

GSJ: Volume 10, Issue 1, January 2022, Online: ISSN 2320-9186
www.globalscientificjournal.com

PERFORMANCE EVALUATION OF SORTING

TECHNIQUES

FAGBOTE OLAWUMI OLABANJI

ABSTRACT

In recent times, developments in wide range of knowledge sectors have experienced an

unprecedented growth of data and information. This makes demand for mechanisms for

processing these high volumes of data high. These mechanisms often demand sorting. In the

literature, there exist numerous implementation solutions for sorting. The choice of these

techniques to be used in the implementation of these mechanisms now becomes a research

issue. Thus, the aim of this paper is to evaluate sorting techniques in the solution space based

on CPU time and memory consumption as performance index. To realize this, we carried out

an extensive review of related works. The knowledge acquired from the literature was used to

formulate an architectural model. We implemented the architecture in C-language and the

performance of bubble sort, insertion sort, and selection sort techniques was evaluated using

the GNU-profiler. Experimental results show that insertion sort technique is the most

efficient, while bubble sort technique is the most inefficient in all test cases for CPU time and

memory consumption.

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 1

GSJ© 2022
www.globalscientificjournal.com

http://www.globalscientificjournal.com/

1. INTRODUCTION

Developments in recent times have resulted in the unprecedented growth of data and

information, which is termed information explosion [1-3]. Hence, mechanisms for processing

these volumes of data become a subject of great concern. These information processing

mechanisms such as, job schedulers; string processor; data compressors; numerical

computation systems; combinatorial search systems; operations research; and so on. These

systems often demand sorting before further processing.

Sorting [4], a mechanism that organizes elements of a list into a predefined order is important

for various reasons. For instance, numerical computation with estimated values (e.g. floating

point representation of real numbers) is concerned with accuracy. To control accuracy in

computations of this kind, scientists often apply sorting to actualize the goal. In string

processing, finding the longest common prefix in a set of string and the longest repeated

substring in a given string is often based on sorting. To develop jobs schedules, so as to

maximize customer satisfaction by minimizing the average completion time, often requires

methods (such as longest- processing-time-first rule) based on sorting.

In the literature, various implementation solutions of algorithm exist for sorting. However, an

important research question is: which sorting algorithm is the most-efficient or least-

complex? That is, which algorithm requires the minimum CPU time and memory? To answer

these questions, there are various researches on evaluating performance or complexity of

sorting algorithms. In [5], a comparative study of some parallel sort algorithms such as: map

sort, merge sort, Tsigas-Zhangs parallel quicksort, alternative quick sort, and STL sort was

carried out. Similarly, [6] gave a practical performance comparison of sorting algorithms like:

odd-even transposition sort, parallel rank sort, and parallel merge sort. In [7], robustness was

studied as a function of complexity of some sorting techniques. Finally, [4] evaluated merge

sort empirically and theoretically to sort N-sized dataset in O(𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏) time as the most-

efficient among bubble, insertion, and selection sort with quadratic time complexity.

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 2

GSJ© 2022
www.globalscientificjournal.com

Our contributions include performance evaluation of bubble, insertion, and selection sort

techniques [8] using CPU time and space as performance index. In addition to this, we will

present these techniques with pseudo codes. Also, we will analyze the techniques empirically

with G-Profiler [9].

The rest of this paper is organized as follows. The next section discusses literatures of related

works. In section 3, we presented an architectural model designed in this work. Section 4

discusses results obtained from the evaluation of sorting techniques considered. In section 5,

we presented our future thoughts.

2. RELATED WORKS

Sorting has been regarded as an algorithm with a great deal of research attention in computer

science [3-6]. Hence, a great number of related works exist. However, due to inadequate

access to these works, a few numbers of them will be examined in this work. These will be

examined based on their goals, contributions, approaches, results and conclusions.

In [4], the goal was to introduce merge sort algorithm and its ability to sort n-sized array of

elements in O(n log n) time complexity. The approach adopted in developing this algorithm

was divide-and-conquer method. The empirical and theoretical analyzes of merge-sort

algorithm was presented in addition to its pseudo codes. Merge sort algorithm was compared

with its counterparts: bubble, insertion, and selection. It was recorded the other algorithms

has quadratic O(𝑛𝑛2) time. Results presented involves merge sort against insertion sort. This

shows that merge sort algorithm is significantly faster than insertion sort algorithm for great

size of array. Merge sort is 24 to 241 times faster than insertion sort using n-values of 10,000

and 60,000 respectively. Also, results show that the difference between merge and insertion

sorts is statistically significant with more than 90 percent confidence.

