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ABSTRACT  

This paper defines options as derivatives connecting people with unique interests. It establishes how the 

values of the derivatives are based on the agreements about the financial assets in question and how the 

rights rather than commitments of buyers to purchase or sell the assets are more impactful. The deal occurs 

within a specific duration. Lattices are discontinuous time presentation of the evolution of the asset price, 

which incorporates skewness and kurtosis. The model entails splitting time intervals and constructing 

positive branch probabilities with emphasis on the matching procedures. Lattices are compound Poisson 

processes due to their limited distribution. The lattice model is used because it facilitates the estimation of 

the spread of the asset cost for each time step. Hence it is efficient and easy. The paper focuses on Asian 

options which are significantly dependent on the previous knowledge. The payments for Asian options are 

based on the average prices during the period preceding maturity. The amount spent on such options is a 

significant issue and projection of the future possible price is significantly complicated. In this paper, there is 

an evaluation of the utilization of pentanomial, lattice model in the pricing of Asian options. 

  INTRODUCTION. 

In the last 30 plus years, derivatives such as options became predominant in the world of finance. The 

concept of option contracts is thought to have started moments earlier than 1973. In their early stages option 

contracts were likened to Over-the-counter (OTC) (Wilmott, 1995). An intermediary or a broker was 

therefore involved in this type of trading. The negotiator was commonly referred to as the option broker. 

Their role was to negotiate the price of the option on behalf of the seller and the buyer whenever an option 
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was available for sale. However, the lack of proper standardization of the option contracts led to 

inappropriate handling of these contracts. OTC could however handle the option contracts due the few 

companies involved. Official exchange of option contracts started in 1973 following the replacement of OTC 

with the modern financial option market. The Black Scholes Model which is an options pricing model was 

also introduced in 1973.   

By definition, assents encompass commitment derivatives that connect people with vested interests. The 

value of these derivatives is achieved through agreements of the seller and buyer of the financial asset 

options. During the commitments, the buyers pay premium prices to the seller. The classification of the 

options is based on the exercise dates .As an illustration, the European and American Options are utilized at 

the lapse date only while the utilization of the American options can take place any time before the lapse 

date. The classification of the options can also be based on the options of purchasing or selling an asset. 

Here, the former option entails a justified reason to buy the asset while there about the intention to dispose of 

it. 

Lattice method is one of the proposed approaches to pricing options. The method was first proposed by Cox 

(1979) and Rendleman & Bartter (1979). Cox (1979) established a binomial model of lattice using the option 

evaluation principles without arbitraging his model, lattice to price Brownian motion comprising of the 

passion process was used. One of the most important characteristics of this representation was that the 

compatibility of the Brownian motion lattice with the Black Scholes formula that was utilized in the 

European options. Since their inception, lattices have been pivotal in the pricing process even in the 

American options. The versatility and coherence of the presentations pave the way for exploration of various 

appendages concerning the pricing options. The pricing lattices  have been advanced to facilitate pricing of 

multiple assets  and multimodal pricing of a single asset as suggested by Boyle(1998), Amin(1993 and 

Yamada & Primbs (2001)  

The model of binomial lattice that is often referred to as CRR values various options on condition that the 

returns of those assets have a normal distribution. The models were developed by equating the mean and 

variance of discrete variables across a short time interval with those of continuous random variables. When 

utilizing it, the financial market agents and investors hold each of the factors constant. With the success of 

the approach, other multinomial lattice methods with a capacity to value increasingly complex options on 
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numerous underlying variables have been proposed. As an illustration, the CRR binomial lattice model was 

extended to for a single underlying variable was developed by Boyle (1988). 

The trinomial model is an extension of the binomial. The two braces (price and share rise and fall) is 

expanded to price and share rise, fall, or remain constant. Recombination of the trinomial model leads to the 

generation of trinomial lattice and imply that nodes ending up with the same price at the same time are taken 

as one on. The phenomenon arises from the results obtained by multiplying the nod’s stock price by any of 

the three factors. It is critical to note that the three factors in the form of ratios (1, <1 and >1). Besides, there 

are risk-neutral probabilities whose role is to tell whether the price will remain the same, increase or 

decrease. The approach has been applied in the European, Americana, Asian, barrier and look-back options. 

