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Abstract 

In this paper, sparse signal problem is defined and formulated. Constrained optimization and uncon-
strained optimization problems that solve sparse signal problem are also modeled. The main objective of 
the paper is to reconstruct sparse signal that was corrupted by a white noise. A white Gaussian noise was 
added to the original signal for an observed sparse signal and the split Bregman iterations is an optimiza-
tion method for regularization of inverse problem used to solve and recover the sparse signal which is 
closer to the original signal. This is obtained by varying the regularization parameters and choose the best 
one to reconstruct the signal as required comparatively to the original signal. 
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Introduction  
Sparse signals were studied recently as shown by different authors. The problem solved by the sparse re-
presentation is to be search for the most compact representation of a signal in terms of linear combina-
tion of atoms in an over complete dictionary [1].The sparse signal representation is well applied where 
the original signal needs to be reconstructed as accurately as possible, such as denoising, image inpaint-
ing and coding [1]. Finding sparse solutions to undetermined linear systems may become better-behaved 
and be a much more practical [2]. The insight has been developing in signal and image processing, where 
it has been found that many media types (still imagery, video, acoustic,…) can be sparsely represented 
using transform-domain methods and many important tasks dealing with such medial can fruitfully be 
viewed as finding sparse solutions to undetermined systems of linear equations [2]. Different methods 
were applied to reconstruct a sparse signal such as: principal component analysis ([1] [3]), independent 
component analysis ([1] [4]), transform-domain [2] and split Bregman iterations ([5] [6] [7]). This last me-
thod is used in this paper as one of optimization methods to solve sparse signal problem.  
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Signal system representation 
As defined in [8], a system is a mathematical model of a physical process that relates the input signal to 
the output or response signal. If x and y are the input and output signals respectively of a system, the 

system is a transformation of x  into y represented mathematically as Axy = , where A  is the operator 
representing some well-defined rule by which x  is transformed into y as indicated by the figures below. 

See [8]. 

 
Inverse system and inverse problem 
A special class of systems of great importance consists of systems having feedback. In a feedback system, 
the output signal is fed back and added to the input to the system. That is an inverse problem, See [8].  

 

From [7]and [9], an inverse problem in science is the process of calculating from a set of observations the 
causal factors that produced them. Inverse problems are the opposites of direct problems. In a direct 
problem, one finds an effect from a cause and in an inverse problem one is given the effect and want to 
recover the cause.  

That is: yAx 1−≈ . 

An inverse problem is said to be well-posed if the following conditions are satisfied: (a) Existence of solu-
tion, (b) Uniqueness of solution, and (c) Stability where the solution’s behavior changed continuously with 
the initial conditions. See the details in [9]. 
 
 

Sparse signals processing and Problem formulation. 
The resolution of the signal problem needs the notions of different norms such as 210 ,,  and p in 

general for 0>p  [7]. The 0 norm as defined in [2] is as follows:  
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where .0, ≠∀ ixi  This is to count the number of nonzero entries or components of the vector x  in the 

measurement of sparsity of x . 

The problem of sparse representation is an inverse problem aimed to find an unknown sparse 1×ℜ∈ mx
such that Axy =  and 

0
x is minimized with ny ℜ∈  representing a set of n linear projections of x . 

That is  
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A practical alternative is to solve the 1 norm optimization problem of the form 
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or equivalently,  
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where, y is the vector signal values and A  is the matrix whose columns are the elements of the different 
bases to be used in the representation [2]. 

The problem (2) posed offers literally the sparsest representation of the signal content [2].  The use of 
sparsity in signal processing leads to solve the minimization problem: 
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where, 0>λ  is a regularization parameter that balances the trade-off between reconstruction error and 

sparsity. The signal ny ℜ∈ is assumed to be generated by the model  
η+= Axy  

where, 1×ℜ∈ mx , mnA ×ℜ∈  and η is the noise model, and ∑
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, denote the energy 

of x  and the 1 norm of x respectively [2].  

In sparse signal processing, the general problem is to find the value of x  that satisfies  
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where, the function )(⋅φ  is a penalty function or regularization function. If the function xx λφ =)(  which 

is a convex function, then the problem (6) becomes automatically the problem (5) for which we need to 
solve in sparse signal processing, see [10]. The convex functions are preferable for regularization of in-
verse problem since they are more reliable to be minimized than the non-convex functions. 

