

GSJ: Volume 12, Issue 4, April 2024, Online: ISSN 2320-9186

www.globalscientificjournal.com

Performance Evaluation of a Functional-oriented

Program Design and Object-oriented program

design: A case study of the Average Score program

Laud Ochei1, Chigoziri Marcus2

Department of Computer Science

University of Port Harcourt, Rivers State, Nigeria

Email:laud.ochei@uniport.edu.ng1, chigoziri.marcus@uniport.edu.ng2

Abstract

In software development, the programming paradigm used has a significant impact on system

performance and maintainability. This research study compares the performance of two

dominant paradigms: functional-oriented programming (FOP) and object-oriented

programming (OOP). The emphasis is on evaluating the performance of these paradigms using

a case study of the Average Score program, which is a simple but illustrative computational

task. The primary research problem addressed in this study is understanding the performance

implications of using functional-oriented or object-oriented programme design methodologies.

Previous research has shed light on the theoretical advantages and disadvantages of each

paradigm. However, empirical evidence on their relative performance in real-world scenarios

is scarce.To address this problem, this study proposes a comprehensive performance evaluation

framework that rigorously evaluates the execution time, memory usage, and scalability of

functional-oriented and object-oriented implementations of the Average Score program. The

research methodology includes designing and implementing both program versions with

appropriate programming languages and tools. Perfoemance tests are carried out using JMeter

to assess and compare the performance metrics of each implementation. The results of the

study revealed subtle differences between the functional-oriented and object-oriented

approaches, providing valuable insights into their respective strengths and weaknesses, thereby

helping software developers make informed design decisions. This study provides evidence-

based guidance to software developers by elucidating the performance characteristics of

functional-oriented and object-oriented program designs. Recommendations based on the

study's findings will guide future software engineering practices and advance the field.

Keywords: Performance Evaluation, Program Design, Functional-oriented Design, Object-

oriented design, Performance Testing

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1068

GSJ© 2024
www.globalscientificjournal.com

mailto:chigoziri.marcus@uniport.edu.ng

1. Introduction

In contemporary software development, the choice of a programming paradigm significantly

impacts the efficiency and maintainability of software systems. Functional-oriented

programming (FOP) and object-oriented programming (OOP) represent two prominent

paradigms, each offering distinct methodologies for software design and implementation.

Despite extensive research, the performance implications of adopting either paradigm remain

a critical concern for software engineers.

The main problem addressed by this research is the need to comprehensively understand and

compare the performance characteristics of functional-oriented and object-oriented program

designs. While theoretical discussions abound regarding the merits and drawbacks of each

paradigm, empirical evidence regarding their relative performance in real-world scenarios is

limited. Previous research has provided valuable insights into the theoretical aspects of FOP

and OOP, highlighting their respective strengths and weaknesses. However, empirical studies

that rigorously evaluate their performance using concrete case studies are scarce [1][2].

To address this gap, this research proposes a systematic investigation into the performance of

functional-oriented and object-oriented program designs, using a real-world case study of the

Average Score program. The main research question guiding this study is: How do functional-

oriented and object-oriented program designs compare in terms of performance metrics such

as execution time, memory usage, and scalability?

The primary contributions of this research are twofold. Firstly, it aims to provide empirical

evidence regarding the performance implications of adopting functional-oriented versus

object-oriented program designs. By conducting a comprehensive performance evaluation, this

study seeks to elucidate the nuanced differences between the two paradigms and inform

software developers' design decisions. Secondly, this research contributes to bridging the gap

between theoretical discussions and practical considerations in programming paradigm

selection, offering evidence-based guidance for optimizing software performance.

To implement the proposed solution, this study will involve the design and implementation of

both functional-oriented and object-oriented versions of the Average Score program. Suitable

programming languages and tools will be selected to ensure a fair comparison between the two

implementations. Benchmark tests will be conducted to measure and compare performance

metrics, including execution time, memory usage, and scalability.

The expected results of this research include insights into the relative performance of

functional-oriented and object-oriented program designs, as well as a deeper understanding of

the factors influencing their performance. It is anticipated that the findings will provide

valuable guidance for software developers grappling with the choice of programming paradigm

in their projects.

The rest of the paper is organised as follows: Section 2 is the review of literature and related

concepts. Section 3 is the research methodology. Section 4 presents the results of the study,

while Section 5 interprets and discusses the results. Section 6 concludes the study with future

work.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1069

GSJ© 2024
www.globalscientificjournal.com

2. Review of Literature and Related Concept

The literature surrounding functional-oriented programming (FOP) and object-oriented

programming (OOP) offers a comprehensive understanding of their principles, applications,

and performance characteristics. Functional programming emphasizes the use of immutable

data and pure functions, promoting clarity, modularity, and parallelism [1]. In contrast, object-

oriented programming revolves around encapsulation, inheritance, and polymorphism,

fostering code reusability and maintainability [2].

Previous studies have extensively examined the performance implications of FOP and OOP.

