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Abstract: 

This paper will discuss Principal Component Analysis (PCA), which is used to reduce the 
dimensionality of a dataset. We achieve this reduction of dimensionality by transforming this dataset 
to a new dataset of uncorrelated principal components or variables, or features. PCA is a 
multivariate technique, and the Principal components are the Eigenvectors of the new data's 
covariance matrix. PCA is a potent tool for analyzing the data by finding the patterns in the data and 
reducing the number of dimensions without much loss of information. PCA is used in many 
applications like multivariate data analysis, image compression, face recognition, and many more. 

Introduction: 

Principal Component Analysis was first introduced by Pearson in 1901 and developed independently 
by Hotelling in 1933. Pearson states that his methods can be easily applied to numerical problems. 
Although he says that the calculations become challenging to carry for four or more variables, he 
suggests that they are still quite feasible. It is not possible to do PCA by hand unless we have four 
variables or fewer. But it is precisely for variables greater than four that PCA is most beneficial. To 
analyze the data by Principal Component Analysis, we have to be thorough in statistics and matrix 
algebra. The central idea of PCA is to identify correlations and patterns in a dataset of higher 
dimensions and reduce it to a significantly lower dimension without loss of any vital information. The 
need for the PCA technique is because the high dimensionality data is highly complex due to 
inconsistencies in the features that increase the computation time. Principal Components are given 
by an orthogonal linear transformation of a set of variables optimizing a specific algebraic criterion. 
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PCA is an unsupervised method in that it does not use the output information; the criterion to be 
maximized is the variance. 

Keywords:  Covariance matrix; Eigenvalues; and Eigenvectors; Projection; Multivariate; Variance. 

Steps involved in the PCA algorithm are as follows: 

1) Data Scaling 
2) Computing the covariance matrix 
3) Calculating Eigenvalues and Eigenvectors 
4) Computing the principal components 
5) Deriving the new dataset 

 

Mean:  We sum up all data points in our data set and divide by the number of data points that we 
have. Mean represents an average data point. Mean is also known as the expected value of a 
dataset. 

𝑬𝑬(𝑿𝑿) =  𝑿𝑿` =
𝟏𝟏
𝑵𝑵
∗�𝒙𝒙𝒊𝒊

𝑵𝑵

𝒊𝒊=𝟏𝟏

 

Where, 

X` is mean 

N is data points 

𝐸𝐸(𝑋𝑋) = Expected value 

∑ 𝒙𝒙𝒊𝒊𝑵𝑵
𝒊𝒊=𝟏𝟏   is the sum of data points 

Variance: The variance is used to characterize the spread of data points in a dataset. In one 
dimension, we can look at the average squared distance of a data point from the mean value of this 
dataset. Variance is denoted by σ2. 

                                                      𝑽𝑽𝑽𝑽𝑽𝑽(𝑿𝑿) = 𝟏𝟏
𝑵𝑵−𝟏𝟏

∗ ∑ (𝒙𝒙𝒊𝒊 − 𝑿𝑿′)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏  

In higher dimensional datasets, we check if there is a relationship between any dimensions. For this 
purpose, we use Covariance. Covariance is a similarity measure to find out how much the 
dimensions vary from the mean with respect to each other.  

 𝑪𝑪𝑪𝑪𝑪𝑪(𝑿𝑿,𝒀𝒀) =
𝟏𝟏

𝑵𝑵 − 𝟏𝟏
∗  � (𝒙𝒙𝒊𝒊 − 𝑿𝑿`)(𝒚𝒚𝒊𝒊 − 𝒀𝒀`)

𝑵𝑵

𝒊𝒊=𝟏𝟏
 

Where, 

X`, Y` is the mean of datasets X and Y, respectively. 

N is the number of observations. 

If the Covariance between X and Y is positive, then on average, the Y value increases if we increase X. 
And if the Covariance between X and Y is negative, then the Y value decreases if we increase X on 
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average. If the Covariance between X and Y is zero, X and Y have nothing to do with each other. They 
are uncorrelated. 

