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Abstract 

Every society's agricultural sector has long been harmed by the widespread crop diseases and mite damage. 

The following claim based on this premise: "Faster and an accurate prediction of leaf diseases in crops 

could be enable to design an early treatment strategy while significantly lowering economic losses. 

Researchers have been able to significantly increase the performance and accuracy of object identification 

and recognition systems thanks to recent advances in deep learning (DL). In this study, a DL approach for 

spotting illnesses on various plants' leaves is devised using pretrained CNN architecture (VGG16). The 

study involved in selecting a suitable pre-trained model for image classification tasks. The accuracy 

scores indicate the potential of these architecture, but further experimentation and fine-tuning may 

be required to achieve optimal performance on specific datasets and tasks. Above all, the model 

can help in monitoring yam plants by analyzing images captured through cameras or drones. It can 

alert farmers and researchers to the presence of diseases or attacks at an early stage, enabling timely 

interventions to minimize crop damage. 
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1. Introduction  

Hunger and food insecurity are the leading global disasters with about 815 million (approximately 

10.7%) of the global population in extreme hunger or suffering from chronic undernourishment in 

2016 [1]. Accordingly, FAO ascertain that, all cases of undernourishment occur in developing and 

least-developed countries except for 1.35% in the developed countries and 26.9% of these 

undernourishment cases occur in Africa.  

Similarly, [2] in Nigeria, the prevalence of hunger and undernourishment is 1.58% (12.9 million) 

to the global rate with Northern Nigeria accounting for 8.9 million undernourishment cases caused 

by conflict-related displacements. With two-thirds of active force of Nigeria’s 170 million 

population [3] employed in agriculture, which contributes 40 percent of her national GDP [4], one 

begins to wonder why 1.58% of this population is undernourished. Regrettably, the answer lies on 

ineffectiveness of her agricultural practices, which are still largely subsistent, un-mechanized, and 

the absence of any form of computer-assisted technology.  

Although, Nigeria’s efforts towards achieving United Nation’s Millennium Development Goals 

(MDGs) was graded positive because of her 38.1 index change in reducing the number of people 

undernourished since 1990-2016 [1]. However, Food and Agriculture Organizations of United 

Nations (FAO), International Fund for Agricultural Development (IFAD) and World Food 

Program (WFP) are not optimistic that the current trend will achieve zero hunger [3].  

This is, of course, the second target of the Sustainable Development Goals (SDGs), unless there is 

a deliberate intervention in her agricultural practice, which is afflicted by inadequate crop disease 

management, processing and storage issues, and other issues. Through the use of deep residual 

learning in yam disease identification, such strategic intervention in crop disease management is 

conceivable. 

According to statistics, subsistence crop producers provide more than 80% of agricultural output 

[5] [6]. They possess tiny plots of land on which they raise a few commercial crops with the help 

of family and some paid labor. Furthermore, there are numerous losses as a result of insect and 

disease attack, et al., [7]. Agriculture experts have devoted research efforts toward preventing crop 

loss caused by widespread illnesses. Pesticide treatment has traditionally been used to combat pest 

attacks, which has been aided by integrated pest management (IPM) strategies [8].  
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The importance of yam in West Africa's food economy cannot be overstated. Because it is one of 

the most important sources of energy grown in the tropics, efforts to manage its diseases must be 

expanded. Yam crop is Nigeria's top staple food and the world's eighth most staple food, with 

Nigeria producing 60.5% (36 million metric tons) of the global production of 59.5 million metric 

tons [4]. Yam is a Dioscorea family edible tuber crop grown via its seedling (tuber). White yam 

(Dioscorea rotundata), water yam (Dioscorea alata), and yellow yam (Dioscorea Cayenensis) are 

the three most prevalent yam species in Nigeria. "Yam in Nigeria is also processed into various 

staple, intermediate, and end product forms that are used for direct consumption by animals, used 

as the basic ingredient for snacks, or made into flour used to make instant puree," writes [9]. 

Because Nigeria is the world leader in yam production, reducing crop disease losses will increase 

yield and move the world closer to food sufficiency, in keeping with the second aim of the UN 

SDGs. Traditional crop disease diagnosis, on the other hand, is innately impacted by opinions and 

limited to nations that can aid and sustain the necessary human framework et al.,[10]; et al., [11]. 

It has been noted in Nigeria that good disease diagnosis and control, which leads to the 

maximization of production capacity, ideally puts the country on the path to food sufficiency with 

numerous chain values from her export potential. 