Split Bregman iterations  
The split Bregman algorithms that are detailed in [6] are experimented numerically in different applica-
tions but only sparse signal reconstruction is considered in this paper. Consider the generalized con-
strained optimization problem:  
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where, E is a convex functional and mnA ℜ→ℜ: a linear function. The corresponding unconstrained 
optimization problem is  
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where, λ is a penalty function weight.  

The split Bregman iterations in [6] to solve the constrained optimization problem (7) when A is linear 
with the corresponding unconstrained optimization problem (8) need the Bregman iteration:  
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and we have the convergence in the 2-norm sense:  .lim bAu k

k
=

∞→
 

Consider the general 1L -regularized optimization problem: 

)()(min uHu
u

+Φ ,                                                                  (10) 

where ⋅ denotes the 1L -norm and both )(⋅Φ and )(⋅H are convex functions and assume that )(⋅Φ is diffe-

rentiable. Consider also the constrained optimization problem  
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with its corresponding unconstrained  problem  
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Let )(),( uHdduE += and define )(),( udduA Φ−= , then with the above Bregman formulation in (9) we 

get the simplified split Bregman iteration in two-phase algorithm:  
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This is a reduced sequence of unconstrained optimization problems and Bregman updates of the 1L -

Regularized problem (10), see [6]. Solving the first equation of above algorithm by iteratively minimizing 
with respect to u and d separately decoupling 1L  and 2L  components: 
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To solve the Step 1, it is possible to use any convenient optimization technique such as Fourier transform 
method. In Step 2, it is possible to find d explicitly using Shrinkage operator 
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where, ( )0 ,max),( γγ −∗= x
x
xxShrink  . 

To implement the algorithm above in (12), we have the following algorithm as shown in [6]. 
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Split Bregman algorithm for Sparse Signal Reconstruction. 
As shown in [7] and [5], the sparse signal x is recovered from the observed signal η+= Axy  with a 

known linear operator A  and this can be achieved by solving the minimization problem in (4) to get  
2

21 2
minargˆ Axyxx

x
−+=

λ
. 

By the split Bregman iteration and solving for 111 ,, +++ kkk bdx respectively, we have  
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Then solving we get  
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using the Shrinkage operator formula 
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Therefore, the split Bregman algorithm to implement the results as shown in [7] and [5] is as follows: 
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Numerical Experiment 
As shown in [7], a numerical experiment for sparse signal reconstruction is made by presenting an exam-
ple of an original sparse signal to be reconstructed by creating the spike signal as the original signal with 
length 150=N and it is presented in figure 1 below. The 5-point impulse response or point spread func-
tion (PSF) f is chosen to be a uniform noise model of the form:  
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      ,0
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)(  

with the length of this PSF to be used 5=L . The additive zero-mean 0=µ  Gaussian noise is created 

with standard deviation 03.0=σ and it is added to the convolution of original signal x and impulse re-
sponse to get the observed signal y and it is presented in figure 2 below.   
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Figure 1: Spike signal as the original sparse signal. 

 
Figure 2: Observed sparse signal. 

The regularization parameter λ  varied for different values 30,20,15,5 ==== λλλλ  as shown in fig-

ure 3. It is observed that for 30=λ  with splitting regularization parameter 1=α , the reconstructed 
sparse signal is quite similar to the original signal as required and 20 iterations are enough for a good re-
construction of the signal with tolerance error 0.0021.  
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Figure 3: The reconstructed sparse signals with different values of regularization parameter. 

 
Figure 4: The comparison of the observed sparse signal and the reconstructed sparse signal. 
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Figure 5: The comparison of the original sparse signal and the reconstructed sparse signal. 
This figure (figure 5) shows the fitness of the original sparse signal and the reconstructed sparse signal, 
where the good similarity of the original signal and reconstructed signal for 30=λ is observed. 

Conclusion  
The sparse signal problem defined and formulated in this paper is the main problem targeted to be 
solved. The split Bregman iterations was used as an optimization technique to solve sparse signal problem 
for the sparse signal recovering. From the previous studies, split Bregman was designed for L1-regularized 
optimization problems applied in image denoising, and this method was applied in this paper for recon-
struction of sparse signal as it is also good for it. The observed signal was reconstructed by varying the 
regularization parameter and the targeted best estimated reconstructed signal was obtained compara-
tively to the original signal targeted. The split Bregman is observed as a good method that solves L1-
regularized optimization problems because it is quietly quick to converge with a very minimum tolerance 
error and it is easy to code when solving problems. 
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