Standard deviation: is a measure of the amount of variation or dispersion of a set of values. The 
standard deviation of a set of observations of a series is the positive square root of the arithmetic 
mean of the squares of all the deviations from the arithmetic mean. Standard deviation is denoted 
by σ. 

                                                        𝑺𝑺.𝑫𝑫 =  � 𝟏𝟏
𝑵𝑵−𝟏𝟏

∗ ∑ (𝒙𝒙𝒊𝒊 − 𝑿𝑿`)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏   

Covariance Matrix: is a square matrix that expresses the correlation between different variables. For 
the n dimension dataset, the size of our covariance matrix becomes n*n, and each entry is the 
matrix is the result of calculating the Covariance between two separate dimensions. For the n 
dimension dataset, we calculate 

 𝑛𝑛!
(𝑛𝑛−2)∗2

 different covariance values. The covariance matrix defines both the spread (variance) and 

the orientation (Covariance) of our data. 

Properties of covariance matrix: 

1) The Covariance matrix is a Squared matrix 
2) Covariance matrix is a symmetric matrix i.e. 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑌𝑌,𝑋𝑋) 
3) Covariance matrix is  positive semidefinite matrix i.e. 𝐴𝐴𝛴𝛴𝐴𝐴𝑇𝑇 >= 0 

Covariance matrix for a ‘d’ dimensional dataset: 

Diagonal elements are the covariance value between one of the dimensions with itself. We write 
variance in place of Covariance on diagonal elements as 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑋𝑋) = 𝑐𝑐𝑣𝑣𝑣𝑣(𝑋𝑋). 

                                     𝛴𝛴 = 

�
𝑐𝑐𝑣𝑣𝑣𝑣(𝑥𝑥1,𝑥𝑥1) ⋯ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1,𝑥𝑥𝑑𝑑)

⋮ ⋱ ⋮
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑑𝑑 , 𝑥𝑥1) ⋯ 𝑐𝑐𝑣𝑣𝑣𝑣(𝑥𝑥𝑑𝑑 , 𝑥𝑥𝑑𝑑)

� 

Dot Product:  

The dot product between two vectors, x, and y is defined as: 

𝒙𝒙𝑻𝑻.𝒚𝒚 = ∑ 𝒙𝒙𝒊𝒊.𝒚𝒚𝒊𝒊𝑵𝑵
𝒊𝒊=𝟏𝟏   , 𝒙𝒙,𝒚𝒚 € 𝑹𝑹𝒏𝒏  

Two vectors are orthogonal if they are perpendicular. In mathematical notation: 

𝒙𝒙𝑻𝑻.𝒚𝒚 = 𝟎𝟎  

Length of x is defined as: 

�|𝒙𝒙|� =  �(𝒙𝒙𝑻𝑻.𝒙𝒙) =  ��𝒙𝒙𝒊𝒊 𝟐𝟐
𝑵𝑵

𝒊𝒊=𝟏𝟏

 

Distance between two vectors x and y is defined as: 
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𝒅𝒅(𝒙𝒙,𝒚𝒚) = �|𝒙𝒙 − 𝒚𝒚|� =  �(𝒙𝒙 − 𝒚𝒚)𝑻𝑻(𝒙𝒙 − 𝒚𝒚) 

The angle between vector x and y is defined as: 

𝒄𝒄𝑪𝑪𝒄𝒄 𝜶𝜶 =  
𝒙𝒙𝑻𝑻.𝒚𝒚

�|𝒙𝒙|� �|𝒚𝒚|�
 

Inner Product: 

An inner product is a generalization of the dot product. In a vector space, it is a way to multiply 
vectors together, with the result of this multiplication being a scalar. 

