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ABSTRACT 

Steady state analysis technique in line with d-q reference frame was adopted to characterize the behaviour of the three phase 
induction electric motor for purpose of improved performance. Having identified the problem of low power factor and poor 
efficiency of the machine under study required better consideration of the operational behaviour of the three phase induction 
motor. This research presents the analysis and performance of a three phase induction motor with and without the presence of 
stator core-resistance in the d-q reference model. The parameters of the machine was obtained using experimental simulation 
application tool computer software, matlab (simulink) was used for the development of the electric motor equations and 
behaviour for analysis and comparism. The starting currents of the induction motor under investigation is initially large as a 
results of jerking behaviour of the starting current without the addition of core resistance, giving a poor torque behaviour of 
6.8N-m. The three phase induction machine was significantly improved by the addition of core resistance which gives better 
torque characteristics with 14.9N-m. This means that higher torque was achieved by the insertion of stator-core resistance 
from 6.8N-m to 14.9N-m which seriously reduced the current and increases the torque characteristics thereby minimizing 
machine losses that could attract more load consumption for payments of tariff (pay for more Energy consumed) especially in 
the industrial set-up. Essentially, the setback of the machine parameters including the initial high currents, low power factor 
and poor efficiency has been remarkably improved in the measurement performance of 0.78% efficiency of the machine 
which will lead to reduction in energy losses to attract more commercial values and required to do more robust (capacity 
work). As the torque build up characteristics increase gradually as the value of the stator are resistance was added which also 
increase in a similar manner. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background of Study 

The use of three phase induction motor in the industries will continue to increase due to the fact that 

induction machines are simple and rugged in construction, which gives them an inherently high 

reliability and robustness. This is why they are widely called the workhouse of industries. Again, the 

three phase induction motors need only one source of power, hence are self-starting and use no 

capacitor, start winding, centrifugal switch or other starting device; and they are available in power 

range from a fraction of a kW to several MWs compared to their single-phase counterparts. They are and 

are suitable for the vast majority of drive applications involving constant speed, e.g. pumps, fans, 

compressors, conveyors, rolling mills. 

Modern trends and development of speed control methods of induction motors   have   also foster the 

increased in the demand of induction motors in electrical drives extensively. (Aspalli et al  2014; 

Vabuderan et al, 2015). 

The stator of a three phase induction motor consists of poles carrying supply current to induce a 

magnetic field that penetrates the rotor, when supplied with power. To optimize the distribution of the 

magnetic field, the windings are distributed in slots around the stator, with the magnetic field having the 

same number of north and south poles. 

For squirrel cage induction motor, the electromagnetic principle is used for its operation. So, when 

connected to a three-phase voltage supply, the stator winding establishes a steady rotating 

magnetomotive force (mmf) in the air gap. The speed of rotation of the field or flux is constant and is 

defined by the supply frequency and the number of machine poles: 
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The rotating field or air gap flux links the rotor and induces an emf in the rotor circuit. Since the rotor 

consists of bars or windings, which are short-circuited at the ends, there is current flow driven by the 

rotor induced electromagnetic force (emf).The rotor current produced field interacts with the stator 

magnetic field to produce force or torque in such a direction by the Lenz’s Law to realized the rate of 

change of flux linkage, that is, in the same direction as the field: This force on the rotor conductors set 

the rotor in motion. This simply is how the squirrel-cage motor works. 

1.2 Statement of the Problem  

There exist in literature several models for the study of three phase induction motor and for the 

calculation of important quantities of the machine either in these frames for the steady state, dynamic 

state or transient state analysis. Two main models that are commonly used in the literature are: 1) The 

per-phase equivalent circuit found in (Chapman, 2012) The dynamic three-phase model found (Krause 

et al, 2013). The first model is simple, but it cannot work in dynamic conditions neither perform q-d-0-

frame transform, which is the basis of many advanced vector control algorithms. The second model does 

not have the same two issues as the first one, in many literature core loss is commonly ignored in the 

quadratic-direct-zero (qd0) frame machine models. It is based on this that this proposal is made. 

1.3 Aim of the Research  

The aim of this research is to carryout performance evaluation of a three phase induction motor in 

arbitrary reference state, for improved performance 

 

1.4 Objectives of the Research  

The specific objectives are:  

i. To formulate equation for the calculation of machine quantities such as voltage, torque and 

power in dynamic mode. 
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ii. To formulate an equivalent circuit diagram for an induction motor in arbitrary reference state 

with core losses.  

iii. To study the effect of changes in the design parameters on the performance of the motor. 