The goal of [4] was to provide a qualitative and quantitative analysis of the performance of

parallel sorting algorithms on modern multi-core hardware. In the work, Mapsort [10],

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 3

GSJ© 2022
www.globalscientificjournal.com

Mergesort [11], Tsigas-Zhang’s Parallel Quicksort [12], Alternative Quicksort [5], and STL

sort [5] were the parallel algorithm studied. The experiments involved two machines (Core i7

architecture). One of the machines is Nehalem whose configurations are: Intel Xeon 5550,

2.67 GHz, 4 cores/8 threads, 6 Gb of memory, 3-channel memory controller, OS Linux

Fedora 13 64-bit. The other machine is Westmere whose configurations are: Intel Xeon 5670,

2.93 GHz, 6 cores/12 threads, two sockets on board (24 threads in total), 24 Gb of memory,

3-channel memory controller, OS Linux RedHat 5.4 64-bit. Performance index include:

sorting throughput; scalability, influence of CPU affinity; and micro-architecture analysis.

The results of this study show that merge and map sort algorithms are memory intensive but

faster compared with the quick sort methods which are slower than their counterparts.

According to [6], a great number of research works have addressed issues related to dedicated

and parallel machines [13]; but only little research has been carried out on performance

evaluations of parallel sorting algorithms on clustered station. Hence, the goal of [6] is to

compare some parallel sorting algorithms with overall execution time as performance

parameter. Algorithms considered include: odd-even transposition sort, parallel rank sort, and

parallel merge sort. These algorithms were evaluated theoretically and empirically. In theory,

the odd-even transposition has a complexity of O(b𝑛𝑛2); such that b = 1/2𝑝𝑝2. This implies that

the time will be reduced by ‘b’. Similarly, in theory parallel rank sort has a complexity of

O(𝑐𝑐𝑛𝑛2); c = 1/p. The theoretical complexity of parallel merge sort is O(n/p log n/p) [13]. ‘p’

is number of processes. Empirical results have shown that the fastest algorithm of three is the

parallel merge technique. This is followed by the odd-even transposition algorithm; while the

slowest is the parallel rank sorting algorithm.

The motivation of [7] was to research sorting algorithms for potential failing comparisons. It

was expected that faulty comparisons tend to occur in sorting, due to random fluctuations in

the evaluation functions that compares two elements. Hence, the aim of the work is research a

method that is robust against faulty comparisons. The null hypothesis for the research is: a

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 4

GSJ© 2022
www.globalscientificjournal.com

very efficient (i.e. low complexity order) sorting algorithm might be susceptible to errors

from imprecise comparisons than the more efficient sorting algorithms which might

implement a lot implicitly of redundant comparisons. The sorting algorithms considered

include: bubble sort, merge sort, quick sort, heap sort and selection sort. The result of the

research supports its null hypothesis. Bubble sort is the most robust sorting algorithms,

followed by merge, quick, heap, and selection sorts. The work contributed to the state of the

art by analyzing existing sorting algorithms based on robustness against imprecise and noisy

comparisons.

3. ARCHITECTURAL MODEL

The knowledge acquired from the literatures is being applied in designing the architectural

model presented in Figure 1. It is divided into three basic components. These are: repository,

shuffling module, and sorting module. This model was formulated to serve as benchmark of

components to be developed when evaluating performance of sorting algorithms. The data

designed for evaluating the algorithms is stored in the repository. This data may be ordered or

unordered in nature. However, since the aim of the work is to determine efficiency of sorting

mechanisms in the solution space, it is important we realize a uniformly ruffled data. To

realize this, a shuffling module (which randomizes positions of data) is introduced. The

ruffled data which is a result of shuffling process is passed to the sorter. The sorter applies its

logic to sort the input data. The architecture also shows the flow of control from a component

to another. Control flow starts from the repository to shuffling module. Furthermore, the

control flows from the shuffling module to the sorting module. The output obtained from

sorting is passed into the repository for storage.

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 5

GSJ© 2022
www.globalscientificjournal.com

Figure 1: Architectural Model

3.1 Shuffling Algorithm

This section describes and presents of basic algorithms which are the foundation of majority

of the sorting algorithms. Algorithms under these categories include: shuffling and swapping

algorithms. Figures 1 presents pseudo code of the shuffling algorithm. We have assumed that

swapping algorithm takes a constant time O(1) to execute in theory.

Figure 2: Shuffling Algorithim

3.2 Sorting Algorithms

The sorting module component can be designed with any sorting technique in the solution

space. To design this component, we will consider bubble, selection, and insertion sort

techniques. These algorithms will be discussed theoretically and with pseudo codes.