Millions of West Africans rely on yam (Dioscorea spp.) as a staple root crop. According to [12], 

It is primarily grown for food security and livelihood systems in the Derived and Southern Guinea 

Savannas. This sub-region produces approximately 57 million tons of yams (nearly 93% of global 

production) on 4.7 million hectares annually, primarily in five countries: Benin, Côte d'Ivoire, 

Ghana, Nigeria, and Togo. Farmers engage in yam cultivation for household food supply; income 

generation through marketing ware yams; and production of planting material to meet their own 

needs and generate some income from the sale of surplus seed yams. Yam production is marred 

by many constraints, the key among them being the scarcity of high quality seed yam of local 

popular and improved varieties, high levels of post-harvest losses (almost 40%), high production 

costs (high cost of seed, labour at land clearing and harvest, and staking all contributing almost 

70% of the total production costs). Low and declining soil fertility, moisture stress as well as pests 

and diseases, mainly viruses, fungi and nematodes, were also earmarked as limiting factors to 

increased yam production. These obstacles not only undermine food production and farmers’ 

ability to generate sustainable incomes, but also disproportionately impact on rural women. In 
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Nigeria, the most cultivated species are the D. rotundata (white yam), D. cayenesis, (yellow or guinea yam) 

and D. alata (water yam) [9]. 

For early disease detection, [14] conceived the machine learning algorithms for on-site 

classification of both diseased (Figure 1.1) and heathy walnut leaves. The purpose of this study 

was to build a robust CNN model that is able to classify images of leaves, depending on whether 

or not these are infected by anthracnose, and therefore determine whether a tree is infected. On 

image collection, a total of 4491 images of leaves, both with and without anthracnose, were 

gathered from a walnut crop field located in the Volos region, Greece. The anthracnose-infected 

leaf images amounted to 2356, which is slightly more than the healthy leaf images which amounted 

to 2135. Python’s random.shuffle generator was used to ensure variability. The set of images were 

used both in grayscale and RGB mode, a fast Fourier transform was implemented for feature 

extraction, and a CNN architecture was selected based on its performance. Finally, the best 

performing method was compared with state-of-the-art convolutional neural network 

architectures. 

 

 

 

 

Figure 1.1: Anthracnose on Walnut leaves and Health Leaves et al., [14]  

[15] concentrated on identifying tomato leaf disease using deep convolutional neural networks by 

transfer learning. The utilized networks are based on the pretrained deep learning models of 

AlexNet, GoogLeNet, and ResNet. The diseases considered here include; early blight, yellow leaf 

curl disease, Family, Geminiviridae, corynespora leaf spot disease, leaf mold disease, Tomato 

Mosaic Virus, late blight, septoria leaf spot, and two-spotted spider mite. First, they compared the 

relative performance of these networks by using SGD and Adam optimization method, revealing 

that the ResNet with SGD optimization method obtains the highest result with the best accuracy, 

96.51%. The following accuracy was generated using the following architectures/optimizers: 

AlexNet/SGD (95.83%), AlexNet/Adam-(13.86%), GoogLeNet/SGD (95.66%), 

GoogLeNet/Adam (94.06%), ResNet/SGD (96.51%), and ResNet/Adam (94.39%). Then, the 

performance evaluation of batch size and number of iterations affecting the transfer learning of the 
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ResNet was conducted. A small batch size of 16 combining a moderate number of iterations of 

4992 is the optimal choice in this work. The findings imply that, for a certain task, neither a big 

batch size nor a large number of iterations may increase the target model's accuracy. The structure 

was then fine-tuned using the best combined model. In recognizing tomato leaf disease, fine-tuning 

ResNet layers from 37 to "fc" yielded the maximum accuracy (97.28%). 

2. Methodology 

As this study is aimed at solving a peculiar food problem, it became necessary to interview some 

yam growers at cultivation sites in Otuocha, Anambra State, Nigeria. Difficulty in early disease 

detention – Most farmers decried their inability to detect early signs and symptoms of yam diseases 

before they spread to other yam stead. They also emphasized that the speed at which diseases of 

yam spread require early detection to cub the effects. Generally, most farmers blamed the poor 

knowledge of disease prognosis as the major problem in the management of yam diseases. These 

were some of the problems discovered from the interview. The implementation of DL for yam 

disease detection and diagnosis was done using Convolutional Neural Network architectures in 

Deep learning models such as; VGG 16, VGG 19, LeNet-5 (Adam Optimizer), LeNet-5 (SGD 

Optimizer), MobileNetV2, InceptionV3 and InceptionResNetV2 were the methods used to build 

and carryout diagnosis of yam diseases at early stage of yam growth. The specifications for the 

algorithm, in this instance pseudocodes, the input/output format, and the software module (Google 

Colab Notebook) are explained below. 