Let V be a vector space over R. An inner product (, ) is a function V × V → R with the following 
properties: 

1) Symmetric   (𝒖𝒖,𝑪𝑪) = (𝑪𝑪,𝒖𝒖) 
2) Positive semidefinite   (𝒖𝒖,𝒖𝒖) >= 0 
3) Bilinear   (𝜶𝜶(𝒖𝒖,𝑪𝑪),𝒘𝒘) = 𝜶𝜶(𝒖𝒖,𝑪𝑪) + (𝑪𝑪,𝒘𝒘) 

                                                      ∀ 𝒖𝒖,𝑪𝑪,𝒘𝒘 ∈  𝑽𝑽  

Length or Norm function via the inner product is defined as: 

||𝒖𝒖|| = �(𝒖𝒖,𝒖𝒖) 

Distance via the inner product is defined as: 

𝒅𝒅𝒊𝒊𝒄𝒄𝒅𝒅(𝒖𝒖,𝑪𝑪)  =  ||𝒖𝒖 − 𝑪𝑪|| = �(𝒖𝒖 − 𝑪𝑪,𝒖𝒖 − 𝑪𝑪) 

Angle via the inner product is defined as: 

𝑪𝑪𝑪𝑪𝒄𝒄 𝜶𝜶 =
(𝒖𝒖,𝑪𝑪)

�|𝒖𝒖|��|𝑪𝑪|�
 

Two vectors 𝑢𝑢, 𝑐𝑐 ∈  𝑉𝑉 are orthogonal, if and only if,    

(𝒖𝒖,𝑪𝑪) = 𝟎𝟎 

Orthogonality is defined with respect to the inner product. And vectors that are orthogonal with 
respect to one inner product do not have to be orthogonal with respect to another inner product. 

Eigenvalues and Eigenvectors: 

PCA uses Eigen decomposition of the covariance matrix in order to determine the principal 
components. Eigenvalues and Eigenvectors exist in pairs, i.e., every Eigenvector has a corresponding 
eigenvalue. For an n*n covariance matrix, we will have n Eigenvectors. Eigenvectors are used to 
understand variance (spread) in our dataset, i.e., in which variable we have more variance and the 
Eigenvector will be equal to the magnitude of that direction. If we sort the Eigenvalues in descending 
order, the Eigenvector associated with the first Eigenvalue gives us the first principal component 
(PC1), the second Eigenvector associated with the second Eigenvalue gives us the second principal 
component (PC2), and so on. 

Some properties of these eigenvectors: 
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• Eigenvectors of the covariance matrix are always orthogonal (perpendicular) to each other, and 
the data is expressed in terms of these orthogonal Eigenvectors.  

• When a linear transformation (multiply them with another vector) is performed on them, their 
direction does not change. 

• We are only concerned with the direction of the vector and not the length. Hence the length of 
the Eigenvectors is set to 1 so that all eigenvectors will have the same length. 

• Eigenvector of the covariance matrix ∑  satisfies the following equation- 

                                                            ∑𝒖𝒖 =  𝝀𝝀𝒖𝒖 

                     Where,  

                                   𝒖𝒖  is Eigenvector 

                                   𝝀𝝀  is Eigenvalue corresponding to that Eigenvector 

PROJECTION: 

The first principal component is the unique vector that maximizes the variance of the projection of 
the data onto that vector. Projection is an operator on two vectors. 

Projection of a vector ‘a’ on a vector ‘b’ is the vector in the direction of vector ‘b’ and lets call that 
‘cb’ where ‘c’ is scaler such that ‘a-cb’ is orthogonal to vector ‘b’. ‘a-cb’ is called the orthogonal 
projection of ‘a’ on ‘cb’. It's best understood graphically. 

 

 

 

 

 

Since ‘a-cb’ is orthogonal to vector ‘b’, their inner product is zero i.e. 

                                    (𝑽𝑽 − 𝒄𝒄𝒄𝒄,𝒄𝒄) = 𝟎𝟎 

                                    (𝑽𝑽,𝒄𝒄) − (𝒄𝒄𝒄𝒄,𝒄𝒄) = 𝟎𝟎 

                                    (𝑽𝑽,𝒄𝒄) − 𝒄𝒄(𝒄𝒄,𝒄𝒄) = 𝟎𝟎        

As, (𝒄𝒄,𝒄𝒄) =  𝒄𝒄𝑻𝑻𝒄𝒄 =  �|𝒄𝒄|�𝟐𝟐 when we take the inner product as dot product 

                                     𝒄𝒄 =
(𝑽𝑽,𝒄𝒄)

�|𝒄𝒄|�
𝟐𝟐

 

Where  �|𝒄𝒄|�𝟐𝟐 is the squared norm of vector b. 