Another exotic option, the Russian option is rarely used in the stock markets.  

The Markov tree approach for option costing was advanced by Bhat, & Kumar. The scholars utilized a non-

iid procedure which encompassed alteration of the binomial model of option pricing that uses the first-order 

Markov behaviour. The other approach was a Markov tree and a wind-up incorporating a combination of 

normal distribution. The models mentioned above contents the first two moments (Variance and mean) since 

only the stock return was considered to be normally distributed. Then again, stock returns are assumed to 

have a lognormal distribution. It is vital to include the third and fourth moments (skewness and kurtosis ass 

suggested by Rubinstein (1994) 

However, Primbs et al. (2007) have claimed that one could use four moments by developing a quadrinomial 

lattice (four branches). Still, the requirement of positive probabilities is limiting for the quadrinomial lattice 

based on the range of kurtosis and skewness which must be taken into account. 

1.3. A Specific Goals of Research 

i. To estimate the transition probabilities,  

ii. To calculate the option prices at different nodes.  

iii. To compare the pentanomial method, rates with the trinomial method and Black-Scholes method.  

The Model 
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Though the pentanomial tree method and the trinomial tree method have a slight difference, the two methods 

are similar in many ways. From every node, the underlying stock (share) prices branch into three new prices. 

The prices will either be more than, less than, or equal to the previous price. The prices are mainly depended 

on the probabilities considered and ratios used to multiply the current price.  

 Assumptions  

i. Time steps are all equal  

ii. The interest rate used is the risk-free rates  

iii. Probabilities remain the same throughout  

Model one-Lattice Model 

The form of the exponential Levy process model takes the form below 

St=S0eX
t 

One arrives at this model by developing a lattice equating to X. The exponential model gives S’s lattice 

model. Before the creation of X’s problem generation, it is critical to come up with a composition of 

generating a noncontiguous random variable equating to the defied set of moments. 

This is first achieved by first equating the moments of random variable X with a discrete random value Z. Let 

Z denote a non-continuous random value 

Z=𝑚1 + (2l-L-1)α with probability 𝑝1, i= 1,2,….L 

Where 

Α=refers to the distance between two outcomes (Jump size) 

𝑚1= refers to the mean of X. 

L=denotes the numerical lattice nodes. 

α =is a positive real number 
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3.2 Binomial-Lattice 

When we have two branches i.e. L=2, a two dimensional lattice is achieved. Hence 

𝑚1 -α 

 Z                                                       Z= 𝑚1 -α with probability 𝑃1, 

            Z= 𝑚1 +α with probability 𝑃2. 

𝑚1+α 

 

Matching the equations of Z to the first two central moments of 

X the below is yields 

                                     (-α)𝑃1, + (α)𝑃2, = μ1, 

                                     (-α)2𝑃1, + (α)2𝑃2, = μ2, 

and 

𝑃1, + 𝑃2, = 1. 

In matrix form we have 

 

�
1 1

−α α
(−α)2 (α)2

� �𝑃1
𝑃2

� = �
1
𝜇1
𝜇2

�                                                          (3a) 

 

 

 

Simplifying the above equation givesα =√𝜇2 and  
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𝑃1 = �1 −  𝜇1

√𝜇2
� , 

 

𝑃2 = �1 +  𝜇1

√𝜇2
� . 