Smith et al. conducted a comparative analysis of functional and object-oriented

implementations across various algorithms, highlighting the efficiency gains of functional

programming in scenarios with heavy computation and data processing [3]. Conversely, Jones

and Brown provided insights into situations where OOP outperforms FOP, particularly in

applications requiring complex data structures and interactions [4].

In addition to performance, the literature also explores the impact of programming paradigms

on software design and development. Johnson et al. investigated the influence of design

patterns on software performance, demonstrating how design decisions, such as those between

functional and object-oriented designs, can affect program efficiency and scalability [5].

Furthermore, studies by Martin and Martin explored the application of functional programming

concepts in object-oriented languages, highlighting the potential synergies between the two

paradigms [6][7].

Moreover, research has delved into specific domains and applications to evaluate the suitability

of functional and object-oriented approaches. For example, Gupta et al. examined the

performance of functional programming in financial modeling, showcasing its benefits in terms

of code clarity, conciseness, and correctness [8]. Similarly, Liang and Zhao investigated the

application of object-oriented design in game development, demonstrating how OOP principles

facilitate modular and extensible game architectures [9].

Furthermore, the literature extends to the comparison of programming languages that support

FOP and OOP. Haskell, a functional programming language, has been extensively studied for

its expressive power and type safety [10]. Conversely, Java, an object-oriented language, is

renowned for its platform independence and extensive libraries [11]. Comparative studies by

Thompson et al. and Garcia et al. have evaluated the performance and usability of these

languages in various contexts [12][13].

Other research has focused on specific contexts, such as embedded systems and enterprise

software development. Muller and Reusner compared functional and object-oriented

implementations in embedded systems, shedding light on their respective performance

characteristics and suitability for resource-constrained environments [14]. Lewis and Chase

explored the application of object-oriented design patterns in enterprise software development,

emphasizing their role in promoting scalability, maintainability, and code reuse [15].

Moreover, the literature encompasses theoretical foundations and seminal works that have

shaped the evolution of programming paradigms. Lamport's work on concurrency and

concurrent programs laid the groundwork for understanding the challenges and opportunities

of concurrent programming [16]. Similarly, Backus's seminal paper on functional

programming challenged the traditional von Neumann style of programming, advocating for a

functional approach based on an algebra of programs [17].

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1070

GSJ© 2024
www.globalscientificjournal.com

Additionally, textbooks and authoritative works provide comprehensive insights into

programming language design and implementation. Meyer's "Object-Oriented Software

Construction" offers practical guidance on object-oriented design principles and practices,

highlighting the importance of abstraction, encapsulation, and inheritance [18]. Scott and

Morrison's "Programming Language Pragmatics" provides a comprehensive overview of

programming language concepts, including syntax, semantics, and pragmatics, offering

valuable insights into the design and implementation of functional and object-oriented

languages [19][20].

3. Research Methodology

This section outlines the methodology employed for designing, implementing, and evaluating

both the functional-oriented and object-oriented versions of the Average Score program, as

well as the selection of performance metrics, programming languages, tools, and experimental

setup.

3.1 Description of the Average Score Program and Its Requirements
The Average Score program aims to compute the average score of a set of numerical values. It

requires accepting input data, performing the computation, and outputting the result. This

program serves as a fundamental computational task for comparing the performance of

functional-oriented and object-oriented implementations.

3.2 Design and Implementation of the Functional-Oriented Version
The functional-oriented version of the program is developed using the Java programming

language, leveraging functional programming techniques. Functional programming

emphasizes immutable data and pure functions [1]. In this implementation, functional

constructs such as lambda expressions and streams are utilized to encapsulate computations

and achieve concise, declarative code.

3.3 Design and Implementation of the Object-Oriented Version
The object-oriented version of the program is implemented using Java, following object-

oriented design principles and patterns. Object-oriented programming emphasizes

encapsulation, inheritance, and polymorphism [2]. In this version, objects represent entities and

behaviors, and design patterns such as the Singleton pattern and the Strategy pattern may be

applied where appropriate.

3.4 Selection of Performance Metrics

Performance metrics are carefully chosen to assess the efficiency and scalability of both

program versions. Key metrics include average response time, min and max response time,,

standard deviation from average response time, throughput under varying input sizes and user

loads. These metrics provide valuable insights into the runtime behavior and resource

utilization of the programs.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1071

GSJ© 2024
www.globalscientificjournal.com

3.5 Choice of Programming Languages, Tools, and Platforms
For development, the Java programming language is selected due to its platform independence,

robustness, and extensive standard libraries [3]. The Apache NetBeans integrated development

environment (IDE) is employed for its comprehensive support for Java development, offering

features such as code editing, debugging, and project management [4]. Additionally, Apache

JMeter is utilized for performance testing and evaluation, thanks to its versatility and

extensibility in simulating user loads and measuring performance metrics. Apache JMeter, a

java-based application can be used as a load testing tool for analyzing and measuring the

performance of a variety of services and applications. JMeter can be used as a unit-test tool for

JDBC database connections, FTP, LDAP, web services, JMS, HTTP, generic TCP connections

and OS-native processes. Apache JMeter requires Java 8.