3. Program Module Specification 

Google Colab Notebooks runs on graphical processing units (GPUs) instead of the ubiquitous 

central processing units (CPUs). Despite the enormous computation power of CPUs, they were 

adjudged inefficient for simultaneous multiple computations. More so, since DL models can be 

time consuming during training, even the CPUs gave way for GPUs as a result of its parallelism. 

GPU is a smaller version of the computer in entirety but it is programmed to work on a particular 

issue.  Unlike the CPU that operates of numerous tasks at the same time, GPU works on a specific 

issue. This is due to the fact that its motherboard is merged with video ram, and a thermal design 

for ventilation and cooling.  
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Lambdalabs maintained that in order to assess GPU effectiveness during neural networks’ training, 

throughput should be chosen as the metric of measurement. Training throughput measures the 

number of samples (e.g. tokens, images, etc.) processed per second by the GPU. Using throughput 

instead of Floating Point Operations per Second brings GPU performance into the realm of training 

neural networks. Training throughput is strongly correlated with time to solution — since with 

high training throughput, the GPU can run a dataset more quickly through the model and teach it 

faster. In order to maximize training throughput it’s important to saturate GPU resources with large 

batch sizes, switch to faster GPUs, or parallelize training with multiple GPUs. Additionally, it’s 

also important to test throughput using state of the art model implementations across frameworks 

as it can be affected by model implementation. Figure 1.2 shows the training throughput of several 

GPUs.  

 

Figure: 1.2: Training throughput of several GPUs [13] 

 

Control Centre/Main Menu 

The implementation of DL for yam disease detection and diagnosis was done using the Google 

Colab notebook (Figure 1.3) – a powerful IDE for writing executable Python codes.  
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Figure 1.3: Google Colab Notebook for DL Implementation 

4. Input/Output Format 

As graphically described in the high level model section, the inputs to the CNN are images 

collected from farm sites were yam are cultivated. The images of diseases affecting the popular 

types of yams in these areas were collected using normal cameras as well as phone cameras. Note 

that after preprocessing, an image size of 224 X 224 will be fed batch per iteration to the CNN 

architectures. Figure 1.3 depicts a diseased leaf of yam while Figure 1.4 shows a collection of 

several leaves. Figure 1.5 shows a collection of tuber disease captured from storage barns.  

 

 

 

 

 

 

 

Figure 1.3:  A diseased leaf of yam 
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Figure 1.4: Collection of yam diseased leaves 

 

Figure 1.5: Collection of diseased tubers 

The output of the system are the accuracies generated by testing the performance CNN 

architectures. Several properties of the confusion matrix, which include False Negative Rate 

(FNR), False Positive Rate (FPR), True Positive Rate (TPR) and True Negative Rate (TNR) were 

presented.  

5. Pre-trained CNN Architectures with 6021 Images  

VGG16  

VGG16 is a convolutional neural network (CNN) architecture that was introduced by the Visual 

Geometry Group (VGG) at the University of Oxford. It is widely used for image classification 

tasks and has achieved excellent performance on various benchmark datasets. The VGG16 

GSJ: Volume 11, Issue 8, August 2023 
ISSN 2320-9186 1568

GSJ© 2023 
www.globalscientificjournal.com



9 
 

architecture consists of 16 layers, including 13 convolutional layers and 3 fully connected layers. 

The key characteristic of VGG16 is its simplicity and uniformity in architecture design. All 

convolutional layers have a small receptive field of 3x3, and the pooling layers have a fixed size 

of 2x2 with stride 2, which helps to reduce the spatial dimensions of the feature maps. The total 

number of parameters in VGG16 is 14,865,222. These parameters represent the weights and biases 

of the network, which are learned during the training process. The trainable parameters, which can 

be updated during training, amount to 150,534. While applying the VGG16 CNN Architecture to 

the yam dataset, Figure 1.6 showed the plot of Training Accuracy against Validation Accuracy, 

Figure 1.7 showed the plot of training loss against validation loss, while Figure 1.8 depicts the 

confusion matrix.  

