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Abstract 

The rapid growth in the volume of data has resulted to what is known as big data. This data are indexed for 

efficient retrieval in the cloud environment. Recently, attention of researchers is drawn to designing efficient 

indexing techniques searching schemes in the field of data mining, machine learning, pattern recognition, and 

object matching. ANN methods is needed for similarity search to reduce the computational complexity and 

memory requirements as against the straight forward techniques that uses exhaustive comparison. Hashing 

based indexing algorithms are gaining much attention due to their memory efficiency and search accuracy. 

However, the use of selective projections generation has shown to be inefficient due to the long code length. For 

an efficient indexing algorithm, we propose a Geo-similarity preserving embedding-based hashing algorithm 

for improving the search accuracy and memory cost. Extensive experiment is carried out GIST 1M dataset and 

evaluate the performance of our method and compared our result based on the mean average precision.  The 

results shows that our method outperform-state-of-the-art techniques.   
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1 Introduction 

With the advent of internet, couple with the availability of hand held devices such as smart phones [1] 
has contributed to the large volume of data or big data, considering their broad range of resources [2] 
in the recent years. Millions to billions to trillions of information have been uploaded to more than 
300 million World Wide Web accessible websites [3]. This information are continuous in circulation 
through websites such as Flickr, Twitter, You Tube and yahoo etc. For instance, millions of messages 
are exchange daily through yahoo, thousands of photos are shared through flickr, millions of tweets 
on a daily basis and uploading of millions of videos through You Tube. The existing technological 
infrastructure do not meet the ever heterogeneous and complex growth of data generated and stored in 
the database. Information extraction is necessary to structuralize the raw data so that they can 
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be easily digested by analysis algorithms [4]. Retrieving these information from the database 
becomes a challenging task. For these, efficient indexing techniques are required for efficient storage 
and management of data in cloud computing. However, different indexing techniques were proposed 
by researchers with particular direction to big data in cloud computing. Approximate nearest 
neighbour (ANN) search is a fundamental for searching large-scale-image in application domains 
such as data mining, pattern recognition, machine learning and information retrieval [5], [6], [7], [8], 
[9], [10], [11]. Tree-based indexing techniques proposed by [12], [13], [14], [15], were proposed for 
similarity searching in low-dimensional space. A R-tree-based indexing technique was proposed in 
[16], to allow multi-dimensional data to be indexed in the cloud. Distributed B-tree is an indexing 
method designed to perform consistent and concurrent updates and at the same time permits high 
concurrency reading operations (Aguilera et al., 2008). Graph-based techniques [17], [18],[19], [20], 
[21], [22], have been proposed are known for their performance in terms of similarity searches and are 
mostly based on the idea that a neighbour of a neighbour is also a neighbour.  Hash based indexing 
techniques [23], [24], [25], [26], [27], [28], [29], [31], [32], [33], [34], are known for their 
effectiveness in search accuracy and low memory requirements. Hashing based techniques have been 
used in application area like large-scale vision problems including image retrieval [35], [36], image 
search [37], object recognition [38], local descriptor compressing [39], fast multimedia search [40],  
image matching [41], and are efficient in search and similarity computation. Approximate similarity 
search [42], while the   [43], is used for maintaining index items in d-dimensional data.  
The drawback of the afore mentioned schemes is that the performance of the system degrade as the 
code length increases which results to low speed, retrieval accuracy, and high search time.in this 
paper, we therefore propose a geometric similarity preserving embedding-based hashing to alleviate 
the aforementioned drawback posed thereby improving the search accuracy and memory cost.   

The rest of this paper is organised as follows: the review of recent hashing techniques are given in 
section II, our proposed method is presented in detail in section III, reports based on our experimental 
findings are presented in section IV while section V conclude our work.  