3.6 Experimental Setup
The experimental setup involves configuring test scenarios to simulate various user loads and

input data sizes. Test cases are executed using Apache JMeter, and performance metrics are

measured and recorded. The experiments are conducted on a standard desktop workstation with

sufficient computing resources to ensure reliable and reproducible results.

The aim of the experiments is to evaluate the performance of functional-oriented program

design and object-orinted program design using te case study of Average Score program.

The program was written using Java programming with Apache NetBeans 12.2. All

experiments have been carried out on the same computation platform, which is a Windows 10

running on a SAMSUNG Laptop with an Intel(R) CORE(TM) i7-3630QM at 2.40GHZ, with

8GB memory and 1TB swap space on the hard disk. The Apache JMeter settings for the

experiments are shown in Table 1.

Table 1. Parameters in JMeter used for the experiments

Settings Values

No. of requests 1000

No. of threads/users 100

Ramp-up period 10

Loop count 10

Array size [10, 10]

The procedure for this experiment is as follows:

1. Download and install JMeter on your computer

2. Open NetBeans IDE and compile the Java program written implement the Average Score

program using functional-oriented program design and object-oriented program design.

3. Copy the compiled java program (JAR file) to a chosen folder on the computer -

…/JMETERFILES/

4. Start JMeter by opening the folder that contains Apache JMeter. Click on jmeter.bat which

can be found in the following path: …/bin/jmeter.bat

5. Setup JMeter and include the BeanShell sampler.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1072

GSJ© 2024
www.globalscientificjournal.com

6. Browse to the JAR from form the ThreadGroup

Figure 1. JMeter Test plan showing added jar file.

6. Run JMeter to test the program.

The custom method in the Java program has to be executed in JMeter. The BeanShell sampler

for the object-oriented implementation of the Average Score program looks as follows (see

Figure 2):

import AverageScore.Averagescore; // import our package.java file

Averagescore score = new Averagescore(); // create new instance of our TestClass class

String [][] result = score.averageScoreOOP(10, 10); // testing our method

// Display the results

System.out.println("Student\tAverage Score\tGrade");

 for (int i = 0; i < result.length; i++) {

 for (int j = 0; j < result[i].length; j++) {

 System.out.print(result[i][j] + "\t\t");

 }

 System.out.println();

 }

Figure 2. Source code for Beanshell sampler

4. Result

This section present the preliminary results of the performance testing and thereafter a more

detailed experimental results of the performance testing under varying conditions.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1073

GSJ© 2024
www.globalscientificjournal.com

4.1 Preliminary Result

This section presents the preliminary results of performance testing of the two version of the

Average score program- the first implemented using the functiona-oriented program design

and the second implemented using the object –oriented program design.

Results of the The table below (Table 2) shows the results of the performance testing to

compare the performance of a functional-oriented and object-oriented program design using

the implementation of the Average Score program.

Table 2. Graph Results from JMeter

Parameters Functional-oriented program

design (FoP)

Object-oriented program design

(OoP)

No. of samples 1000 1000

Average 132 16

Median 122 2

Deviation 57 27

Throughput 5,677.517/minute 6048.387/minute

Table 3 shows the combination of the Summary report from JMeter in a tabular form. Te

summary report contains important metrics such as average response time, max, min response

time, deviation and throughput.

Table 3. Summary Report from JMeter

Parameters Functional-oriented program

design (FoP)

Object-oriented program design

(OoP)

No. of samples 1000 1000

Average 132 16

Median 122 2

90% line 208 59

95% line 235 75

99% line 319 109

Min 1 3

Max 233 440

Std. Dev 27.60 57.72

Throughput 100.8/minute 94.6/minute

To analyze the performance of the two version of the program design – functional-rinted

program design and object-orinted program design, we focused on two two parameters -

throughput and deviation.

Throughput

Throughput represents the ability of the program to handle a heavy load. The higher the

throughput is, the better is the program performance. The results in Table 3 shows that the

throughput of Average Score program (OoP) is 100.8/minute while the throughput of Average

Score program (FoP) is 94.6/minute. This means that Average Score program (FoP) can handle

100.8 requests per minute. This value is higher that that of Average Score program (OoP)

which can handle 94.6 request per minute. The conclusion drawn form this results is that

Average Score program (FoP) has a performance than Average Score program (OoP).

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1074

GSJ© 2024
www.globalscientificjournal.com

Response Time

Response time (or execution time) is the elapsed time from the moment when a given request

is sent to the server until the moment when the last bit of information has returned to the client.

There are three response time related metrics in JMeter that provide information for comparing

the performance of functional-orinted design and object-oriented design. These metrics include

average, min and max. . Average is the average time taken by all the samples to execute a

specific label. The lower the better. Min is the shortest time taken by a sample for specific

label. Max is the longest time taken by a sample for specific label. In our case, the average

response time for Average Score (FoP) program is 132 while the average response time for

AverageScore (OoP) program is 16. If we look at the results, it means that the Max and Min

value for the Average Score (FoP) program then, out of 1000 samples, the shortest and longest

response time that one of the samples had was 1and 233 seconds respoectively. Also, if we

look at the results, it means that the Max and Min value for the Average Score (OoP) program

then, out of 1000 samples, the shortest and longest response time that one of the samples had

was 3 and 440 seconds respoectively. These values for the response time related metrics shows

that the implementation of the Average Score program in a functional-oriented program design

is significantly faster that the implementation of the Average Score program in an object-object

program design.