3.3 Trinomial- Lattice 

A trinomial lattice model is when the branches are three i.e. L= 3 we have the trinomial lattice. Therefore 

 

                                        𝑚1 -α  Z= 𝑚1 -2α with probability 𝑃1,  

 

z                                      𝑚1  Z= 𝑚1 with probability 𝑃2, 

  

                                      𝑚1+α  Z= 𝑚1 +α with probability 𝑃3, 

Matching the first three moments we have 

(-2α) 𝑃1 + 0𝑃2 + (2α)𝑃3 =𝜇1, 

(-2α)2𝑃1 + 02𝑃2 + (2α)2𝑃3 =𝜇2, 

 (-2α)3𝑃1 + 02𝑃2 + (2α)3𝑃3 =𝜇3. 

And 

𝑃1+𝑃2+𝑃3=1 

A contrast of the above methodology with (20.10) in a matrix form yields 
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�

 1            1        1
(−2α) 0  (2α)

(−2α)2 0 (2α)2

 (−2α)3 0 (2α)3

� �
𝑃1
𝑃2
𝑃3

�  = �
1
𝜇1
𝜇2
𝜇3

�   (3b) 

Deducing the equations yields to 

α=1
2 �

𝜇3
𝜇1

  ,        (3c) 

𝑃1= 1
2

�𝜇1𝜇2
𝜇3

− �𝜇1
3

𝜇3
�      (3d) 

𝑃2= 1- 𝜇1𝜇2
𝜇3

 ,        (3e) 

𝑃3= 1
2

�𝜇1𝜇2
𝜇3

+ �𝜇1
3

𝜇3
�      (3f) 

3.4 The Quadrinomial-Lattice 

When the branches are four, i.e. L = 4, we have a quadrinomial lattice. Therefore   

 𝑚1 -3α  Z= 𝑚1 -3α with probability 𝑃1, 

Z 

 𝑚1 -α  Z= 𝑚1 -α with probability 𝑃2, 

 𝑚1+α  Z= 𝑚1 +α with probability 𝑃3, 

 𝑚1 +3α  Z= 𝑚1 +3α with probability 𝑃4. 

 

Matching the first L moments we have 
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(-3α)𝑃1+ (-α)𝑃2+ (α)𝑃3+ (3α)𝑃4= μ1, 

(-3α)2𝑃1+ (-α)2 𝑃2+ (α)2𝑃3+ (3α)2𝑃4= μ2, 

(-3α)3𝑃1+ (-α)3 𝑃2+ (α)3𝑃3+ (3α)3𝑃4= μ3, 

(-3α)4𝑃1+ (-α)4𝑃2+ (α)4𝑃3+ (3α)4𝑃4= μ4, 

and 

p1+ p2+ p3+ p4= 1. 

In matrix form we have. 

⎣
⎢
⎢
⎢
⎡

1                 1             1                 1
(−3α) (−α) (α)

(−3α)2 (−α)2 (α)2

(−3α)3 (−α)3 (α)3

(3α)
(3α)2

(3α)3

(−3α)4     (−α)4   (α)4            (3α)4⎦
⎥
⎥
⎥
⎤

�

𝑃1
𝑃2
𝑃3
𝑃4

�    =

⎣
⎢
⎢
⎢
⎡

1
𝜇1
𝜇2
𝜇3
𝜇4⎦

⎥
⎥
⎥
⎤
    (3g) 

 

It is easy to find the expression for αfunction probabilities by ignoring the last row of the matrix, 

 

𝑃1= 1
16

�−1 𝜇1
3α

+ 𝜇2
α2 − 𝜇3

3α3�, 

𝑃2= 1
16

�3 − 3𝜇1
3α

+ 𝜇2
3α2 + 𝜇3

3α3�, 

𝑃3= 1
16

�3 + 3𝜇1
α

− 𝜇2
α2 − 𝜇3

3α3�, 

𝑃4= 1
16

�−1 𝜇1
3α

+ 𝜇2
α2 + 𝜇3

3α3�, 

 

To equate this with the last row to make the premise true, the following condition must be satisfied byα  

 

𝜇4 = 81α4𝑃1 + α4𝑃2 + α4𝑃3 + 81α4𝑃4 
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 = -9α4+10𝜇2α2         (3h) 