1.5 Scope of the Research 

The model of induction motor can effectively be carried out using the reference frames techniques. 

Induction motor can be modeled by taking one of the generalized arbitrary reference frames, that is the 

stator reference frame, rotor reference frame, synchronous rotating reference frames. This work will 

consider and compare implanting synchronous rotating reference frame method. Because the steady 

nature of this stator d-axis current makes this reference frame useful when a computer is used in 

simulation and one of advantages of this frame is speed and angular position can be taken into 

consideration at any instant of time.  The mathematical equations of the induction motor involve 

differential equations that vary with respect to time.  

1.6 Significance of the Research Work 

The induction machines particularly the squirrel cage machine for example it is simple but robust in 

construction that is why it is used in all kinds of environments and for long durations of time.  Similarly, 

induction motors have high efficiency of energy conversion, and are very reliable especially for 

industrial performance therefore, owing to this simplicity nature of construction, induction are 

considered very useful and good property of low maintenance costs it is relatively cheap compared to 

DC and   Synchronous Motors. Suitable model analyses of this motor is required to make the 

performance of the electric motor to be more interesting especially in academic and industrial setting as 

well as commercial uses. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Extent of Past Work Reviewed 

Following the consideration of Yiqi et al., (2017), induction machine models have been used for ages in 

many industrial and academic fields including machine characterization and model extraction as found 

in control design, fault detection, power electronics design, loss minimization, and many others. 

Generally, machines are designed for full-load conditions where the copper loss is dominant 

Per half the earliest time-honored model for induction motors in a natural frame of reference and using a 

multiple coupled circuit approach was published in the famous work by Fudeh and Ong (1983). This 

model focused on the analysis of space harmonics and their influence on motor transients. In this model, 

symmetrical machine was assumed. All magnetomotive forces (MMFs) in the machine are represented 

on the harmonic by harmonic basis - as a sum of fundamental and higher space harmonic components.  

Another work by Luo et al., (1995) gave way to the development of this field further, where a major step 

forward was made. Here, the authors presented an induction motor using winding functions, and 

modelled this on the basis of a multiple coupled circuit. What is now clear is that their model represents 

the standard for induction motors modeling, and has done so for the last two decades, notably in relation 

to, a range of fault conditions and their investigation. The key feature of the model is that it can account 

for different winding distributions, without the nature of that winding (wound or cage winding) affecting 

the model. Similarly, the model makes no assumptions about symmetry or the lack of it. 

Arbitrary q-d-0-frame model with the core loss have been proposed by Levi (1995), in which it is being 

expressed directly as parallel resistors in magnetizing branches of d-q equivalent circuits. But the model 

is proposed for steady-state vector controller design and the model accuracy is not provided.  
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2.1.1 Machines with two Stator Winding 

Consider when 1-0 motor has two stator winding like the stator for a split-phase motor consists of two 

windings held in place in the slots of a laminated steel core. The two windings consist of insulated coils 

distributed and connected to make up two windings at 90 electrical degrees apart. One winding is the 

running winding and the second winding is the starting winding using a capacitor. But the normal 3-

phase winding machines are popular and have 3-phase sets of windings. The advantages mentioned 

above apply to machines with two identical or non-identical stator winding sets. Depending on the rotor 

the machine maybe synchronous, induction or synchronous reluctance. 

Ogunjuyigbe et al (2018) Modeled and analyzed a dual stator-winding induction machine using complex 

vector approach. In this work, complex vector modeling technique is utilized to develop and simulate a 

dual stator-winding induction machine with squirrel-cage rotor. 

2.2 Doubly-Fed Machines 

The dual winding machine (Self-cascaded machine) recently christened the brushless doubly-fed 

machine (BDFM) was introduced by "HUNT" in 1907. In same year "Broadway" presented a paper on 

self-cascaded machine with a low-speed motor or high frequency brushless alternator. 

2.3 Dual Winding Synchronous Reluctance Motor 

A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the 

ferromagnetic rotor. The rotor does not have any winding. Torque is generated through the phenomenon 

of magnetic reluctance. There are various types of reluctance motors. Synchronous reluctance, variable, 

reluctance, switched reluctance, variable reluctance stepping. Reluctance, motors can deliver high power 

density at low cost, making them ideal for many applications. 
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The disadvantages are high torque ripples i.e. the difference between maximum and minimum torque 

during one revolution. Until the early twenty-first century their use was limit by the complexity of 

designing and controlling them. These challenges are being overcome by advances in the theory, by the 

use of sophisticated computer design tools. 