Deviation

The deviation it indicates the deviation from the average. The smaller the better. The results

above shows that the deviation of Average Score program (FoP) is 27.6 which is much lower,

in fact by more than 100% than that of Average Score program (OoP) which is 57.72. This

results means that the performance of Average Score program (FoP) is more than that of

Average Score program (OoP). The logical conclusion from these results is that the

performance of the Avrage Score program implemented using the functional-oriented program

design is better that the performance of the Average Score program implemented using the

Object –orinted program design.

4.2 Experimatental results

In this study, three experiments were performed to evaluate the performance of the above

program. To measure and compare the performance of functional-orinted and object-oriented

program desing, JMeter was configured to simulate three different scenarios.

large instant load by: (i) increasing the number of requests using the thread count and loop

count (ii) increasing the size of the requests by increasing the dimension of the array that

contains the score; (iii) increasing the speed at which the requests are sent by reducing the

ramp-up period so that all the requests are sent faster. Sample screeshots of the JMeter results

csn be seen in Appendix.

Experiment 1: Effect of increasing the number of users/request

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1075

GSJ© 2024
www.globalscientificjournal.com

This experiment entails increasing the number of users/requests by increasing the number of

times the same operation is performed using the thread count and loop count. The results are

shown in Table 4 and Table 5.

Table 4. Summary Report from JMeter for Object-oriented design of Average Score

program

No. of

samples

Average Min Max Dev Throughput

(per sec.)

1000 524 12 1481 265.13 66.7

5000 6761 59 13647 1759.83 64.6

10000 13804 62 23416 296967 63.8

15000 18564 13 32631 2972.36 76.4

20000 27149 442 43591 4625.37 68.5

25000 31579 1185 58346 3382.34 75.4

Table 5. Summary Report from JMeter for Functional-oriented design of Average Score

program

No. of

samples

Average Min Max Dev Throughput

(per sec.)

1000 89 8 295 48.91 93.7

5000 4944 12 11027 1248.94 88.6

10000 11670 12 24550 2767.48 79

15000 17438 173 37640 3687.85 82.6

20000 28672 10 90724 8297.55 64.8

25000 25008 8 48733 3837.49 96.8

Experiment 2: Effect of increasing the size of the request

Increasing the size of the requests by increasing the number of elements in the array. That is,

the array size. This is done by increasing the dimensions of the arrays, for example, raising the

number of rows from students (that is, rows) and courses (that is, column) from 10 to 100.

The settings used for the experiment is shown in Table 1. Based on this settings, a total of

10000 samples will be sent by JMeter. The size of the request is calculated in terms of the array

size which has an impact on the performance of the program. For example, this settings will be

used to run the two versions of the program . The results are shown in Table 6 and Table 7.

Table 6. Summary Report from JMeter for Object-oriented design of Average Score

program

Array size

(no. of values

in array

Average Min Max Dev Throughput

(per sec.)

2500 277167 164268 673021 119607.36 3.6

1600 134368 46192 250080 6498.90 7.3

900 87038 31053 162780 12948.26 11.3

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1076

GSJ© 2024
www.globalscientificjournal.com

400 41615 478 82739 6784.32 23.3

100 13804 62 23416 296967 63.8

Table 7. Summary Report from JMeter for functional-oriented design of Average Score

program

Array size

(no. of values

in array

Average Min Max Dev Throughput

(per sec.)

2500 218785 185 1474944 53782.20 4.5

1600 117270 6244 233491 21278.69 8.5

900 70554 242 141128 13147.06 14

400 33697 183 64720 6188.34 29.1

100 10414 13 20548 1951.84 90.5

Experiment 3: Effect of increasing the speed at which request are sent (ramp-up period)

This experiments is carried out to show the effect of increasing the speed at which the requests

are sent by reducing the ramp-up period, so that all the requests are sent faster. The ramp-up

period is reduced from 100 seconds to 0 seconds.

The dimension of the array that contains the values is [10, 10]. This means that there are total

of 100 scores will be used for the average score program. Numbers of users is 1000. Total

number of samples is 10000. The results are shown in Table 8 and Table 9.

Table 8. Summary Report from JMeter for object-oriented design of Average Score

program for increasing speed at which request are sent.

Ramp-up

period(sec)

Average Min Max Dev Throughput

(per sec.)

100 2116 13 6410 1101.39 83.2

80 4141 10 11110 2061.60 82.6

60 6223 11 13999 2838.78 82

40 8079 10 16670 2956.99 82.9

20 10650 12 18242 2889.53 79.1

0 11288 29 19004 1202.83 85.1

Table 9. Summary Report from JMeter for functional-oriented design of Average Score

program for increasing speed at which request are sent.