2. Related works. 

Hashing based methods are known to be efficient in accuracy and memory requirements. The hashing 
based methods are categorised into data-independent and data-dependent. The data-dependent based 
hashing designed based on the distribution of data to overcome the inefficiency of data-independent 
hashing methods such as the LSH [50] that generates projections randomly which result to long code 
length and many hash tables. Learning based hashing techniques includes supervise, semi-supervise 
and unsupervised hashing techniques  

For searching fingerprint in Hamming space, [44] proposed a theoretical framework for learning 
compact binary hash and an integrative technique to hash-based fingerprint indexing. The authors 
build their method on the existing Minutiae Cylinder Code (MCC). The characteristic of MCC are 
outlined and pointed out that it binary representation are bit correlated which makes it possible to 
represent minutiae feature in a more compact binary form. The theory of Markov Random Field 
(MRF) was used to model adjacent bit correlations in the MCC binary representation which makes it 
easier in learning the hash bit from a generalised linear model (GLM). To obtain an entropy for 
finding more descriptor bits and independent bit, equation. Experimental results based on 24-bit hash 
code show that the identification accuracy is high and faster search time 

 (          )   ∑  (  )
 
     (39) 

A hashing technique that uses two hash codes of different length for stored images in the database was 
proposed in [45]. The compact hash code is used for the stored images in the database to reduce 
storage cost while the long hash code is used for the queries for searching accuracy. To retrieve 
images from the database, the Hamming distance of the long hash code is computed for the query and 
the cyclical concatenation of the compact hash code of the stored images for better precision-recall 
rate. The propose method is compared with Iterative Quantisation (ITQ), Iterative Quantisation with 
Random Fourier Feature (ITQRFF), Orthogonal K-mans (OKM), Asymmetric Hashing (AH), LSH 
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and Shift-invariant Kernel based Locality Sensitive Hashing (SKLSH). This method gives a better 
performance than ITQFF because the asymmetric hashing approach of the ACH provides better 
precise location data of the query. The experimental results show that ACH yields the best precision 
with the code length of 64-bit than the existing methods. The drawback of ACH is that the technique 
cannot distinguish favourably between images of birds and planes dew to similar feature values used. 
The scheme depends on the semantic similarity preservation of the features used and the weighted 
Hamming distance increase the computational complexity of the scheme. [46], proposed a method to 
preserve the underlying geometric information among data. The authors explore the sparse 
reconstructive relationship of data to learn compact hash codes. Usually, it gets over fitting in 
measuring the empirical accuracy on labelled data as such information provided by each bit is utilised 
to obtain desired properties of hash codes. The information theoretic constraint is incorporated into 
the relaxed empirical fitness as a regularising term to obtain the objective function. [47], proposed a 
novel method for improving the performance of geometric hashing with respect to robustness towards 
occlusion and clutter. Features descriptors are used reduce the rate of false positives. To improve the 
performance of the geometric hashing, distinctive features given by the feature points are added to the 
representation and does not allow the cluttering of feature points to form bases pairs. These feature 
descriptors are used to discard features that can easily lead to data collision in the hash table. As a 
result, the number of bases that needs to be examining are being reduced in the recognition stage.  By 
evaluating all over threshold bins in the Hash Table obtained with a particular basis, multiple objects 
instances are being handle into the target images. Experimental results show that the new method 
outperform GH techniques in terms of recall at 1-precision when the number of feature points used is 
30 feature on the average per frame and 175 feature points on the average per frame.  In the data 
dependent techniques, data points are of utmost consideration in designing hash functions. Binary 
code embedding methods provides high compression efficiency and fast similarity computation. [48], 
make use of a boosted geometric hashing to design an efficient indexing technique for finger-knuckle-
print (FKP) images to reduce the searching cost. For effective design, the authors identify that the 
number of feature points are not the same, the number of extracted feature is huge, the number of 
features of two images of the same subject extracted at two different instances of time may not 
necessarily be the same, the images may be partially occluded, and a query image may be rotated and 
translated with respect to the corresponding image in the database. Features extraction algorithm are 
used to extract feature from each and every FKP image. The proposed method consist of two phases 
known as indexing and recognition. In the indexing step, to boost the geometric hashing for efficient 
indexing and recognition, the coordinate position of each feature is used to generate an index in the 
hash table while using the descriptor vector for recognition. Mean centering, the rotation of feature 
based on principal components and normalisation are used to handle translation, rotation and scaling 
effect present in the images. Extensive experiments were carried out to evaluate the performance of 
the proposed techniques as compared to other state-of-the-art-techniques based on Hit Rate, 
Penetration Rate, correction Recognition Rate, and Cumulative Match Characteristic (CMC) curve. 
The scheme is tested on publicly available PolyU finger-knuckle-print database. The results show that 
when SIFT and SURF were used to extract features from images, CRR achieve 96.36% and 99.69% 
respectively. Hit rate was achieved at 100% against penetration when the neighbouring are varied. 
The proposed technique is compared with the geometric hashing method where the features are 
inserted into the hash table once in the boosted geometric hashing technique and was found that the 
boosted geometric hashing outperform the conventional geometric hashing technique. [49], proposed 
a novel hashing algorithm for effective high dimensional nearest neighbour search. DSH uses k-
means to roughly partition the data set into k-groups. Then for each pair of adjacent group, DSH 
generate one projection vector which can well split the two corresponding group. From the generated 
projections, DSH select the final ones according to the maximum entropy principle in order to 
maximise the information provided by each bit. Given    data points   ,       -     