 Determining the above equation of this expression for αyields to four- roots 

α1= 1
3

�5𝜇2 + �25𝜇2
2 − 9𝜇4� 

α2= 1
3

�5𝜇2 + �25𝜇2
2 − 9𝜇4� 

α3= 1
3

�5𝜇2 − ��25𝜇2
2 − 9𝜇4 

α3= - 1
3

�5𝜇2 − ��25𝜇2
2 − 9𝜇4 

 

It is possible to make another access without necessarily finding α by ignoring first row. A set of different 

probability equations emerge: 

𝑃1= 1
16

�3𝜇1
3α

− 𝜇2
9α2 − 𝜇3

3α3 + 𝜇4
9α4�, 

𝑃2= 1
16

�− 9𝜇1
α

+ 9𝜇2
α2 + 𝜇3

α3 − 𝜇4
α4�, 

𝑃3= 1
16

�9𝜇1
α

+ 9𝜇2
α2 − 𝜇3

α3 − 𝜇4
α4�, 

𝑃4= 1
16

�𝜇1
3α

+ 𝜇2
9α2 + 𝜇3

3α3 − 𝜇4
9α4�, 

 

The imposed condition is given by in the first row as 

1= p1+ p2+ p3+ p4 
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L 

l=1 

= 10
9

𝜇2
α2

 - 𝜇4
9α4          (3j) 

This can be taken as: 

α4-10
9

𝜇2α2+1
9

𝜇4=0, 

Which gives the same solution for α as (3h). 

3.5 Pentanomial lattice model 

3.5(a) A Non-continuous Moment-generating Random Variable 

Firstly, we generate the matching moment set up for r.v X that has a discontinuous random variable Z. Let's 

take into account an r.v X. Let MJ indicate its k-th raw-moment, its k-th central moment, and c3 its kth row. A 

non-continuous r.v Z is constructed for random variable X that matches its moments. 

Let Z be a variable that is not continuous as indicated below 

Z =m1 + (2l-L-l) x, l=1….L that has with probability density functions pi 

Where x is a framework and m1is the mean of X. 

Therefore, Z is a random variable which is non-continuous that may take on L range.  

Theorem 

Moment of Equations of Z. 

The moments of Z must match with the moments of X. X moments are considered, and the below 

identifications should be kept constant: 

 

��(2𝑙 − 𝐿 − 1)𝑋�𝑗 𝑝𝑙 = 𝜇𝑗 

 

(3.5(a))  
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Definitions 𝜇j=refers to the j-th central moments of X, and 𝝁1=0.  

Matching the four moments of the Model. To continue further, four matching moments are accounted for. 

The connotation L=5 implies that the lattice comprises of five branches. Four moments are considered in the 

problems that are faced in finance. Given this, taking kurtosis and skewedness of the yield-distributions of 

the asset into consideration is ideal for this case. We can achieve this by incorporating the ideas of the first 

four moments. The quadranomial lattice facilitates solving the pricing problem, but there combination 

condition and accounting for the condition requirement of positive likelihoods is associated with problems in 

regards to the captured kurtosis and skewedness range. In light of this, a pentanomial lattice proves to be 

increasingly accommodative and informational with its lower number of problems or complexity. Since it 

helps to achieve our main objective: 

Solving (1) for pl, with l=1,….,5 yields. 

m1- 4𝑥p1= �𝝁𝟒-4𝑥2𝝁𝟐-4x𝝁𝟑�
384𝑥4  

m1- 2𝑥p2 = �−𝛍𝟒+16𝑥2𝛍𝟐−𝟐𝑥𝛍𝟑�
96𝑥4  

Z5        =            m1p3= 1+(−20𝑥2𝜇2 +𝜇4)
64𝑥4 (2) 

m1+2𝑥p4= −2𝑥𝜇3−𝜇4 +16𝑥2𝜇2
96𝑥4  

m1+4𝑥p5= (𝝁𝟒-4𝑥2𝝁𝟐+4x𝝁𝟑
384𝑥4  

Therefore, when we assume𝑥 >0, a question arises about the range of X’s (the pdf of X) with positive 

probabilities? 