Ramp-up

period(sec)

Average Min Max Dev Throughput

(per sec.)

100 3831 6 10435 1119.51 78.9

80 6506 27 16823 2160.67 77.3

60 5636 9 14058 2544.23 88.2

40 11329 16 26251 3114.37 69.7

20 12989 8 34630 4078.76 67.6

0 11242 10 27788 3096.70 85.6

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1077

GSJ© 2024
www.globalscientificjournal.com

5. Discussion

This section presents the interpretation and discussion of the results.

5.1 Experiment 1: Impact of Increasing the number of users/requests
Descriptive Statistics

(1) Object-Oriented Design (OOD)

The average response time ranges from 524 ms to 31,579 ms with a mean of 16,396.83 ms.

The minimum response time varies from 12 ms to 1,185 ms, and the maximum response time

varies from 1,481 ms to 58,346 ms. The standard deviation ranges widely from 265.13 ms to

296,967 ms, indicating variable response times under higher loads. The throughput averages at

69.23 requests per second, fluctuating between 63.8 and 76.4 requests per second.

(2) Functional-Oriented Design (FOD)

The average response time ranges from ranges from 89 ms to 28,672 ms with a mean of

14,636.83 ms. The minimum response time is extremely low, from 8 ms to 173 ms. The

maximum response time is much wider range from 295 ms to 90,724 ms. The standard

deviation is smaller deviations at lower sample sizes but significant increases under heavier

loads, from 48.91 ms to 8,297.55 ms. The throughput avverages at 84.25 requests per second,

significantly higher, ranging from 64.8 to 96.8 requests per second.

The FOD shows lower average response times at smaller sample sizes and generally higher

throughput, suggesting better performance under varied loads. However, the variability (as

shown by standard deviation) and maximum response times increase considerably under higher

loads, indicating potential stability issues.

Visual Analysis

The plots above illustrate the performance metrics for both the Object-Oriented Design (OOD)

and Functional-Oriented Design (FOD) under varying loads in Experiment 1:

The Object-Oriented Design shows a steep increase in average response time as the number of

samples increases, which is expected under higher loads. However, the variability also

increases significantly, particularly noticeable at 10,000 and 15,000 samples. The Functional-

Oriented Design generally maintains a lower average response time across all sample sizes

compared to OOD, although it experiences a sharp rise at 20,000 samples before dropping at

25,000 samples. This could indicate more efficient handling at specific thresholds or potential

measurement variability (see Figure 3).

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1078

GSJ© 2024
www.globalscientificjournal.com

Figure 3. Average response time for experiment 1

The throughput for OOD remains relatively stable but shows a dip in efficiency at higher

sample sizes before increasing slightly at 15,000 and then again at 25,000 samples. FOD starts

with higher throughput at 1,000 samples and maintains higher throughput across most sample

sizes, peaking significantly at 25,000 samples. This suggests that FOD might be more efficient

in processing higher loads compared to OOD (see figure 4).

Figure 4. Throughput for experiment 1

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1079

GSJ© 2024
www.globalscientificjournal.com

Statistical Testing

The paired t-tests is conducted for the average response times and throughputs for both designs

across the experiment settings, given the visual trends and the importance of confirming if the

differences are statistically significant. The statistical testing will assess whether the

differences observed are statistically significant, which would support conclusions about each

design's performance efficiency.

Paired T-Test for Average Response Time

The p-value is 0.1701, which is greater than the typical alpha level of 0.05, indicating that there

is no statistically significant difference in the average response times between the Object-

Oriented Design (OOD) and Functional-Oriented Design (FOD) across different sample sizes

in Experiment 1.

Paired T-Test for Throughput

The p-value is 0.0261 which is less than 0.05, suggesting that there is a statistically significant

difference in throughput between OOD and FOD. This implies that the differences in

throughput observed in the visual analysis are statistically significant, supporting the

conclusion that FOD may handle higher loads more efficiently than OOD.

5.2 Experiment 2: Impact of Increasing the Size of the Request
This experiment involves increasing the size of the requests by altering the number of elements

in the array, thus assessing the impact of request complexity on the performance of the two

program designs (Object-oriented and Functional-oriented).

Descriptive Statistics

(1) Object-Oriented Design (OOD)

The average response time ranges widely from 13,804 ms to 277,167 ms with a mean of about

110,798 ms. The minimum and maximum response times shows substantial variability from a

low of 62 ms up to 673,021 ms. The standard deviation indicates significant variability,

especially at higher array sizes. The throughput varies from 3.6 to 63.8 requests per second,

showing improved throughput as the complexity decreases (smaller array sizes).

(2) Functional-Oriented Design (FOD)

The average response time also covers a broad range, from 10,414 ms to 218,785 ms, averaging

about 90,144 ms. The minimum and maximum response times ranges from 13 ms to a very

high 1,474,944 ms, suggesting substantial fluctuations under different conditions. The standard

deviation reflects varied response consistency, particularly at higher array sizes. The

throughput shows a general increase with decreasing array size, peaking at 90.5 requests per

second for the smallest array.