     , is to 
find   hash functions to map a data point   to a  -bits hash code. In geometrical perspective,    
defines a hyperplane. The points on the sides of the hyperplane have the opposite labels. This hash 
function, the hash bits of two points has the probability proportionate to the cosine of the angle 
between them. Basically, two points identify as          . Based on this characteristic, the DSH has 
the probabilistic guarantees for retrieving data within (   ) times the optimal similarity, and the 
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query times that are sublinear with respect to  . DSH shows minimal improvement in performance as 
the code length increases because the geometric discriminative structure information of data is 
ignored and this result to a suboptimal performance of DSH.  The DSH uses hyperplane-based 
hashing function to encode high-dimensional data and to partitioned data points into two sets and 
assigned two different binary codes (-1 or +1) depending on which set each point is assigned to. To 
minimise distortion in DSH, the centre point is used as the representative for each group. In large 
scale applications, it took long time for the k-means for the k-means to converge. After   iteration, the 
k-means is stopped. Also, the best group number is usually, is the large group with smaller error. But 
a large number of group could lead to high computational cost in the quantisation step. Now DSH 
uses the quantised result denoted by k groups         and the      group has the centre      to 
guide in generating the projections. Here, the nearest neighbours matrix represented by   is given as 
in equation (52) which is used in defining the    adjacent groups that is   and   , if and only if 
     . So the DSH now picks only those projections that can separate two adjacent groups 
properly. 

Furthermore, for each   and    (pair groups), the DSH technique utilises the median plane between 
the centres of the adjacent groups as the hyperplane to separate points. Although hyperplane-based 
hashing function is used to obtain the median plane between the centres of adjacent groups, geometric 
discriminative data points should be bounded and mapped into binary hash codes by fining tighter 
closed region, is used to separate points. Again, a good binary code maximise information given by 
each bit. That is, maximum information is given by a binary bit that has a balanced partitioning of the 
data points. For this, each of the candidate’s projection DSH computes its entropy. So for the entropy 
in DSH with regards to projections. DSH is evaluated on high-dimensional nearest neighbours search 
problems using three large scale real-world data sets conducted on experiments. Results from 
experiments show that scheme is suitable for high dimensional situations. With the codes of 48 bits 
and 96 bits, DSH has better precision-recall rate than state-of-the-art-techniques used as comparison 
algorithm. Using of hyperplane-based hashing function incurs more computational cost as     
hyperplanes are required to define a close region for a  -dimensional space.  DSH generates more and 
more projections which are less important and becomes redundant. The redundancy of projections 
degrades the performance of DSH and thus does not scale well with huge databases. For this, an 
optimised algorithm is require to balance the trade-off between search accuracy and search time and 
still maintain memory cost. 

3 Methodology 

Here we present our proposed system and its operational principle. The proposed system is composed 
by four components that performs a specific function to achieve the set objectives. The objective of 
learning hashing-based methods is to use the mapping function  ( ) that projects m-dimensional real 
valued feature vector to n-dimensional binary hash codes and still preserve the similarity among the 
feature vector and the data set. Geometric Similarity Preserving embedding-based Hashing (Geo-
SPEBH) can preserve the underlying discriminative geometric information among the data points. 
The system explores the magnitude structure of geometric features of data. Here the image feature are 
indexed from the quantised hashing results. The Geo-SPEBH uses hypersphere-based hashing 
function for computing the binary hash codes with a joint algorithm that optimised search accuracy 
and search time simultaneously. 