The inquisition below addresses the problem.  

Theorem 1.Given that 2𝞵4 ≥ 3𝜇3
2and 25𝜇2

2 ≥ 16𝜇4(or equal to k≥ 3𝑠2-3 and k≥ 3𝑠2-23
16

 

Where s = 𝜇3

μ2
3/2refers to skewness and K = 𝜇4

𝜇2
2 -3 is kurtosis), there prevails an area of values of 𝑥derived by 
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1
16μ2

( 3 + ( 𝜇3
2

 + 16𝞵2 𝞵4) 
1
2
 )≤ 𝑥 ≤ 1

4μ2
(-2𝞵3+2 (  𝜇3

2
+ 𝞵2 𝞵4 ) 1/2)                       (3.5(b)) 

This exclusively includes 

𝑥 = �
μ4

12μ2
 =  𝜎�3+k

12
(3.5©) 

For which all the probabilities Pt. 1= 1,….,5, are not negative.  

Theorem 1 gives us a strong case for the level of positivity of the probabilities. Furthermore, it illustrates that 

a yields a non-negative probability for figures of µ2,µ3,  𝑎𝑛𝑑 µ4,clarifying that 2𝞵4 ≥ 3𝜇3
2 and 3µ2

2 ≥ 2µ4, (or 

equal tok≥ 3𝑠2-3 and k≥-3
2
.), which prove to bemore accommodative than the other conditions. That said, 

(3.5(b)) fails to keep up with these added conditions which seek for an all-inclusive model. For values whose 

kurtosis is lower than —23
16

, compositepositivity conditions are established. Therequirements are not included 

as p. The excess positive kurtosis (K>0) is a significant issue in finance and remains unexplored. 

We have seen cases where the tails are more massive and picks higher. This proposition not only describes 

but also determines a variation of kurtosis and skewness figures that are adaptable with a pentanomial. It also 

identifies a large area of Kurtosis and skewness that is likely to be more compatible with a lattice-model. The 

spacing restrictions between results of Z are the random variable inclined by the described parameter. 

Ultimately, this analysis introduces and describes a unique formula for determining that spacing. 

Consequently, this simple proposition acts as a foundation for demonstrating a lattice model coupled with a 

detailed understanding of its characteristics and disadvantages.  

One can upgrade these findings with similar studies as in theorem 1 other than for more than one-branch 

lattice which utilize more than five branches. Then again, the logic used to establish the theoretical 

conditions is very long and exhausting. That is to say, an analysis of more than five branches would be 

tedious. However, if kurtosis and skewedness are the primary factors that are seized, the pentanomial lattice 

facilitates a grasp of most interest of its parameters. It allows for more straight-forward understandable 

definition of characteristics. Precisely, pentanomial is preferred because it captures not only the complexity 

but also the practicability of the options. 

Concerning the creation of a lattice model, we deduce how the equation of the moments of an r.v X with a 

non-continuous r.v Z can be crucial. This is then reduced to a lattice- model, with an assumption thatA’1is a 

Levy process. Ideally, for any time t, the obtained answers from the existing part show that it is possible to 
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Z (𝜏) =         

c1𝜏-4𝑥p1(τ)
��𝑐4𝜏+3𝑐2

2(𝜏)2�- 4𝑥2𝑐2τ - 4𝑥𝑐3τ�

384𝑥4  

c1𝜏 − 2𝑥p2(τ) =
(−�𝑐4𝜏+3𝑐2

2(𝜏)2�+16𝑥2c2τ+2𝑥𝑐3𝜏)

96𝑥4  

c1𝜏p3(τ) = 1 +
(−20𝑥2𝑐2𝜏+�𝑐4τ +3𝑐2

2(𝜏)2)�

64𝑥4 (5 

c1𝜏+ 2𝑥p4(τ) =
−2𝑥𝑐3𝜏�𝑐4τ +3𝑐2

2(𝜏)2�+16𝑥2c2τ
96𝑥4  

 

c1𝜏+ 4𝑥p5(τ) =
��𝑐4𝜏+3𝑐2

2(𝜏)2�- 4𝑥2𝑐2τ +4𝑥𝑐3τ�

384𝑥4  

 

equate the moments of X with a non-continuous r.v Z (t). Since A’1 is a Levy process, the scale of its 

cumulants is in line with time t. We define its cumulants at any time t by defining its yearly- cumulants. 

