that

$$
d X^{m}=m X^{m-1} d X+\frac{1}{2} m(m-1) X^{m-2} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t
$$

This is true for $m=0,1$ and the case $m=2$ follows from the fractional product rule.
Now assume the stated formula for $m-1$.

$$
d X^{m-1}=(m-1) X^{m-2} d X+\frac{1}{2}(m-1)(m-2) X^{m-3} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t
$$

And we prove it for m. Using the fractional product rule, we get

$$
\begin{aligned}
d X^{m}=d\left(X X^{m-1}\right)= & X d X^{m-1}+X^{m-1} d X+(m-1) X^{m-2} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t \\
=X\left[(m-1) X^{m-2} d X+\right. & \left.\frac{1}{2}(m-1)(m-2) X^{m-3} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t\right]+X^{m-1} d X+ \\
& (m-1) X^{m-2} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t
\end{aligned}
$$

$=m X^{m-1} d X+\frac{1}{2} m(m-1) X^{m-2} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t$.

Since fractional Ito formula thus holds for the function $u(x)=x^{m}, m=1,2, \ldots$ it follows that fractional Ito formula is valid for all polynomials u in the variable x.
II- Suppose now $u(x, t)=f(x) g(t)$, where f and g are polynomials. Then

$$
\begin{gathered}
d(u(x, t))=d(f(X) g(t)) \\
=f(X) d g(t)+g(t) d f(X) \\
=f(X) g^{\prime}(t) d t+g(t) f^{\prime}(X) d X+\frac{1}{2} f^{\prime \prime}(X) \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t \\
=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d X+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2} d t .
\end{gathered}
$$

Thus fractional Ito formula is valid for all polynomial function u of the variables x, t.

III- Given u as in fractional Ito formula, there exists a sequence of polynomials $\left\{u_{n}\right\}$ such that $u_{n} \rightarrow$ $u, \frac{\partial u_{n}}{\partial t} \rightarrow \frac{\partial u}{\partial t}, \frac{\partial u_{n}}{\partial x} \rightarrow \frac{\partial u}{\partial x}, \frac{\partial^{2} u_{n}}{\partial x^{2}} \rightarrow \frac{\partial^{2} u}{\partial x^{2}}$, as $n \rightarrow \infty$,
Uniformly on compact subsets of $(-\infty, \infty) x[0, T]$. With the help of step II, we ncan write

$$
u_{n}(X(t), t)-u_{n}(X(0), 0)=\int_{0}^{t}\left[\frac{\partial u_{n}}{\partial r}+\frac{\partial u_{n}}{\partial x} F+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}} \frac{t^{\alpha-1}}{\Gamma(\alpha)} G^{2}\right] d r
$$

$+\int_{0}^{t} \frac{\partial u_{n}}{\partial x} G d W_{\alpha} \quad$ almost surely.
We may pass to limits as $n \rightarrow \infty$ in this expression, thereby proving fractional Ito formula in general.

Conclusion

A fractional normal distribution is defined. With the help of this distribution a fractional Brownian motion is studied. The theory of stochastic integrals is generalized. A new fractional product rule and fractional Ito formula are given.

Conflict of interest

There are no conflicts to declare.

Reference

[1] Mahmoud M. El-Borai , Some probability densities and fundamental solution of fractional evolution equations, Chaos, Soliton and Fractals 14 (2002),433-440.
[2] Mahmoud M. El-Borai, Osama Labib and Hamdy M., Asymptotic stability of some stochastic evolution equations, Applied Math. And comp. 144, 2003, 273-286.
[3] Mahmoud M. El-Borai and Khairia El-Said El-Nadi, Osama Labib, Hamdy M., Volterra equations with fractional stochastic integrals, Mathematical problems in Engineering, 5, (2004), 453-468.
[4] Mahmoud M. El-Borai and Khairia El-Said El-Nadi , On some fractional parabolic equations driven by fractional Gaussian noise, Special Issue SCIENCE and Mathematics with Applications International Journal of Research and reviews in Applied Sciences 6(3). February 2011, 236-241.
[5] Mahmoud M. El-Borai, and Khairia El-Said El-Nadi, On some stochastic nonlinear equations and the fractional Brownian motion, Caspian Journal of Computational \& Mathematical Engineering, 2017, No.1, 20-33.
[6] Mahmoud M. El-Borai, Khairia El-Said El-Nadi, H. M. Ahmed, H. M. El-Owaidy, A. S. Ghanem \& R. Sakthivel, Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition, Cogent Mathematics \& Statistics, Vol.5, 2018, Issue1.
[7] Hamdy M Ahmed, Mahmoud M El-Borai, Hassan M El-Owaidy, Ahmed S Ghanem, Existence Solutions and Controllability of Sobolev Type Delay Nonlinear Fractional Integro-Differential Systems, Mathematics, MDPI, 2019, 7, 79;doi:10.3390/math7010079 January 2019, 1-14.
[8] Mahmoud M. El-Borai, Khairia El-Said El-Nadi, The parabolic transform and some singular integral evolution equations, Mathematics and Statistics 8(4), 2020, 410-415.
[9] Mahmoud M. El-Borai and Khairia El-Said El-Nadi, Stochastic fractional models of the diffusion of covid-19, Advances in Mathematics: Scientific Journal 9 (2020), no.12, 10267-10280.
[10] Z. Arab and Mahmoud M. El-Borai, Wellposedness and stability of fractional stochastic nonlinear heat equation in Hilbert space, Fractional Calculus and Applied Analysis, 2022, 25(5), 2020-2039.
[11] Mahmoud M. El-Borai, Khairia El-Said El-Nadi, On the stable probability distributions and some abstract nonlinear fractional integral equations with respect to functions, Turkish Journal of Physiotherapy and Rehabilitations; 32(3), 2022, 32858-32863.
[12] Hamdy M. Ahmed, Mahmoud M. El-Borai, Wagdy El-Sayed and Alaa Elbadrawi, Null Controllability of Hilfer Fractional Stochastic Differential Inclusions, Fractal and Fractional. 2022, 6, 721.
[13] A. G. Malliaris, Ito Calculus in fractional decision making, SIAM Review 25 (1983), 481-496.
[14] R. Paley, N. Wiener and A. Zigmond, Notes on random functions, Math. Z. 37 (1959), 647-668.