We have sample of data points contained in a database, we will index the data to reduce storage cost, 
computational cost and optimise the search accuracy and time simultaneously. Here we represent the 
data point’s samples as              , and the database is represented as   given below: 

  *                 +    
      denotes the data points contained in the database. Then we 

design our hash function that will map this data points to a k-bit binary hash code which we define by 
equation (1) 

 ( )  *  ( )    ( )+   *     (1) 

GSJ: Volume 7, Issue 4, April 2019 
ISSN 2320-9186 

645

GSJ© 2019 
www.globalscientificjournal.com 



Where   is the number of samples of the data points, and   is the length of the binary hash code.  

Figure 1 gives the conceptual framework of the proposed system. The working principle of the 
propose system is given in details with a detailed explanation of the responsibilities of each of the 
component that made up the model. This architecture incorporates the solutions to the identified 
problems in the various components that made up the proposed system.   

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.1. Conceptual framework of the proposed System.  

Firstly, we use the hypersphere-based hashing function to project each sample data point into compact 
binary hash codes. The hash function depends on the distribution of data to generate hash table.  

Secondly, we then use the geometric similarity preserving to preserve the similarity among the data 
points so that the original structure property of the data points are retained.  

Thirdly, we then optimise the search accuracy and time simultaneously by minimising the Hamming 
distance and the mutual information to enhanced precision-recall.  

3.1  Hash Function 

This component of the propose system is responsible for the compression of the high-dimensional 
data into compact hash codes to minimise storage cost. The goal of designing the hash function is to 
preserve the similarity information of the original descriptor vector in a high-dimensional hamming 
space for better precision and recall. Here, the hash function of the propose system compresses the 
original descriptor of the stored images in the database to a low-dimensional k-bit compact binary 
hash code with high compression ratio for small storage cost. The low-dimensional binary embedding 
can preserve the original geometric coordinate structure information of the data in the database. We 
therefore construct our hash function using the geometric structure properties of the data based on the 
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data distribution framework, and the hashing coding is depended on the data points. We use   hash 
functions based on hypersphere to preserve the similarity among data point samples. Our   hash 
functions ranges from 1 hash function to      hash function. The constructed hash function is then 
use to generate binary hash codes   (   )  ,  (   )     (   )- by compressing points in high-
dimensional space into the binary hash codes of   (   )  *     +. The samples in the original 
database of images which correspond to the non-negative entries are used to approximate the given 
data vector. To achieve this efficiently, a geometrical hashing function that utilises the hypersphere-
based hashing function design in equation (1) is used to define a pivot in a D-dimensional vector 
space with a distance threshold. Our hashing function will show that the values represented by each of 
the geometrical hashing function   (   ) will then determine whether a data point say  , is within the 
range inside the hypersphere with the centre as    and it radius as   . The hash function is effective in 
that a higher number of region that are closed can be created using multiple hyperspheres, with 
distances between the points that are located in each of the region are bounded.  To locate a nearest 
neighbours from a query point ANN search, closed region are formed with tight bounded distances. 
With this tighter regions, effective candidates for the nearest neighbours can be found within the 
range or region that is been indexed by the binary code of the query point.  

We exploit the distribution of data using the geometric properties among data points to design in our 
hash function which takes a linear form as in equation (1) and equation (2) is where the hash codes are 
generated. 

   
 

 
 (    ( ))   (2) 

To overcome the low performance of hash function as the code length increases, we define 
independence of hashing functions to distribute data points evenly to the generated binary hash codes, 
and also informative set of projections as the number of the hash functions increases. We uses the 
hypersphere to define a geometrical hashing function. Here, a pivot        as a distance threshold 
      as the following equation (3). as *  +     

    {
     (    )      
     (    )      

  (3) 

Where  (     ) denotes the Euclidean distance between two data points in   . To map similar feature 
vectors into the same hash bucket, every bit must have the opportunity of becoming one or zero. Here, 
similar bits are map into same bucket with high probability of having a 50% chance of becoming one 
(1) by defining independence of each bit. Equation (4) is use to balance the partitioning of data points 
for each bit.  