Choosing the inner product to be the dot product 

 𝒄𝒄 = 𝒄𝒄𝑻𝑻𝑽𝑽

�|𝒄𝒄|�
𝟐𝟐

 

b 
a 

cb 

a-cb 
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If   ||𝑏𝑏|| = 1, then the coordinate ‘c’ of the projection = 𝒄𝒄𝑻𝑻𝑽𝑽 

So our projection of vector ‘a’ on vector ‘b’ = cb = bc 

                                                       =
𝒄𝒄 (𝑽𝑽,𝒄𝒄)
�|𝒄𝒄|�𝟐𝟐

 

                                                       =
𝒄𝒄𝒄𝒄𝑻𝑻𝑽𝑽

�|𝒄𝒄|�
𝟐𝟐 

We know that a projection is a linear mapping .Therefore, there exists a projection matrix 𝑃𝑃𝑐𝑐   such 
that 𝑐𝑐𝑏𝑏 =  𝑃𝑃𝑐𝑐 ∗ 𝑣𝑣 

                                                    𝒄𝒄𝒄𝒄 = 𝒄𝒄𝒄𝒄𝑻𝑻

�|𝒄𝒄|�
𝟐𝟐 ∗ 𝑽𝑽 

Therefore,    

                                                      𝒑𝒑𝒄𝒄 = 𝒄𝒄𝒄𝒄𝑻𝑻

�|𝒄𝒄|�
𝟐𝟐 

Where, 

𝒄𝒄𝒄𝒄𝑻𝑻  is a symmetric matrix and �|𝒄𝒄|�𝟐𝟐 is a scaler. 

Projection onto higher-dimensional subspaces 

First, we will look at the definition of vector basis. A vector basis of a vector space is defined as a 
subset of vectors that are linearly independent. 

Let B = {b1,b2,…}  be basis vector. Let ‘u’ be the plane spanned by basis vector. Let ‘a - cB’ denote the 
orthogonal projection of vector ‘a’ on ’cb’ where ‘cb’ is the projection of vector ‘a’ in the direction of 
vector basis B. 

 

 

 

 

 

 

The difference of vector ‘a’ with the projection of vector ‘a’ on vector ‘b’ is orthogonal to vector ‘b’ 
i.e. its inner product is zero 

                                                    (𝑽𝑽 − 𝒄𝒄𝒄𝒄𝒊𝒊,𝒄𝒄𝒊𝒊) = 𝟎𝟎 

 Where, 

bi = {b1,b2,…} 

                                                       (𝑽𝑽,𝒄𝒄𝒊𝒊)− (𝒄𝒄𝒄𝒄𝒊𝒊,𝒄𝒄𝒊𝒊) =  𝟎𝟎 

u b1 

… 

a 

b2 

a-cb 
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                                                        𝑽𝑽𝑻𝑻𝒄𝒄𝒊𝒊  −  𝒄𝒄𝑻𝑻𝒄𝒄𝒊𝒊
𝑻𝑻𝒄𝒄𝒊𝒊  =  𝟎𝟎 