Repository

Shuffling Module

Sorting Module

shuffle(A , n)

1. i ← n – 1

2. while(i > 0) do

3. j ← rand() % (i + 1)

4. swap(A[i] , A[j])

5. i ← i – 1

6. end-while

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 6

GSJ© 2022
www.globalscientificjournal.com

3.2.1 Bubble Sort Algorithm

Figure 3 presents the pseudo code of bubble sort algorithm. According to [4,14], it has

theoretical complexity of 𝑶𝑶(𝒏𝒏𝟐𝟐) in its best, average and worst case scenario.

Figure 3: Bubble Sort Algorithim

3.2.2 Selection Sort Algorithm

Figure 4 presents the pseudo code of selection sort algorithm. According to [15], it has

theoretical complexity of 𝑶𝑶(𝒏𝒏𝟐𝟐)in its best, average and worst case scenario.

Figure 4: Selection Sort Algorithim

3.2.3 Insertion Sort Algorithm

Figure 5 presents the pseudo code of insert algorithm. The algorithm is a sub-function to the

insertion sort algorithm and has a theoretical complexity of 𝑶𝑶(𝒏𝒏) in its worst case scenario.

Also, figure 6 presents the pseudo code of insertion sort algorithm. This method calls the

bubble-sort(A , n)

1. for i ← 0 to n – 1 do
2. for j ← 0 to n – i

3. if A[j] < A[j+1] then

4. swap(A[j] , A[j+1])

5. end-for

6. end-for

selection-sort(A, n)

1. i ← 0

2. while i < n do

3. j ← i+1

4. while j < n do

5. if A[i] > A[j] then

6. swap(A[i], A[j])

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 7

GSJ© 2022
www.globalscientificjournal.com

function insert whose pseudo code is presented in figure 5. According to [8], insertion sort

algorithm has theoretical complexity of 𝑶𝑶(𝒏𝒏) in its best and 𝑶𝑶(𝒏𝒏𝟐𝟐) in its average and worst

case scenario.

Figure 5: Insert Algorithm

Figure 6: Insertion Sort Algorithm

4. RESULTS AND DISCUSSION

In section, we will be discussing results obtained from the empirical evaluation of insertion,

bubble, and selection sort algorithms. The efficiency of these algorithms will be measured in

CPU time which is measured using the system clock on a machine with minimal background

process running, with respect to the size of the input data. The algorithms were implemented

in C-language. The tests were carried out using G-Profiler in the GCC suite on Linux Ubuntu

insertion-sort(A, n)

1. x ← pos - 1

2. for i ← i to n do

3. insert(A , i, A[i])

4. end-for

insert(A, pos , value)

1. n ← pos - 1

2. while n > 0 AND A[n] > value do

3. A[n+1] ← A[n]

4. n ← n – 1

5. end-while

6. A[n+1] ← value

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 8

GSJ© 2022
www.globalscientificjournal.com

13.04. These were run on Dell Inspiron 6400 PC with the following specifications: Intel Dual

Core CPU at 1.60 GHz and 1.00GB of RAM. Empirical results of bubble sort, insertion sort,

and selection sort techniques using various data sizes and corresponding CPU time for the

techniques is presented in Table 1. Similarly, table 2 presents the empirical results of the

sorting techniques considered using various input data sizes and corresponding memory

required for execution of the techniques.

Table 1: Results of CPU Time vs. Data Size

Data

Size

(103)

Bubble

Sort (s)

Insertion

Sort (s)

Selection

Sort (s)

10 0.88 0.24 0.74

30 8.89 2.18 6.74

50 24.05 6.15 22.35

100 99.71 24.66 87.71

200 392.62 117.24 306.35

Table 2: Results of Memory vs. Data Size

Data
Size
(103)

Bubble
Sort
(Bytes)

Insertion
Sort (Bytes)

Selection Sort
(Bytes)

10 352.35 95.92 296.30

30 3560.27 869.57 2662.72

50 9868.69 2500.00 9995.53

100 39352.74 10000.00 40000.00

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 9

GSJ© 2022
www.globalscientificjournal.com

Figure 7 illustrates the behaviour of the sorting techniques considered in this work. It

measures the complexities of the algorithms in term of CPU time against input data sizes. B-

Sort, I-Sort, and S-Sort mean bubble, insertion and selection sort techniques. We observed

that for all sorting techniques considered in this work, the CPU time is directly proportional

to the input data size. For input data sizes 10,000 and 30,000, the CPU time required is

almost the same. But for data sizes > 50,000 sharp deviation is observed among the

techniques.

Figure 7: Graph of CPU Time Vs. Data Size

Also, figure 8 illustrates results of an experiment with complexities of the sorting techniques

based on input data size against memory space. In similar manner, B-Sort, I-Sort, and S-Sort

imply bubble, insertion and selection sort techniques. We observed that for all sorting

techniques considered in this work, the memory space is directly proportional to the input

data size. For input data sizes 10,000 and 30,000, the CPU time required is almost the same.