  ,  (  )   -   
 

 
,                       (4) 

To achieve independence between two bits given that      and          

  [  ( )      ( )    ]     ,  ( )   -    [  ( )   ] =  
 
 .  
 
 = 
 
          (5) 

Our hash function will use a few entries indexed in the hash table to reconstruct the original data 
which ultimately depends on the distribution of the data points that utilises the intrinsic attributes of 
the data, that is, the underlying geometric structure properties of the data points in the data base. By 
using the few entries in the hash table, the original data is reconstructed and retrieved.   

3.2 Geometric Similarity Preserving 

This component of the propose system is responsible for preserving the similarities of two sample 
data points in the training data set in our propose system. Given a database  , two data samples    and 
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    contained in the training set of data. We extract the similarity between the two data samples as 
    from the similar geometric feature points of image data. Hashing methods require geometric 
coordinate properties for similarity preserving. We will then ensure that the data points that are 
similar usually have similar hash codes with small hamming distance.  

The similarities among the sample data points detected using SIFT is then preserved as a similarity 
preserving term, and then we further seek a code that maps similar data points to similar binary hash 
codes known as similarity preserving. We then minimise the Hamming distance between similar data 
points and the corresponding similar binary hash codes. Our similarity preserving term, and Hamming 
distance minimisation between similar data points and it corresponding similar binary hash code are 
represented in equations (6) and (7) respectively. We sum the similarity preserving term as the 
summation of    samples of data points from 1 to   plus the summation of    corresponding similar 
binary hash code from 1 to   as in equation (6). We minimise the Hamming distance by taking the 
absolute values of the of the similarity term as in equation (7).  

Hamming distance = taking the absolute (abs) values of Similarity term. 

 ( )   ∑          ∑           ∑             (6) 

 ( )   ∑ ∑              
 

                 (7)  

where     is the sample data that has similarity,  ( ) is the similarity preserving term.  

For efficient search accuracy with respect to similarity search, similar data points are map to similar 
binary hash codes for similarity preserving. This means that similar data points must have similar 
binary hash codes with small Hamming distance by minimisation.  We use equation (7) to minimise 
the Hamming distance with respect to: 

     *   + ∑         (8) 

 

 
 ∑            (9) 

Where the constraint (8) requires each bit to fire 50% of the time, and the constraint (9) requires the 
bits to be uncorrelated. And, y is the set of all   . Then from equation (7), samples with high similarity 
or with bigger similarity     will have similar binary hash codes with smaller Hamming 
distance            .  

Process to Map similar data points to similar binary codes. 

Input: extract feature points from images in the training dataset in the database using PCA. 

Form a sphere around the extracted features using the geometric coordinates of feature points.  

Perform PCA to the extracted feature points to make them invariant to rotation, scaling and 
transformation.  

Extract similar feature points from sample data points          using SIFT feature detector to detect 
similarities among data points      

Make     the similarity matrix among the sample data points 

Seek a code to map similar data points to similarity binary hash codes to preserve similarity  ( ) in 
equation (6). 
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Minimise the Hamming distance between similar data points and their corresponding similar binary 
hash codes abs  ( ) in equation (7). 

3.3 Balance Partitioning for independence. 

To have uniform distribution of data points in hash bucket, we make each hash function independent 
of one another. That is the functionality of one hash function does not depend on the other one to 
function. Each hash function is depended on itself to distribute data points in an evenly manner. We 
therefore give each hash function the opportunity of becoming 0 or 1. This mean that for hash 
functions to be independent, each hash function should have the chance of being one or zero and the 
different binary hash codes are independent of each other as in equation (4) above. 

We demonstrate the independence of our hashing functions as follows: As a typical scenario, we take 
the probability that an event say    be a hash function that is one (1).    is the event that   ( )   . 
We then define two events   and    to be independent if and only if the probability of      and the 
probability of     is equivalent to the probability of      multiply by the probability of      
as in equation (10). Here, similar bits are map into same bucket with high probability of having a 50% 
chance of becoming one (1) by defining independence of each bit. Any of equation (4) and (5) is use 
to balance the partitioning of data points for each bit.  