                                                        𝑽𝑽𝑻𝑻𝑩𝑩− 𝒄𝒄𝑻𝑻𝑩𝑩𝑻𝑻𝑩𝑩 =  𝟎𝟎 

                                                        𝒄𝒄𝑻𝑻  =  𝑽𝑽𝑻𝑻𝑩𝑩(𝑩𝑩𝑻𝑻𝑩𝑩)−𝟏𝟏 

                                                                                        𝒄𝒄 =  (𝑩𝑩𝑻𝑻𝑩𝑩)−𝟏𝟏𝑩𝑩𝑻𝑻𝑽𝑽 

Matrix (𝑩𝑩𝑻𝑻𝑩𝑩)−𝟏𝟏𝑩𝑩𝑻𝑻 is also called the pseudo-inverse of B 

 Projection of vector ‘a’ on vector ‘b’ = 𝒄𝒄 ∗ 𝑩𝑩 

                                                                             =  (𝑩𝑩𝑻𝑻𝑩𝑩)−𝟏𝟏𝑩𝑩𝑻𝑻𝑽𝑽 ∗  𝑩𝑩 

 =  𝑩𝑩(𝑩𝑩𝑻𝑻𝑩𝑩)−𝟏𝟏𝑩𝑩𝑻𝑻𝑽𝑽  

Projection matrix pc solves 𝒑𝒑𝒄𝒄 ∗ 𝑽𝑽 =  𝒄𝒄𝑩𝑩 

Therefore,       𝒑𝒑𝒄𝒄  =  𝑩𝑩(𝑩𝑩𝑻𝑻𝑩𝑩)−𝟏𝟏𝑩𝑩𝑻𝑻 

                          𝒑𝒑𝒄𝒄  =
𝑩𝑩𝑩𝑩𝑻𝑻

𝑩𝑩𝑻𝑻𝑩𝑩
 

 We just looked at projections of vectors a onto a subspace U with basis vectors {b1, b2,. . . ,}. If this 
basis is an orthonormal basis vector, the projection equation simplifies to: 

                                                     𝒄𝒄𝑩𝑩 =  𝑩𝑩𝑩𝑩𝑻𝑻𝑽𝑽   

Since 𝑩𝑩 𝑻𝑻𝑩𝑩 =  𝑰𝑰       

 

 

 

 

Objectives of PCA Algorithm: 

1) Maximize the variance                                                        

                                                

 

 

 

 

Let x1,x2,…,xN be N data points in a k- dimensional data space, i.e., 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑘𝑘  . The N datapoints are 
mean-centered.  

xi 

p(xi) 
u 
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Projection of xi on 𝑢𝑢 is given by: 

                           𝒑𝒑(𝒙𝒙𝒊𝒊) =  �
𝒖𝒖𝒖𝒖𝑻𝑻

𝒖𝒖𝑻𝑻𝒖𝒖�
𝒙𝒙𝒊𝒊 

                    𝒑𝒑(𝒙𝒙𝒊𝒊) =  �𝒖𝒖
𝑻𝑻𝒙𝒙𝒊𝒊
𝒖𝒖𝑻𝑻𝒖𝒖

�𝒖𝒖 

 p(xi) = (uTxi)u 

Because u is a unit vector i.e. ||𝑢𝑢|| = 1 implies 𝒖𝒖𝑻𝑻𝒖𝒖 = 𝟏𝟏 

 𝒑𝒑(𝒙𝒙𝒊𝒊)  =  𝑽𝑽𝒊𝒊𝒖𝒖 

where 𝑽𝑽𝒊𝒊  =   𝒖𝒖𝑻𝑻𝒙𝒙𝒊𝒊 

Let x` denote the mean of N datapoints i.e. 𝒙𝒙` =  𝒎𝒎𝒎𝒎𝑽𝑽𝒏𝒏{𝒙𝒙𝒊𝒊}    𝒊𝒊 = 𝟏𝟏…𝑵𝑵 

We seek to find the unit vector u (optimal basis vector) that maximizes the projected variance of the 
datapoints.                              𝑢𝑢 ∈  𝑅𝑅𝑘𝑘  

Maximum variance along u is given by: 