2.4 Dual Winding Synchronous Motor 

A synchronous motor is an AC motor, at steady state, rotation of the shaft is synchronized with the 

frequency of the supply current, the rotation period is exactly equal to an integral number of AC cycles. 

Synchronous motors contain multiple AC electromagnets on the stator of the motor that create a 

magnetic field which rotates in time with the oscillation of the line current. The rotor with permanent 

magnets or electromagnets turns in step, with the stator field at the same rate, provide the second 

synchronized rotating magnetic field of any AC motor. 
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CHAPTER 3 

MATERIALS AND METHOD 

3.1 Material Considered 

The analysis of this research work considered the basic procedure in different stages such as model 

development and simulation. Simulation will be conducted using MATLAB/Simulink software for 

machine study based on the formulate equations. The model equation for the MATLAB program shall 

be based on analytical approach. 

 

    

 

 

 

 

 

 

Figure 3.1: Induction motor winding pattern in d-q reference frame  
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3.2 Voltage Equation in ABC Frame 

The representation of electric machine variable given as: 
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The Rotor Voltage equation can be written as (3.2): 
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The mathematical representations of flux lingages in rotor as stator winding are given as: 
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For an idealized machine, six (6), first –order differential equation are used to describe the system 

machine operation, through self and mutual inductances. The varying inductances are transformed into 

differential equations with constant coefficient with reference to q-d-0 transformation. 

3.3  Proposed Machine (Motor) Technique 

The representation of figure 3.2 shows the winding pattern of the proposed machine (induction motor). 

The analysis is on dynamic three (3) – phase machine performed in d-q frame with the idea of core loss 

connected in parallel in addition to stator resistance at the same time..  

 

Figure 3.2: Winding arrangement of the Proposed Induction Machine  

 

3.4  Model of the Machine in Arbitrary Q-D-0 Reference Frame 

Table 3.1: Induction Machine parameters for Analysis 

Parameters Values 

Phase Voltage(Vs) 220V 
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Stator Resistance(Rs) 74.02Ω 

Rotor Resistance(Rr) 62.01Ω 

Core Resistance (Rc) 0.6482Ω 

Stator Leakage Inductance (Lls) 0.2084H 

Rotor Leakage Inductance (Llr) 0.2084H 

Magnetizing Inductance(Lms) 3.3477H 

Number of poles 4 

Frequency 50Hz 

Friction coefficient(Bm) 0.0000N-m .s/rad 

Moment of Initial(Jm) 0.0025N-m .s2/rad 

Source: Research desk, study case under investigation 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Three-phase Induction Motor Simulated and Analysis 

The analysis discusses the results obtained from the three-phase induction motor using 

MATLAB/Simulink. The results obtained from an induction motor without the core resistance included. 

Inclusions are presented. 

                      

 

Figure 4.1: Shows the relationship between the stator and Time with the consideration of three-phase 

motor without stator core resistance. 
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4.2  Stator D-Q Axis Current Results without Core Resistance 

 

Figure 4.2: The Stator Current Arrangement in Time without Core Resistance  
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Figure 4.3: The Stator d-q Axis Current without Core Resistance  
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4.2.1. Rotor D-Q Current Results without Core Resistance 

 

Figure 4.4: The Stator d-q-axis Current without Core Resistance 

 

0 0.5 1 1.5 2 2.5 3 
Time, sec 

-15 

-10 

-5 

0 

5 

10 

15 

I 
d r , 

A 

Rotor d-Axis Current 

GSJ: Volume 8, Issue 12, December 2020 
ISSN 2320-9186 1125

GSJ© 2020 
www.globalscientificjournal.com



16 
 

 

Figure 4.5: Three-Phase Rotor d-q Current of Induction Motor with Stator-Core Resistance Addition  
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4.2.2. Electromagnetic Torque Results without Core Resistance 

 

Figure 4.6: The behaviour of electromagnetic torque under no load condition. 
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4.2.3. Motor Speed Results without Core Resistance 

 

Figure 4.7: Motor Rotational Speed, with time, sec 
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4.3 Results and Discussion of the Induction Motor with Core Resistance 

In section 4.2, we made analysis of the performance of a three phase induction motor without core 

resistance. In this arrangement, it is assumed that there is no core loss; hence the motor is in ideal state. 