  ,  (  )   -   
 

 
,                        (4) 

   ∑   
  

                 (11) 

To achieve independence between two bits given that      and          

  [  ( )      ( )    ]     ,  ( )   -    [  ( )   ] =  
 
 .  
 
 = 
 
           (5) 

 

  ,      -    ,  -     ,  -  (10) 

  ,  (  )   -   
 

 
,            

The intersection is the equal chance of the code bit being 1.  

We then incorporate the similarity preserving term with the minimised mutual information criterion 
together to simultaneously improve the search accuracy and search time. We insert the data points 
into each bucket as 

     

  
 .     (11) 

Algorithm 1: Balanced Partitioning 

1. Start 
2. Let V = 2**M 
3. Input:  N; M 
4.                    
5. get  ( ) 
6. BP = N( )     
7.        
8.            goto step 5 

GSJ: Volume 7, Issue 4, April 2019 
ISSN 2320-9186 

649

GSJ© 2019 
www.globalscientificjournal.com 



9.      end if 
10.     end for 
11.  Print BP 
12.  Stop  

3.4 Joint Optimisation.  

In this section, we integrate the similarity preserving term  ( ) for search accuracy and the minimum 
information criterion for the search time to form a single entity. To enable a high search accuracy with 
fast search time, the joint optimisation component of the propose system is formulated and is 
responsible for the simultaneous optimisation of the search accuracy and search time. A 
parametrisation of a linear function is perform for easy optimisation, and a relaxation is perform. To 
relax the similarity preserving term and the minimum information criterion, the binary constraint is 
being removed from the similarity preserving term and the minimisation of the minimum information 
criterion.  

The joint optimisation is responsible for the computation of the hash bit that will be used for query 
and the identification of the bucket with the same hash bits with the query, and to also oversee the 
loading of data samples from the selected buckets into the memory.  Here, we make the hashing 
function independent to distribute data points evenly or equally to different binary hash codes.  

To minimise the time complexity, each bucket will contain equal number of samples to have a 
balanced buckets. To have equal number of samples in each bucket to balance the buckets, we use 
  

 

  
  equation  (11) 

Here, we improve the search accuracy by minimising the Hamming distance between similar data 
points.  

 ( )                                   +                                . Mathematically, 
this can be expressed as: 

 ( )∑         ∑                  (12) 

The similarity preserving term and the mutual information are incorporated together for simultaneous 
improvement in search accuracy and search time. 

3.4.1 Similarity preserving term  ( ) 

To improve the accuracy of searches in a database, we use the similarity preserving term which 
contains the similarity features among the data points,  ( ), with a minimised Hamming distance in 
equation (7).   

Algorithm 2: GSPEBH 

1. Start 
2. Input: the training dataset  ,              similarity matrix   and      ; the number 

of required bits   to map the full dataset as hash codes; BP; N; M; 
3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP = 0; V = 2**M; yi = 0; JointO = 0 
4.                              
5.                                     
6.                        Get y( ), y( ), x(   ) 
7. Sum = Sum + ( ( )   ( ))**2 
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8.                        j = j + 1  
9.                             goto step 6 
10.                        end if 
11.                                      
12.                                       goto step 17 
13.                                end if  
14.                         end for 
15.                 end for 
16.  Sim = Sum 
17.                    break; 
18.                                      
19.                              get  ( ) 
20.                            BP = N( )     
21.                                   
22.                                   goto step 40 
23.                            end if 
24.                      end for 
25.  Print Sim, BP 
26.  //Incorporating similarity preserving term and balanced partitioning// 
27. JointO = Sim + BP 
28. //computing   // 
29.  (   ) = 0, swap = 0 
30.  Get x 
31.  Get b 
32.                                   
33.                                            
34.                                 Get  (   ) 
35.                                 j = j + 1  
36.                                       goto step 55 
37.                                i = i + 1 
38.                                             goto step 55 
39.                                      end if  
40.                                  end if 
41.                              end for 
42.                       end for 
43.                     
44.                           
45. Swap =  (   ) 
46.  (   )   (   ) 
47.  (   )       
48.  ( ) =     ( (   )   ( )    
49.                   
50.                          goto step 66 
51.                  
52.                          goto step 65 
53.                                        end if  
54.                                  end if 
55.                              end for 
56.                       end for 
57. for i = 1 
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58. Print h(i) 
59.       
60.                   goto step 78 
61.             end if 
62.  end for         
63. //computing Binary hash code// 
64. Get k 
65.                                    
66.                                            
67.                   ( )  (   ( ))   
68. Print  ( )// for any sample  in the database, compute its K hash bits     (  ) = 