  𝝈𝝈𝟐𝟐  = 𝟏𝟏
𝑵𝑵
∑ (𝑽𝑽𝒊𝒊 − 𝒙𝒙`)𝟐𝟐𝑵𝑵
𝒌𝒌=𝟏𝟏  

 𝝈𝝈𝟐𝟐  = 𝟏𝟏
𝑵𝑵
∑ �𝒖𝒖𝑻𝑻𝒙𝒙𝒊𝒊 − 𝒖𝒖𝑻𝑻𝒙𝒙`�𝟐𝟐𝑵𝑵
𝒌𝒌=𝟏𝟏  

 𝝈𝝈𝟐𝟐  = 𝟏𝟏
𝑵𝑵
∑ �𝒖𝒖𝑻𝑻𝒙𝒙𝒊𝒊�

𝟐𝟐𝑵𝑵
𝒌𝒌=𝟏𝟏  

As the data is mean centered. Hence 𝑥𝑥` = 0 

 𝝈𝝈𝟐𝟐  = 𝟏𝟏
𝑵𝑵
∑ 𝒖𝒖𝑻𝑻�𝒙𝒙𝒊𝒊𝒙𝒙𝒊𝒊𝑻𝑻�𝒖𝒖𝑵𝑵
𝒌𝒌=𝟏𝟏  

 𝝈𝝈𝟐𝟐  = 𝒖𝒖𝑻𝑻 𝟏𝟏
𝑵𝑵
∑ �𝒙𝒙𝒊𝒊𝒙𝒙𝒊𝒊𝑻𝑻�𝒖𝒖𝑵𝑵
𝒌𝒌=𝟏𝟏   

 𝝈𝝈𝟐𝟐  =  𝒖𝒖𝑻𝑻∑𝒖𝒖  

Where   ∑  is a k*k covariance matrix 

Our optimization problem becomes: 

Max 𝝈𝝈𝟐𝟐  =  𝒖𝒖𝑻𝑻∑𝒖𝒖  

s.t. 

       ||𝒖𝒖|| = 𝟏𝟏 implies 𝒖𝒖𝑻𝑻𝒖𝒖 = 𝟏𝟏 

Where 𝒖𝒖 ∈ 𝑹𝑹𝒌𝒌  

Using Lagrangian multiplier µ 

                                                   𝝈𝝈𝟐𝟐  =  𝒖𝒖𝑻𝑻∑𝒖𝒖 −  µ�𝟏𝟏 − 𝒖𝒖𝑻𝑻𝒖𝒖� 

Partial differentiating w.r.t. u and making it equal to zero 
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                                                   𝒅𝒅�𝝈𝝈
𝟐𝟐�

𝒅𝒅(𝒖𝒖) =  𝟎𝟎 

 
𝒅𝒅�𝒖𝒖𝑻𝑻∑𝒖𝒖 − µ�𝟏𝟏−𝒖𝒖𝑻𝑻𝒖𝒖��

𝒅𝒅(𝒖𝒖) =  𝟎𝟎 

 𝟐𝟐∑𝒖𝒖 −  𝟐𝟐 µ𝒖𝒖 = 𝟎𝟎 

 ∑𝒖𝒖 =  µ𝒖𝒖 

Thus, 

∑ = Covariance matrix 

𝑢𝑢 = Eigen Vector 

µ = Eigenvalue associated the Eigenvector u of the covariance matrix ∑ 

We maximize projected variance σ2, we thus choose the Largest Eigenvalue of the covariance matrix, 
and the corresponding Eigenvalue specifies the direction of the most variance, which is called as First 
Principal Component. 

2) Distance Minimization 

The direction that maximizes the projected variance is also the one that minimizes the distance. We 
seek to find the optimal basis unit vector u that minimizes the squared distance i.e. 

            𝒎𝒎𝒊𝒊𝒏𝒏 �  𝒅𝒅𝒊𝒊
𝟐𝟐

𝑵𝑵

𝒊𝒊=𝟏𝟏

  

 

                                                 

 

 

 

Let di be the distance between xi and the optimal basis vector u.  

We know that, 

                                                            ||𝒙𝒙𝒊𝒊||2  =  𝒑𝒑(𝒙𝒙𝒊𝒊)  +  𝒅𝒅𝒊𝒊
𝟐𝟐 

  𝒅𝒅𝒊𝒊
𝟐𝟐  =  ||𝒙𝒙𝒊𝒊||𝟐𝟐  −  𝒖𝒖𝑻𝑻𝒙𝒙𝒊𝒊 

 𝒅𝒅𝒊𝒊
𝟐𝟐  =  (𝒙𝒙𝒊𝒊𝑻𝑻𝒙𝒙𝒊𝒊  −  𝒖𝒖𝑻𝑻𝒙𝒙𝒊𝒊) 

Our optimization Problem becomes: 

u 

xi 

p(xi) 

di 
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𝑴𝑴𝒊𝒊𝒏𝒏 �(𝒙𝒙𝒊𝒊𝑻𝑻𝒙𝒙𝒊𝒊  −  𝒖𝒖𝑻𝑻𝒙𝒙𝒊𝒊)𝟐𝟐
𝑵𝑵

𝒊𝒊=𝟏𝟏

 

s.t. 

||𝒖𝒖|| = 𝟏𝟏  implies  𝒖𝒖𝑻𝑻𝒖𝒖 = 𝟏𝟏 

 

Methodology of Principal Component Analysis Algorithm: 

We will understand PCA by analysing a own designed dataset. 