But for data sizes > 50,000 sharp deviation is observed among the techniques.

0
100
200
300
400
500

10 30 50 100 200

CPU Time
(seconds)

Data Size (Thousand)

B-SORT I-SORT S-SORT

200 393357.55 39989.77 202013.61

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 10

GSJ© 2022
www.globalscientificjournal.com

Figure 8: Graph of Memory Space Vs. Data Size

5. CONCLUSION

In conclusion, we have evaluated the performance of bubble, insertion, and selection sort

techniques using CPU time and memory space as performance index. This was achieved by

reviewing literatures of relevant works. We also formulated architectural model which serves

as guideline for implementing and evaluating the sorting techniques. The techniques were

implemented with C-language; while the profile of each technique was obtained with G-

profiler. Empirical results were tabulated and graphically presented. The results obtained

show that insertion sort technique is faster and requires less space than bubble and selection

techniques in sorting data of any input data size. Similarly, results also show that the slowest

technique of the three is bubble sort; while selection sort technique is faster and requires less

memory than bubble sort, but slower and requires more memory than insertion sort. We infer

from this study that empirical complexity can be determined in theory.

6. FUTURE THOUGHTS

We realized that in the solution space, numerous implementation solutions exist. However,

time constraint has limited this study to bubble, insertion, and selection sort techniques. We

intend to investigate complexities of other sorting techniques in the literature based on CPU

time and memory space. Also, we intend to adopt the most efficient sorting technique in the

development of job scheduler for grid computing community.

0
100000
200000
300000
400000
500000

10 30 50 100 200

Memory
(Bytes)

Data Size (Thousand)

B-SORT I-SORT S-SORT

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 11

GSJ© 2022
www.globalscientificjournal.com

REFERENCES
[1] Wright A., Glut: Mastering Information through the ages, Henry, Washington D.C., 2007.

[2] Dubitzky W., Data mining techniques in grid computing environment, John Wiley and Sons, West
Sussex, U.K., 2008.

[3] Aremu D.R., Adesina O.O., “Web services: A solution to interoperability problems in sharing grid
resources”, ARPN Journal of Systems and Software, vol. 1, no. 4, pp. 141 – 148, 2011.

[4] Qin M., “Merge Sort Algorithm”, Department of Computer Sciences, Florida Institute of Technology,
Melbourne, FL 32901.

[5] Qureshi K., “A Practical Performance Comparison of Parallel Sorting Algorithms on Homogeneous
Network of Workstations”, Department of Mathematics and Computer Science, Kuwait University,
Kuwait.

[6] Pasetto D., Akhriev A., “A comparative study of parallel sort algorithms”, IBM Dublin Research
Laboratory, Dublin15, Ireland.

[7] Elmenreich W., Ibounig T., Fehérvári I., “Robustness versus performance in sorting and tournament
algorithms”, Acta Polytechnica Hungarica, vol. 6, no. 5, pp. 7 – 17, 2009.

[8] George T.H., Police G., Selkow S., Algorithms in a nutshell, O’Rielly, California, 2009.

[9] Blum R., “Professional Assembly Language”, Wiley Publishing, Indianapolis, 2005.

[10] Edahiro M., “Parallelizing fundamental algorithms such as sorting on multi-core processors for EDA
acceleration”. Asia and South Pacific Design Automation Conference, pp. 230 – 233, 2009.

[11] Varman P.J., Scheufler S.D., Iyer B.R., Ricard G.R., “Merging multiple lists on hierarchical-memory
multiprocessors”, Journal of Parallel and Distributed Computing, vol. 12, no. 2, pp. 171 – 177, 1991.

[12] Tsigas P., Zhang Y., “A simple, fast parallel implementation of quicksort and its performance
evaluation on Sun Enterprise 10000”, 11th Euromicro Conference on Parallel Distributed and Network-
based Processing, pp. 372 – 384, 2003.

[13] Bitton D., DeWitt D., Hsiao D.K., Menon J., “A taxonomy of parallel sorting”, ACM Computing
Surveys, vol. 16, no. 3, pp. 287 – 318, 1984.

[14] Leung J.Y-T, Handbook of scheduling algorithms models and performance analysis, CRC Press,
Florida, 2004.

[15] Ahmad N.B., Jawawi D.N., “Selection sort”, SCJ 2013 Data structure and algorithms, 2013.

GSJ: Volume 10, Issue 1, January 2022
ISSN 2320-9186 12

GSJ© 2022
www.globalscientificjournal.com

	references