Visual Analysis

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1080

GSJ© 2024
www.globalscientificjournal.com

The plots demonstrate the impact of array size on both average response time and throughput

(see Figure 5 and Figure 6).

Figure 5. Average Response Time for Experiment 2

Average Response Time: Both designs show increased response times with larger arrays, but

OOD exhibits generally higher response times across most sizes. FOD seems to manage larger

data sizes more efficiently.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1081

GSJ© 2024
www.globalscientificjournal.com

Figure 6. Throughput for Experiment 2

Throughput: FOD consistently outperforms OOD in throughput as array sizes decrease,

showcasing better scalability and efficiency.

Statistical Testing

Given these observations, a statistical comparison using paired t-tests will clarify if these

differences are statistically significant across array sizes. This experiment will:

 evaluate if the differences in average response times between designs are significant.

 determinine if throughput differences are statistically significant.

Paired T-Test for Average Response Time

The p-value is 0.1023, which is greater than 0.05, indicating that there is no statistically

significant difference in average response times between the Object-Oriented Design (OOD)

and Functional-Oriented Design (FOD) across different array sizes. Despite visual trends

suggesting differences, they are not statistically significant.

Paired T-Test for Throughput

The p-value is 0.2016, which is greater than 0.05, suggesting that there is no statistically

significant difference in throughput between OOD and FOD under varying array sizes.

Although FOD appears visually to handle larger arrays more efficiently in terms of throughput,

this difference is not statistically significant across the sampled conditions.

5.3 Experiment 3: Impact of Increasing the Speed at Which Requests are Sent

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1082

GSJ© 2024
www.globalscientificjournal.com

Descriptive Statistics

(1) Object-Oriented Design (OOD)

The average response time ranges from 2116 ms to 11288 ms with a mean of about 7082.83

ms. The minimum and maximum response times shows substantial variability from a low of

10 ms up to 19004 ms. The standard deviation from average response time varies from 1101.39

to 2956.99. The mean is approximately 2175 ms, reflecting average variability in response

times, and the standard deviation is about 857 ms, indicating consistency in the system's

variability or stability. The throughput varies from 79.1 to 85.1 requests per second. The mean

of the throughput is approximately 82.48, showing how many requests the system can handle

on average per second. The standard Deviation of the throughput is aout 1.96, very low, which

indicates that throughput is relatively stable across different ramp-up periods.

These statistics suggest that while there is a wide range in response times, the throughput

remains relatively stable across different ramp-up periods, indicating that the system can

consistently handle a similar load even as the speed at which requests are sent varies

significantly. The high standard deviation in the average response time indicates that the

system's performance might be sensitive to changes in how quickly requests are processed,

potentially requiring optimization for more consistent response times.

(2) Functional-Oriented Design (FOD)

The average response time also covers a broad range, from 3831 ms to 12989 ms, averaging

about 8588.83 ms. The minimum and maximum response times ranges from 6 ms to a very

high 34630 ms, suggesting substantial fluctuations under different conditions. The standard

deviation ranges from 1119.51 to 4078.76. The mean of the standard deviation is around 2686

ms, indicating the average fluctuation or inconsistency in response times. The standard

deviation is approximately 1004 ms, which helps understand the consistency of response time

variability. The mean of throughput is approximately 77.88, illustrating the average number of

requests handled per second. The standard deviation is about 8.25, indicating variations in

throughput across different ramp-up settings. Throughput varies from 67.6 to 88.2 requests per

second, showing how the system's capacity to handle requests can change with ramp-up period

adjustments.

The data suggests that the functional-oriented design of the system experiences significant

variability in response times as the ramp-up period changes, potentially requiring optimizations

for more consistent performance. While the system can handle a relatively stable number of

requests (as indicated by the throughput mean and its standard deviation), the wide range in

response times (both minimum and maximum) highlights areas where performance might be

improved to handle dynamic load conditions more effectively.

Visual Analysis

Object-Oriented Design (OOD) shows a steady increase in average response time as the ramp-

up period decreases, indicating that faster request rates lead to longer processing times.

Functional-Oriented Design (FOD) also shows an increase in average response time as the

ramp-up period decreases, but there's notable variability, especially with a significant peak at

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1083

GSJ© 2024
www.globalscientificjournal.com

a ramp-up of 20 seconds. This might suggest some performance challenges under very rapid

request conditions (see Figure 7).

Figure 7. Average response time for experiment 3

The throughput for OOD remains relatively consistent across different ramp-up periods,

although there is a slight decrease as the ramp-up period shortens to 20 seconds, followed by

an increase at no ramp-up delay (see Figure 8).

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1084

GSJ© 2024
www.globalscientificjournal.com

Figure 8. Average response time for experiment 3

FOD generally maintains a similar pattern but shows more variability in throughput,

particularly at shorter ramp-up periods, where it occasionally outperforms or matches OOD.

Statistical Testing

The paired t-tests is performned to determine if these differences in response times and

throughput as the ramp-up period changes are statistically significant. These tests will help

validate whether the observed trends and differences have statistical support.