                                    x y 
2.5 2.4 
0.5 0.7 
2.2 2.9 
1.9 2.2 
3.1 3.0 
2.3 2.7 
2 1.6 
 
1) Data Scaling 
Here, N = 7 
Now we find the mean of both the features and subtract the mean from each of the data 
dimension 
 
X` = (2.5 + 0.5 + 2.2 + 1.9 + 3.1 + 2.3 + 2)/7 
     = 14.5/7 
     = 2.0714 
Y` = (2.4 + 0.7 + 2.9 + 2.2 + 3.0 + 2.7 + 1.6)/7 
    = 15.5/7 
    = 2.2142 
 
X = Deviation of x from mean X` Y = Deviation of y from mean Y` 

0.4286 0.1858 
-1.5714 -1.5142 
0.1286 0.6858 

-0.1714 -0.0142 
1.0286 0.7858 
0.2286 0.4858 

-0.0714 -0.6142 
 
2) Computing the covariance matrix 

Now we will calculate the covariance matrix of the scaled data. 

Cov= [0.63571429, 0.58547619 
      0.58547619, 0.67142857] 
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Since the data is 2 dimensional, the size of covariance matrix will be 2×2. Also, both the features 
increase together as the non-diagonal elements in this covariance matrix are positive. 

3) Calculating Eigenvalues and Eigenvectors 

Since the covariance matrix is square, the eigenvectors and eigenvalues for the matrix can be 
calculated. 

Eigenvectors of the covariance matrix are: 

[[-0.7178043, -0.69624492], 
       [0.69624492, -0.7178043]] 
 
Eigenvalues associated with the above Eigenvalues of the covariance matrix are: 

[0.06782298, 1.23931988] 
 

4) Computing the principal components 

The eigenvector with the highest eigenvalue is the principle component of the data set.  

1.23931988  >  0.06782298.   

Hence Eigenvector [0.69624492, -0.7178043] which is associated with the Eigenvalue 1.23931988 will 
give us the First Principal Component. 

We will explain this with the concept of Explained Variance. The explained variance ratio is the 
percentage of variance that is attributed by each of the selected components.  

The explained variance of the two vectors is: 

[0.948113568624776, 0.05188643137522321] 

 
 
 
 
The sum of explained variances is always equal to 1. The first two principal components account for 
around 94% of the variance in the dataset.  

5) Deriving the new dataset 

Now we derive our new dataset from the chosen components (Eigenvectors). 

Final Data = Row Feature Vector × Row Data Adjust 

Where,  

Row Feature vector = matrix with the eigenvectors in the rows 

Row Data Adjust = matrix with data items are in each column, with each row holding a separate 
dimension. 
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PC (Principal component) 
-0.178289 
0.073704 
0.385175 
0.113145 
-0.191224 
0.174146 
-0.376382 

 

As expected, it only has a single dimension. Therefore, we have successfully reduced our two 
dimensional dataset to one dimension. 

 

Conclusion: 

The benefit of Principal Component Analysis is that we can find the larger variances associated with 
the first Principal Components and then a precipitous drop up. PCA is a useful statistical method to 
abstract special features from a data set with a high number of attributes. PCA is a non-parametric 
analysis technique which is its both advantage and disadvantage.  Performing PCA is quite simple. 
The appropriate way is to first convert the data to the appropriately centered polar coordinates and 
then compute PCA. We organize a data set as an m×n matrix; 

 Where m = number of measurement types or row 

                n = is the number of trials or column 

 Subtract the mean from each row. Calculate the eigenvectors of the Covariance. Compute the 
Principal Components using the eigenvectors and extract the new dataset. There are many 
interesting applications of PCA, out of which in today's life knowingly or unknowingly, multivariate 
data analysis and image compression are being used alternatively. 
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