However, in reality there is no ideal or perfect machine. Hence, in this section, we will attempt to 

evaluate the performance of the motor when core resistance is added or included in the circuit. 

 
4.3.1. Stator Phase Current Results with Core Resistance 

 

Figure 4.8: The Stator phase current with core resistance. 
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transient was seen from 0 to 1 seconds before the motor moved to a steady state mode. Again, the initial 

rise in stator shows the behaviour which has draws high starting current. The graph result also shows 

current saturation as a result of inclusion of core resistance. 

 
4.3.2. Stator D-Q Current Results with Core Resistance 

 

Figure 4.9: The characteristics of stator q-axis current and time, sec 
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Figure 4.10: the repreentation of three-phase stator induction with addition of stator core resistance 
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4.3.3. Rotor D-Q Current Results with Core Resistance 

  

 

 

 

 

 

 

 

 

Figure 4.11: Rotor d-q current with core resistance 
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Figure 4.12: The relationship between rotor d-q with core resistance current of core resistance. 
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4.3.4. Electromagnetic Torque Results with Core Resistance 

 

Figure 4.13: The electromagnetic Torque with core resistance   

 

Figure 4.13 describe the behaviour of torque due electromagnetic produced in the case of torque senario 

and inclusion of core resistance, the motor starting torque to be about 14.9N-m. This value was unstable 

and reducing until 1 second before the motor reached its steady state condition. With the insertion core 

resistance stator, the current is seen to have reduced, hence, increased in the starting torque.  

 

0 0.5 1 1.5 2 2.5 3 
Time, sec 

-10 

-5 

0 

5 

10 

15 

T e , 
N - 
m 

Electromagnetic Torque 

GSJ: Volume 8, Issue 12, December 2020 
ISSN 2320-9186 1134

GSJ© 2020 
www.globalscientificjournal.com



25 
 

4.3.5. Motor Speed Results with Core Resistance 

 

Figure 4.14: Motor rotational speed with time, sec 
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  CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

 The analysis behaviour of the machine at steady state condition was based on mechanical property. 

Machine at steady state was based on mechanical property. The characteristic of the machine gives 

relation between steady state values of the electro-magnetic torque and the rotor speed. The 

characteristic is dependent on the frequency and of the stator voltage. Therefore any changes in stator 

voltage will effects the mechanical characteristics. The analysis and performance of three phase motor 

particularly induction machine with and without the addition of core resistance in the stator was 

considered in this study case under investigation without stator core resistance. A d-q equivalent circuit 

of the machine understudy was formulated and simulated using a matrix-laboratory (MATLAB) this was 

achieved using the machine d-q reference frame technique. The machine input data were used and 

implemented into formulated machine variable for the study under investigation. The machine operates 

smoothly when the core resistance was neglected (when operated on ideal case). Similarly when the core 

resistance is inserted on the stator unit of the motor, there was transient that is jerking behaviour which 

took longer time to attain system stability. The technique used characterised the voltage, current 

equation and torque expression which were used for the MATLAB simulations.  

Essentially the reactive power, (capacitor) injected in the system shows improvement in the performance 

characteristics of the 3-phae induction machine 

5.2 Contribution to Knowledge 

The major contribution to knowledge is the modification carried out by the addition of core resistance 

(R-c) on the view to improve the peak current value of the induction motor which reduces current 
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behaviour in the start-up condition, although the transient behaviour lasted for about 0.6 seconds. 

Similarly, the starting torque of the motor with addition core resistance gained improved from 6.8 N-m 

to 14.9 N-m. 

Essentially, high torque characteristics of the motor which was achieved by the insertion of core 

resistance which evidently reduces the current and increases the torque characteristics, while the steady 

state time and initial jerking behaviour with addition of stator core resistance remain unchanged. 

Therefore the machine performance characteristics of power factor and efficiency were utilized. 

5.3 Recommendation 

This includes the following; 

(i) Consideration of multi-phase induction machine should be the centre of focus because of its high 

flexibility and purpose in the industry.  

(ii) Modified induction motor with high efficiency, high power factor are recommended to optimize 

for power saving. 

(iii) Additions of auxiliary winding connected with a balanced capacitor are considered to improve 

low efficiency in the induction motor. 

(iv) The incidence of high starting current experience by conventional three-phase induction motor 

can be reduced by reactive power compensation or injection. 

(v) Machine steady and transient behaviour most always be model characterized before simulation to 

predicts machine behaviour in order to avoid sudden system collapse. 
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