Practically,  

Let Cj be the jth cumulants of X1, then the jth cumulants of X1, is Cjt. 

Let 𝜏be an increment in t that gives the step size of the lattice. To generate the lattice model, each increase 

Xπ with the discrete r.v Z(𝜏) that equals its moments is determined. This leads to the below model which 

explains the lattice. 

3.5(b). The Lattice-Model 

let 𝑠0be the cost of the mentioned underlying asset. Then a lattice model estimating S, = Soeχt is given by  

Sn (π) =𝑠0exp(� 𝑧𝑘(𝑡)𝑛
𝑘=1  

Given n refers to the count of time step size t and the 𝒁𝑲( 𝑡) are iid r.v distributed as 

 

 

  

 

   - 
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s 

𝝉 

 

 

 

 

In the above diagram, a one-step distance𝜏 of the lattice model at an ith time is establsihed.  

Given that the lattice model is linked with the cumulants of Xt, positivity-condition of theorem 1 in relations 

to of cumulants is also rephrased. 

Values                        Probabilities: 

                                              Sec
1𝝉 + 𝟒𝜶p5(𝝉) 

                                                Sec
1𝝉 + 𝟐𝒂p4(𝝉) 

                                              Sec
1𝝉p3(𝝉) 

                                              Sec
1𝝉 − 𝟐𝒂p2(𝝉) 

                                             Sec
1𝝉 − 𝟒𝒂p1(𝝉) 

 

Figure 1.pentanomial lattice model with one step 

 

Proposition 2.Provided  

c4c2≥ 3𝑐3
2- 3𝑐3

2𝜏and c4≥  −  23
16

𝑐2
2 𝜏                                                                                                             (3.5(d)) 

the assessment results in an extensive magnitude of 𝛼 values that are deduced to; 

1
16𝑐2𝜏

 (𝑐3𝜏 + (𝑐3
2𝜏2+16𝑐2𝜏(𝑐4𝜏 + 3𝑐2

2𝜏2))1/2 ) ≤ χ ≤ 1
4𝑐2𝜏

(-2𝑐3𝜏 + 2(𝑐3
2𝜏2+𝑐2𝜏(𝑐4𝜏 + 3𝑐2

2𝜏2))1/2  (7) 
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This also includes 

∝ = 1
2 √c2τ + 𝑐4

3𝑐2
                                                                                                             (3.5(e)) 

 

For which the probabilities i. 𝑝𝑙, 1=1. .... 5. Are positive. 

Comparing the results in provision with the cumulants of the process X. this explains why the circumstances 

scale concerning the time-step- 𝜏. Particularly, when the limit as 𝜏 → 0, which is our area of concern. 

Limitations of the Lattice-Model. 

In the below segment the restrictions of the lattice model in continuous time as 𝜏 → 0 are taken into account. 

Besides, there is an assumption that the third and fourth cumulants C3and C4are real positive numbers. If the 

cumulants were zero then it would be valid to deduce that the lattice will merge to a geometric Brownian 

motion because of the condition of positivity. 

Concerning the discreet model having a continuous time limit, the condition of positivity must be workable 

or seen as𝜏 → 0. In the limit, (6) deduces to 

𝑐4𝑐2≥3𝑐3
2and𝑐4≥0                                (3.5(f)) 

 

The other assumption is that (3.5(f)) holds. Note that the requirement of 𝑐4 ≥O corresponds to the 

expectation of a positive excess of kurtosis.  