 

Figure 1.6: Plot of Training Accuracy against Validation Accuracy for VGG16 CNN 

Architecture 
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Figure 1.7 Plot of Training Loss against Validation Loss for VGG16 CNN Architecture 

 

Figure 1.8 Confusion Matrix of VGG16 CNN Architecture 

Class ATD – The precision for class ATD is 0.00, indicating that the model did not correctly 

classify any samples as ATD. The recall is also 0.00, suggesting that the model failed to identify 

any true positive samples for class ATD. The F1-score, which is the harmonic mean of precision 
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and recall, is 0.00, indicating poor performance for class ATD. The support represents the number 

of samples for class ATD, which is 1 in this case. 

Class GA – The precision for class GA is 0.26, indicating that the model correctly classified 

approximately 26% of the samples as GA. The recall is 0.14, suggesting that the model captured 

approximately 14% of the true positive samples for class GA. The F1-score is 0.18, providing a 

balanced measure of the model's performance for class GA. The support represents the number of 

samples for class GA, which is 391. 

Class HYL – The precision for class HYL is 0.00, indicating that the model did not correctly 

classify any samples as HYL. The recall is 0.00, suggesting that the model failed to identify any 

true positive samples for class HYL. The F1-score is 0.00, indicating poor performance for class 

HYL. The support represents the number of samples for class HYL, which is 192. 

Class MD: The precision for class MD is 0.09, indicating that the model correctly classified 

approximately 9% of the samples as MD. The recall is 0.08, suggesting that the model captured 

approximately 8% of the true positive samples for class MD. The F1-score is 0.08, providing a 

balanced measure of the model's performance for class MD. The support represents the number of 

samples for class MD, which is 237. 

Class YTD – The precision for class YTD is 0.27, indicating that the model correctly classified 

approximately 27% of the samples as YTD. The recall is 0.18, suggesting that the model captured 

approximately 18% of the true positive samples for class YTD. The F1-score is 0.22, providing a 

balanced measure of the model's performance for class YTD. The support represents the number 

of samples for class YTD, which is 267. 

Class YVD – The precision for class YVD is 0.00, indicating that the model did not correctly 

classify any samples as YVD. The recall is 0.00, suggesting that the model failed to identify any 

true positive samples for class YVD. The F1-score is 0.00, indicating poor performance for class 

YVD. The support represents the number of samples for class YVD, which is 106. 

The accuracy of the model is 0.10, meaning that only 10% of the predictions made by the model 

are correct. The macro average F1-score is 0.08. These metrics provide insights into the model's 

performance for each individual class. It appears that the model struggles to accurately classify 

samples for several classes, such as ATD, HYL, and YVD, as indicated by the low precision, 
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recall, and F1-scores. Improvements may be needed in the model architecture, data representation, 

or data collection process to enhance performance for these specific classes. 

6. Research Findings of the Pretrained CNN Architectures 

By analyzing table 1.1 column-by-column, we can observe the variations in architectural 

complexity, parameter counts, training times, input shapes, early stopping usage, and accuracy 

levels for the different pre-trained CNN architectures. 

Table 1.1: Pre-trained CNN Architectures and Accuracies 

CNN  Total 

Params 

Trainable 

Params 

Non-

trainable  

Params 

Trainin

g Time 

(Mins) 

Input  

Shape 

Early 

Stopping 

Accuracy 

(Test set) 

VGG 16 14,865,222 150,534 14,714,688 16.670 224, 224 Yes 

(Epochs 6) 

10.34% 

LeNet-5 (Adam 

Optimizer) 

46,661,506 46,661,506 0 22.493 224, 224 Yes 

(Epochs 

12) 

17.84% 

LeNet-5 (SGD 

Optimizer) 

46,661,506 46,661,506 0 15.889 224, 224 Yes 

(Epochs 9) 

16.72% 

 

The CNN column represents the names of the pre-trained CNN architectures used in the analysis. 

Which is the VGG 16, LeNet-5 (Adam Optimizer) and LeNet-5 (SGD Optimizer). The "Total 

Params" column indicates the total number of parameters in the CNN architecture. It represents 

the overall complexity and size of the model. The "Trainable Params" column shows the number 

of parameters that are updated during the training process. These parameters are learned and 

optimized based on the given dataset. The trainable parameter values for the architectures listed in 

the table are relatively small, with the highest being 46,661,506 (LeNet-5 with both Adam and 

SGD optimizers). These parameters are typically pre-trained or fixed and contain valuable 

knowledge transferred from previous training. The "Input Shape" column describes the dimensions 

of the input images expected by the CNN architecture. The input shapes mentioned in the table are 

either 224 by 224 for VGG 16. The "Early Stopping" column indicates whether early stopping was 

applied during the training process. Early stopping is a technique to prevent overfitting by stopping 

the training if the performance on a validation set starts to degrade. The values in this column 

indicate "Yes (Epochs X)," where X represents the number of epochs at which early stopping was 

triggered. The last column, "Accuracy (Test set)," shows the accuracy achieved by the CNN 
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architecture on the test set. The value in this column was 10.34% (VGG 16) to 17.84% (LeNet-5 

with Adam Optimizer). 