     (      )// 
69.  
70.  
71.                             
72.                                             goto step 89 
73.                                      end if 
74.                                end for 
75.                        end for 
76.  Print JointO 
77.  Stop  

 

 

Table 3.1 Parameters used 

S/no Symbol        Uses  

 1   ( )  A similarity preserving term  

2     A representation for   adjacent groups 

3     A parameter that controls the numbers of groups 

4   ( )  A hash function 

5      The centre of hypersphere 

6      The radius of the hypersphere 

7       represents data sample 

8       represents data sample 

4. Experiments  

In this section, we will give a detail analysis of extensive experiments carried out on GIST 1M dataset 
to evaluate the performance of our algorithm and compare with various state-of-the-art techniques. 
The details of our experiment and results are presented below.  
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4.1 Use Dataset.  

The dataset used for the evaluation of our technique is the GIST-1M-960D which contains one 
million GIST features. Each of the GIST features is represented by a 960-dim vectors.  

Table 3.1 

Dataset  Dimension  No. of base 
vectors 

No. of query 
vectors 

No. of learn 
vectors 

GIST 1M 960 1,000,000 1,000 500,000 

Our ground truth is defined by k-nearest neighbours computed be exhaustive, linear scan base on the 
Euclidean distance. For each query, the ground truth contain the vector numbers which begins at 0 of 
its k-nearest neighbours, ordered by increasing Euclidean distance.   

The codes are made available publicly by authors of the compared methods used in this paper. Where 
the authors do not provides their codes, we implement the algorithm develop according to their paper 
and with the same optimisation as our designed codes in this paper.  

1 .http://corpus-texmex.irisa.fr 
2. http://www.vision.ee.ethz.ch/_zhuji/felib.html 
3. http://www.cad.zju.edu.cn/home/dengcai/Data/NNSData.html 
4. http://corpus-texmex.irisa.fr 
5. http://www.cad.zju.edu.cn/home/dengcai/Data/DSH.html 
6. http://www.unc.edu/_yunchao/itq.htm 
7. http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html 
8. http://www.cs.huji.ac.il/_yweiss/SpectralHashing/ 
9. http://www.ee.columbia.edu/_wliu/ 

10. http://www.cse.ohio-state.edu/_kulis/klsh/klsh.htm 

 

4.2 Evaluation metrics. 

The Geo-SPBH is compared with state-of-the-art-techniques to obtain the mean average precision 
based on parameter analysis, the precision-recall rate, and the search accuracy and search time trade-
off. We implement our method to measure the performance of retrieval result on the mean average 
precision (MAP) using the GIST 1M dataset. The MAP measures the average of precision scores for 
each query. It is the area under the precision-recall curve for a set of queries. A large value of MAP 
will indicate a better performance.  

4.3 Compared Techniques. 

The algorithms used in the evaluation of the proposed system are the DSH, SHD, KLSH, LSH, AGH, 
SpH, SIKH, PCAH.  

DSH: Density sensitive hashing is a semi-supervised based hashing techniques that combined the 
characteristics of data-independent and data-dependent hashing techniques. The projections are 
generated based on selective principles. This technique avoids the complete random selection and 
generates the projections based on selective principles. It is an extension of LSH. 

GSJ: Volume 7, Issue 4, April 2019 
ISSN 2320-9186 

653

GSJ© 2019 
www.globalscientificjournal.com 

http://www.cse.ohio-state.edu/_kulis/klsh/klsh.htm


LSH: Locality sensitive hashing is a hashing based technique that does not depend on the distribution 
of data for projection generation. LSH generates its projections randomly. The vectors use for 
projection generation are randomly sample from a p-stable distribution. It is an unsupervised 
technique that apply to change detection domain.  

Spherical Hamming Distance: SHD is a hashing based technique that uses spherical Hamming 
distance. 

Kernerlised Locality Sensitive Hashing: KLSH generalises the LSH to the kernel space. 