We aspire to have the lattice containing an explained maximum as the size-step approaches zero. It follows 

that we assume that the model has a limit as𝜏 → 0. Given this, let us presuppose that the limit is given by 

α=𝑙𝑖𝑚𝑡→0α where it is within a specified spread. 

For continuation purposes, new probabilities, (q1, q2, q4,q5) are included to refer to the branch probabilities: 
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                    limτ → 0(1 𝜏⁄ p1(𝜏) = −4𝑥0 
2 𝑐2−4𝑥0𝑐3+𝑐4

384𝑥0
4  = λq1 

                     limτ → 0(1 𝜏⁄ p2(𝜏) = 16𝑥0 
2 𝑐2−2𝑥0𝑐3−𝑐4

96𝑥0
4  = λq2 

         limτ → 0(1 𝜏⁄ p3(𝜏) − 1 = (−20𝑥0
2𝑐2+𝑐4)

64𝑥0
4 =  -λ 

                       limτ → 0(1 𝜏⁄ p4(𝜏) = 16𝑥0 
2 𝑐2−2𝑥0𝑐3−𝑐4

96𝑥0
4  = λq4 

 limτ → 0(1 𝜏⁄ p5(𝜏) = −4𝑥0 
2 𝑐2+4𝑥0𝑐3+𝑐4

384𝑥0
4  = λq5 

 

 

 

Therefore, 

q1 +q2+q4+q5=1 

If we use α to simplify to  
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λ=3𝑥2
2

2𝐶4
 

q1=
1
6
 (1-𝑐3� 3

𝐶2𝐶4
 ) 

q2=
1
3
 (1+𝑐3� 3

𝐶2𝐶4
 )                                                                 

q4=
1
3
 (1-𝑐3� 3

𝐶2𝐶4
 

q5=
1
6
 (1+𝑐3� 3

𝐶2𝐶4
 ) 

 

 

In the limit, Z(𝜏) approaches an increasing compound Poisson process  with the following description: 

                                                                  𝐶1t+ ∑ 𝑊𝑘
𝑁𝑡
𝑘=0  

Nt, = Poisson process with force λand the Wk which are iid r.v with the below given dispersal. 

                      -4𝑥0 with probability      q1 

Wk  = -4𝑥0    with probability      q2 

                          2𝑥0with probability      q4                              (3.5(h)) 

                       4𝑥0    with probability      q5 
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Theorem 3.  

Reflect a permanent range given by; [0, T] of time where the count of steps n is expanding. Then the size of 

the steps,𝜏=T/n. Our area of interest is in the r.v at time T described below as: 

X n = � 𝑍𝑘(τ)𝑛
𝑘=1  

Implying as n -∞, X n, yields to the below distribution 

𝑪𝟏T + ∑  𝑊𝑘
𝑁𝑇
𝑘=0   (3.5(i)) 

Given that NT is a Poisson distribution with an average ofλT and the Wk, which are iid r.v described in 

(3.5(h)).  

The above hypothesis leads us to a lattice model that is applied in the European pricing options. Secondly, 

we utilize Fourier transform methods as in Carr &Madan (1999) to generate the costing of European options. 

Note that the characteristic it is vital to know the function of the distribution here. For the r.v described by 

(12), the attribute result of Fourier transform (Breiman, 1992) is deduced to: 

 

∅𝑇(𝜇)= 𝑒𝑖𝑢𝑐1 𝑇 exp�λ𝑇 � 𝑞1(𝑒𝑖𝑢(2𝑙−6)𝑥
𝑙∈{1,2,4,5}  –  1)�(3.5(j)) 

The above will be applied when it comes to evaluating European in the below sections 

Applying the Fourier Transform to price European Options (Calls & Puts) 

 

This sample engenders reference to the pioneer assignment of Carr & Madan (1999) on cost of options that 

utilize the Fourier transform. It is evident that when it is a significantly useful model, especially when the 

user knows the risk-neutral probabilities for Fourier Transform. The case scenario is a slight reversal if what 

Can and Madan (1999) proposed since a non-continuous spread is utilized and therefore anon-continuous 
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Fourier transform.  