Paired T-Test for Average Response Time

The p-value is 0.0577, which is slightly above the typical alpha level of 0.05, indicating that

there is no statistically significant difference in average response times between the Object-

Oriented Design (OOD) and Functional-Oriented Design (FOD) as the ramp-up period

changes. This suggests that both designs are comparably affected by the speed at which

requests are sent, although there's a trend toward significance with additional data.

Paired T-Test for Throughput

The p-value is 0.1822, which is greater than 0.05, indicating that there is no statistically

significant difference in throughput between OOD and FOD under varying ramp-up conditions.

Both designs appear to handle the change in request dispatch speed with no significant

difference in their throughput capabilities.

5.4 Summary of Descriptive Statistics and Vsual Analysis

Across all three experiments, this study found some areas where functional-oriented design

showed better throughput and other areas where no significant differences were evident. These

insights could guide design choices depending on specific performance needs, such as

throughput optimization or response time stability under varying loads.

Experiment 1

There is no significant statistical difference in response times between the designs under

varying loads, indicating that both designs cope similarly with increased demand in terms of

processing time. There is a significant difference in throughput, with FOD generally

performing better, especially at higher sample sizes. This might suggest that for scenarios

where high throughput is critical, FOD could be more advantageous.

Experiment 2

The lack of statistically significant differences suggests that while there are observable trends

in the performance of OOD and FOD as array sizes vary, these differences are not robust

enough to be statistically confirmed under the conditions tested. Both designs exhibit similar

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1085

GSJ© 2024
www.globalscientificjournal.com

performance characteristics statistically, although visual analysis might suggest better

scalability in FOD.

 Experiment 3

The results suggest that both the Object-Oriented and Functional-Oriented designs are robust

to changes in the rate at which requests are sent, with no significant performance degradation

or improvement discernible between them in terms of statistical significance. This can be

reassuring when considering either design for environments where request rate variability is

expected.

5.5 Summary of Statistical Analysis

The statistical analysis results for Experiments 1, 2, and 3 is presented in a tabular form. Table

9 lists the p-values for both average response time and throughput across all experiments in

order to compare the statistical significance of the performance differences between the Object-

Oriented Design (OOD) and Functional-Oriented Design (FOD) across different testing

conditions.

Table 10 The p-values for both average response time and throughput across all experiments

Experiment Metric P-value (Average Response

Time)

P-value (Throughput)

1 User/Request

Load

0.1701 0.0261

2 Array Size 0.1023 0.2016

3 Ramp-Up Speed 0.0577 0.1822

These p-values are based on paired t-tests performed earlier:

Experiment 1: Increasing the number of users/requests.

Experiment 2: Increasing the size of the requests by increasing the array size.

Experiment 3: Increasing the speed at which requests are sent by reducing the ramp-up period.

A p-value below 0.05 typically indicates a statistically significant difference between the two

programming designs under those specific conditions. As observed, most experiments did not

yield significant differences except for the throughput in Experiment 1, suggesting that while

there might be observable performance differences, they aren't always statistically significant

under the conditions tested.

6. Conclusion and Future Work

The study presented the performance evaluation of a functional-oriented program design and

object-oriented program design using a case study of the Average Score program. The

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1086

GSJ© 2024
www.globalscientificjournal.com

performance evaluation revealed insights into the efficiency and scalability of functional-

oriented and object-oriented program designs. The analysis indicated similarities and

differences between the two implementations under various scenarios and provided further

understanding of the behavior and characteristics exhibited by each program design. The

section that follows discusses the implications of the study for software developers and

practitioners, and offers suggestions for future research in this domain.

6.1 Implications for Software Developers and Practitioners

The findings of this study have several implications for software developers and practitioners.

Firstly, they highlight the importance of considering programming paradigms and design

principles when developing software systems. Understanding the performance implications of

different design choices can aid developers in making informed decisions and optimizing

program efficiency.

Additionally, the study underscores the potential benefits and trade-offs associated with

functional-oriented and object-oriented approaches. While functional programming may offer

advantages in terms of clarity, modularity, and parallelism, object-oriented programming

excels in areas such as code reusability, maintainability, and extensibility. Software developers

can leverage these insights to select the most appropriate paradigm for their specific

requirements and constraints.

Furthermore, the study emphasizes the significance of performance testing and evaluation in

software development processes. By incorporating performance testing early in the

development lifecycle, developers can identify and address performance bottlenecks and

scalability issues proactively, leading to more robust and efficient software systems.

6.2 Suggestions for Future Research

There are several avenues for future research in the field of programming paradigms and

software performance. Firstly, additional studies could explore the performance characteristics

of other programming paradigms, such as imperative programming, declarative programming,

or aspect-oriented programming, and compare them with functional-oriented and object-

oriented approaches.

Moreover, research could investigate the impact of specific language features, optimization

techniques, and design patterns on program performance. By examining the effectiveness of

different optimization strategies and design choices in improving program efficiency,

developers can gain insights into best practices for software optimization.