Principal Component Analysis Hashing: PCAH is a classic indexing method for big data that 
utilises the core principal directions as projective vectors to obtain binary hash codes. 

Spherical Hashing: SpH is a classic approach that quantised the values of analytical Eigen functions 
computed along the principal component analysis of the data. The PCA is conducted on original data. 

Anchor Graph Hashing: AGH approaches is a classic technique design an anchor graph to 
accelerate the speed of the spectral analysis procedures. 

Shift-Invariant Kernel Hashing: The SIKH is based on the random feature hashing for 
approximating the shift-invariant kernels. 

Geo-SPEBH: This is our design method to be compared with the above mentioned algorithms. 

4.4 Results 

To generates discriminative binary hash codes that needs only small number bits to code a huge 
amount of data in a database to yield high search accuracy and an improved search time with less 
memory consumption. Develop a framework for a geometric similarity preserving embedding-based 
hashing for large scale image retrieval in cloud computing. 

We use the GIST 1M dataset to implement our Geo-SPEBH algorithm and compared our result with 
state-of-the-art-techniques. 

Table 3.2 

 GIST 1M Mean Average Precision (%) 

Code length (bits)  

METH
ODS 

16 32 48 64 80 96 

LSH 0.0675 0.0805 0.1095 0.1815 0.1525 0.1705 

DSH 0.1200 0.1500 0.2000 0.2300 0.2407 0.2501 

SHD 0.0245 0.0439 0.0685 0.0945 0.1000 O.184
3 

SpH 0.1913 0.1431 0.1518 0.1685 0.1683 0.1725 

AGH 0.0840 0.0945 0.1345 0.1445 0.1525 0.1535 
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PCAH 0.0855 0.0995 0.1455 0.1650 1.1705 1.1742 

SIKH 0.0501 0.0676 0.0718 0.0825 0.0998 0.1325 

KLSH 0.0690 0.1000 0.1095 0.1102 0.1423 0.1486 

GSPEB
H 

0.1245 0.1585 0.2545 0.3100 0.3505 0.3605 

4.5 Discussion 

The GIST 1M dataset is a dataset that consist of one million GIST features represented by 960 
dimension vectors. The number of base vectors is 1,000, 000 while the query vectors 1,000, 500, 000 
vectors are used for learning. This dataset is run with the old algorithm (DSH) with varied number of 
bits, 16, 34, 48, 64, 80, 96 to obtain the mean average precision (MAP) for each query. We select 1K 
data points as the queries and the remaining are used to form the gallery database. The point retrieved 
is seen as the true neighbour if it lies in the top 2 percentile points closest to the query. It is measured 
by the Euclidean distance in the original space. The data points in the database for every query are 
ranked according to their Hamming distances to the query.  

It can be seen that the data-dependent based methods recorded a very low performance when the code 
length is short but achieved high performance when the code length is long. This methods are LSH, 
SIKH, and KLSH. The data-dependent techniques, PCAH, SpH, SHD, AGH and semi-supervised 
technique recorded a high MAP performance when the code length is short but drops when the code 
length increases. From table 3.2 above, it can be seen that our proposed method outperform the 
compared methods as it recorded high MAP when the code length is short and still maintain 
performance when the code length increases, and the memory cost is low compared to the base-line 
methods on the GIST 1M dataset for all code lengths. The low memory cost recoded by our proposed 
algorithm indicate that it can handle large amount of data (huge database). Table 3.2 gives the MAP 
results for the GIST dataset for all the compared methods. Given 0.3 MAP obtain from the results 
above, our Geo-SPEBH requires 64 bits to encode each image in the sample dataset. On the other 
hand, the compared methods requires more than 64 bits up to 80 bits to encode each image in the 
database.  

5 Conclusion  

In this paper, we have proposed a geometric similarity preserving embedding-based hashing algorithm 
to address the drawback of the existing methods whose performance degrade as the code length 
increases. The high MAP achieved indicate that the proposed method designed for improving the 
search accuracy by using the similarity preserving term and minimising the Hamming distance. 
Experiment conducted using GIST 1M demonstrate that the proposed method achieve better 
performance compared to state-of-the-art methods based on MAP.  
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