Let qT(n) be the discrete risk-neutral probability distribution of the r.v described in (12) above. Employing 

the limiting distribution in (12) as the risk-neutral probabilities, a call options amount is deduced as an 

allowable payoff expectation as stated below: 

CT (ǩ, 𝐾) =  𝑒−𝑟𝑡 � �𝑒𝐶1𝑇+2𝑥0𝑛 − 𝐾)𝑞𝑇 (𝑛�∞
𝑛=ǩ                                                                    (3.5(k)) 

 

Where ǩ> (
ln�𝐾

𝑆�−𝐶1𝑻

2𝑥0
) 

 

As said earlier, the model corresponds to Carr & Madan (1994).  

Fourier Transform pricing Equation & Formula 

The cost of a European call option that does not pay money from its dividends on the repressed holding 

represented as 𝑆0𝑒𝑋𝑡 with the original costS0, the dissemination of Xt at the lapse of time T of (12), and selling 

cost K is given or derived as follows: 

 

CT (ǩ, K)=𝑒−𝛽ǩ

2𝜋 ∫ Ψ𝜋
−𝜋 (𝑢, 𝐾)𝑒−𝑖𝑢ǩ du                                                                              (3.5(g)) 

where 𝛽>0 is a specification to describe Fourier Transform., 

Ψ(u, K)𝑒−𝑟𝑇 � 1
1−𝑒−(𝛽+𝑖𝑢)� �𝑆0𝑒𝐶1𝑇 ∅ �−𝑖(𝛽+2α0+𝑖𝑢

2α0
� − 𝐾∅ �−𝑖(𝛽+𝑖𝑢

2α0
)��                                (3.5(h)) 

And 

∅(𝞵)=E�𝑒𝑖𝑢𝑋�=∑ 𝑒𝑖𝑢2α0𝑛∞
𝑛=−∞ qT (n) = exp �λ𝑇 ∑ 𝑞1𝑙∈{1,2,4,5} �𝑒(2𝑙−6)∝0 − 1��                       (3.5(i)) 

Is the mgf of the limiting distribution in (3.5(i)).  

After factoring in the formula described above, a Fast-Fourier transform algorithm that is widely applied in 

the comprehensive computation of the asset price yields. This utilization of fast Fourier transform was 

established by Madan (1999). In a given procedure aloft, incorporation of the rate of return(c1) provided by 
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Levy process is applied in risk-neutral options to establish the value of the underlying non-dividend paying 

asset. NOTE Thec1(drift)should be inconsiderate with the below risk-neutral condition. 

𝑒𝑟𝑇=[𝑒𝑋𝑇]= ∅(-i) = exp (𝐶1T)exp�λ𝑇 ∑ 𝑞𝑙𝑙={1,2,4,5} (𝑒(2𝑙−6)α0 − 1)� 

Solving for 𝐶𝑖yields 

𝐶𝑖= r-λ∑ 𝑞1𝑙∈{1,2,4,5} �𝑒(2𝑙−6)∝0 − 1� 

Conclusion 

We have examined a pentanomial lattice representation that assimilates kurtosis and skewness .We have also 

controlled the states on kurtosis and skewness under continuous time. We came up with the restricting 

distribution which is ideal compound Poisson distribution. In the end, we came up with a formula involving 

Fourier transform techniques that systematically employed to compute European option prices. Thus, this 

explains a compatible representation for estimating American and European option prices under kurtosis and 

skewness. 

This project analyzed through a recombining pentanomial tree for coasting European options with 

unchanging volatilities. The above was attained by letting the time steps regular and risk neutral probabilities 

remaining the same for the entire contract time. This recombining trinomial tree is more flexible/ easy to use 

than just a tree with a lot of nodes which are more the same and thus suitable for predicting prices of options.  

I recommend the use of Pentanomial lattice model in option pricing 
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