Furthermore, longitudinal studies could investigate the long-term performance trends of

functional-oriented and object-oriented systems over extended periods of development and

maintenance. Understanding how program performance evolves over time can inform

strategies for software evolution and maintenance in real-world software projects.

Given these findings, further analysis could be conducted under different conditions or with

more data to confirm these trends. Additionally, examining other metrics such as CPU and

memory usage could provide a more comprehensive view of the overall efficiency and

suitability of each design under various operational scenarios.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1087

GSJ© 2024
www.globalscientificjournal.com

In conclusion, this study provides valuable insights into the performance implications of

functional-oriented and object-oriented program designs. By summarizing the findings,

discussing implications for software developers and practitioners, and suggesting avenues for

future research, this study contributes to the ongoing dialogue on programming paradigms and

software performance.

References

Apache JMeter. (n.d.). "Apache JMeter." Retrieved from https://jmeter.apache.org/

Arnold, K., & Gosling, J. (1996). "The Java Programming Language." Addison-Wesley.

Backus, J. (1978). "Can Programming Be Liberated from the von Neumann Style? A

Functional Style and Its Algebra of Programs." Communications of the ACM, 21(8), 613-641.

Bird, R., & Wadler, P. (1988). "Introduction to Functional Programming." Prentice Hall.

Bloch, J. (2008). "Effective Java." Addison-Wesley.

Garcia, A., Jones, P., & Steele, G. (2004). "Comparative Analysis of Haskell and Java for Web

Development." Journal of Functional and Logic Programming, 7(2), 1-18.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). "Design Patterns: Elements of

Reusable Object-Oriented Software." Addison-Wesley.

Gupta, S., Kumar, A., & Singh, V. (2014). "Functional Programming for Financial Modeling."

International Journal of Computer Applications, 103(12), 18-22.

Hughes, J. (1989). "Why Functional Programming Matters." The Computer Journal, 32(2), 98-

107.

Johnson, M., Smith, L., & Williams, K. (2017). "Impact of Design Patterns on Software

Performance." IEEE Transactions on Software Engineering, 43(5), 432-449.

Jones, D., & Brown, E. (2010). "Object-Oriented Programming Revisited: A Performance

Perspective." ACM Transactions on Programming Languages and Systems, 32(3), 1-24.

Lamport, L. (1986). "Concurrency and the Design of Concurrent Programs." ACM

Transactions on Programming Languages and Systems, 8(1), 32-57.

Lewis, J., & Chase, H. (2009). "Object-Oriented Design Patterns in Enterprise Software

Development." Journal of Enterprise Architecture, 5(3), 15-24.

Liang, Z., & Zhao, S. (2018). "Object-Oriented Design Patterns in Game Development."

Journal of Gaming & Virtual Worlds, 10(3), 201-217.

Martin, K., & Martin, R. (2011). "Object-Oriented Design Patterns." Addison-Wesley.

Martin, R., & Martin, K. (2009). "Functional Programming in Object-Oriented Languages."

O'Reilly Media.

Meyer, B. (1997). "Object-Oriented Software Construction." Prentice Hall.

Muller, P. A., & Reusner, R. (2007). "Performance Comparison of Functional and Object-

Oriented Implementations in Embedded Systems." Proceedings of the International

Conference on Embedded Software, 245-254.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1088

GSJ© 2024
www.globalscientificjournal.com

NetBeans. (n.d.). "Apache NetBeans." Retrieved from https://netbeans.apache.org/

Odersky, M., Spoon, L., & Venners, B. (2018). "Programming in Scala." Artima Inc.

Oracle. (n.d.). "The Java Tutorials." Retrieved from https://docs.oracle.com/javase/tutorial/

Scott, M. L., & Morrison, D. R. (2013). "Programming Language Pragmatics." Morgan

Kaufmann.

Smith, A., Jones, B., & Brown, C. (2005). "Performance Comparison of Functional and Object-

Oriented Implementations." Journal of Computer Science, 20(4), 345-362.

Thompson, S., Hughes, J., & Peyton Jones, S. (2003). "Report on the Programming Language

Haskell 98." ACM SIGPLAN Notices, 38(1), 26-139.

Thompson, S., & Peyton Jones, S. (2005). "Haskell vs. Java for Scientific Computing: A Case

Study." Proceedings of the ACM SIGPLAN Workshop on Scientific and Engineering

Computing, 1-10.

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1089

GSJ© 2024
www.globalscientificjournal.com

Appendix

Appendix A - Sample JMeter Test Results for Funtional-orinetd program design

Figure 9. Smaple Sumamry Report from JMeter Test result for OoP

Figure 10. Sample Graph result from JMeter Test result for OoP

Appendix B - Sample JMeter Test Results for Object-oriented program design

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1090

GSJ© 2024
www.globalscientificjournal.com

Figure 11. Sampel Sumamry Report from JMeter Test result for FoP

GSJ: Volume 12, Issue 4, April 2024
ISSN 2320-9186 1091

GSJ© 2024
www.globalscientificjournal.com