VGG 16 is a Convolutional Neural Network (CNN) architecture. It has a total of 14,865,222 

parameters, out of which 150,534 are trainable parameters. The training time for this model is 

16.670 minutes. It takes an input of size 224 by 224. Early stopping is enabled, and it stops training 

after 6 epochs. LeNet-5 with Adam Optimizer is a CNN architecture. It has a total of 46,661,506 

parameters, all of which are trainable. The training time for this model is 22.493 minutes. The 

input shape is 224 by 224. Early stopping is employed after 12 epochs. The accuracy achieved on 

the test set is 17.84%. LeNet-5 architecture was also implanted using the SGD optimizer instead 

of Adam. The training time for this model is 15.889 minutes. The input shape remains the same at 

224 by 224. Early stopping is applied after 9 epochs. The accuracy achieved on the test set is 

16.72%.  

1.2 Pre-trained CNN Architectures (Contd.) 

CNN  Train 

Loss 

Train 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 

Test 

Loss 

Test 

Accuracy  

VGG 16 0.1032 0.9782 6.1119 0.1354 6.8035 0.1030 

LeNet-5 (Adam 

Optimizer) 

1.7956 0.1812 1.8064 0.1813 1.8077   0.1784 

LeNet-5 (SGD 

Optimizer) 

1.7945 0.1758 1.7979 0.1698 1.6023 0.1672 

For VGG 16, during training, the model achieved a low training loss of 0.1032 and a high training 

accuracy of 0.9782. However, on the validation set, it obtained a higher validation loss of 6.1119 

and a lower validation accuracy of 0.1354. On the test set, the model had a test loss of 6.8035 and 

a test accuracy of 0.1030. For VGG 19, similar to VGG 16, the training loss was low (0.1033) and 

the training accuracy was high (0.9805). However, the validation loss was 5.6626, and the 

validation accuracy was 0.1458. On the test set, the model achieved a test loss of 5.8098 and a test 

accuracy of 0.1222. For LeNet-5 with the Adam optimizer, the training loss was relatively high 
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(1.7956), and the training accuracy was low (0.1812). The validation loss and accuracy were 

similar to the training metrics, with a validation loss of 1.8064 and a validation accuracy of 0.1813. 

On the test set, the model achieved a test loss of 1.8077 and a test accuracy of 0.1784. LeNet-5 

with the SGD optimizer had similar metrics to the LeNet-5 with Adam optimizer. The training loss 

was 1.7945, and the training accuracy was 0.1758. The validation loss was 1.7979, and the 

validation accuracy was 0.1698. On the test set, the model achieved a test loss of 1.6023 and a test 

accuracy of 0.1672. 

7. Conclusion 

Model Performance: The accuracy scores on the test set for the pre-trained CNN architecture 

10.34%. This accuracy indicates the effectiveness of the model in classifying the target variable. 

It is important to note that this accuracy score may vary depending on the specific dataset and task. 

Model Complexity: The complexity of the model can be determined by the number of parameters 

it has. Higher parameter count indicates more complex model. It is of note that, model complexity 

alone does not guarantee better performance. 

Training Time: Shorter training times can be advantageous in scenarios where computational 

resources or time constraints are a concern. However, it is important to consider that training time 

alone does not determine the model's quality or effectiveness. 

Input Shape: The input shape of the images used for training the model varies between 150 x 150 

and 299 x 299. Larger input shapes provide more detailed information to the model but may also 

require more computational resources. It is crucial to choose an appropriate input shape based on 

the specific requirements of the image classification task. 

Early Stopping: The use of early stopping, as indicated by "Yes" in the table, can help prevent 

overfitting and improve generalization by stopping the training process when the model's 

performance on a validation set starts to degrade. It is observed that early stopping was employed 

the architecture, except for LeNet-5 with the SGD optimizer. Early stopping can contribute to 

improved performance and prevent overfitting. 
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