
1

GSJ: Volume 10, Issue 2, February 2022, Online: ISSN 2320-9186

www.globalscientificjournal.com

REVIEW OF CONCURRENCY ISSUES USING

PESSIMISTIC CONTROL TECHNIQUE

ONUNGWE, H. O1 ., EGBONO F2., and EKE, O. B3.
Department of Computer Science

Faculty of Science

University of Port Harcourt

ABSTRACT

Concurrency is a situation where more than one processes are running at the same time. In such
scenarios, there are tendencies that there will be conflict in reading and writing of data items
Concurrency is associated with four major problems (P1 – P4): Unrepeated Read (P1),
Inconsistent Analysis (P2), Lost Update (P3) and Phantom Read (P4). A Concurrency Control
techniques need to be put in place to ensure that data items are serialize in a structured pattern to
avoid an adverse compromise on data integrity and consistency. Basically, there are two major
techniques of controlling Concurrency on Databases; Pessimistic and Optimistic Control
techniques. This paper is aimed at handling the Pessimistic technique. Pessimistic Control
Technique has two inherent problems; Frequent Lockouts and Deadlock Detection. This paper is
limited to the Deadlock Detection aspect of the problem. We explore the various methods of
handling Deadlock issues in Pessimistic Concurrency Control Technique, we paid particular
attention to Time stamping as one of the methods of handling Deadlock issues when dealing with
Unrepeated Read problem (P1) of Concurrency.

KEYWORDS: Concurrency, Pessimistic Control, Deadlock, Timestamping, Unrepeated
Read.

1.0 INTRODUCTION

Multiple processes need to be serialize in a

manner that there should not be conflict

issues of data integrity. Concurrency is a

property of a system representing the fact

that multiple activities are executed at the

same time. Concurrency and Parallelism are

used interchangeably most times.

Concurrency is a conceptual property of a

program, while parallelism is a runtime

state. Concurrency of a program depends on

the programming language and the way it is

coded, while parallelism depends on the

actual runtime environment. Given two tasks

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2250

GSJ© 2022
www.globalscientificjournal.com

http://www.globalscientificjournal.com/

2

to be executed concurrently, there are

several possible execution orders. They may

be performed sequentially (in any order),

alternately, or even simultaneously. Only

executing two different tasks simultaneously

yields true parallelism. In terms of

scheduling, parallelism can only be achieved

if the hardware architecture supports parallel

execution, like multi-core or multi-processor

systems do. A single-core machine will also

be able to execute multiple threads

concurrently, however it can never provide

true parallelism. According to Van

Roy (2004), a program having "several

independent activities, each of which

executes at its own pace". In addition, the

activities may perform some kind of

interaction among them. The concurrent

execution of activities can take place in

different environments, such as single-core

processors, multi-core processors, multi-

processors or even on multiple machines as

part of a distributed system. Yet, they all

share the same underlying challenges:

providing mechanisms to control the

different flows of execution via coordination

and synchronization, while ensuring

consistency. Logically, Concurrency Control

is an illusion that processes, transactions etc

are running the same time without any form

of conflict. Concurrency is a pertinent tool

in modern programming, especially with

the rise of multi-core architectures and the

increasing prevalence of distributed systems.

And like any other tool, it is important to

understand how and when to use it to have

efficiency. Morgan (2013) asserts that in

common thread, concurrency, applied

correctly, can improve the performance of a

program but the correct application may not

be readily apparent. He opined that

Concurrency is conceptually difficult, and

requires a different approach than sequential

programming. The purpose of his case study

is to investigate the advantages to executing

multiple tasks in parallel. To this end, the

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2251

GSJ© 2022
www.globalscientificjournal.com

3

concurrency in his case study was

introduced at a higher level of the program

than in previous case studies. Instead of

using concurrency to calculate the image

filters over multiple pixels within an image

simultaneously, concurrency was used to

apply the sequence of image filters to

multiple images at once. One limitation of

his work is that he did not explore the

effects of varying the number of available

processors. He presented results for the non

concurrent (i. e: single core) case, as well as

multiple concurrent implementations that

execute on four-cores. Extending the case

studies to utilize larger numbers of cores

would be an interesting avenue of

investigation, though would require

additional hardware.

Problems of Concurrency:

Some problems may occur in multi-user

environment when concurrent access to

database is allowed. These problems may

cause data stored in the multi-user DBMS to

be damaged or destroyed. Transactions

running concurrently may interfere with

each other, causing various problems. The

problems associated with concurrency are

clearly depicted in Figure 1.1.

Figure 1.1: Concurrency Problems in

Transaction

2.0 LITERATURE REVIEW

According to Gohil et al. (2013), Pessimistic

control mechanism prevents the execution of

concurrent transaction if any conflict is

detected between the concurrent transaction

in a distributed database system. This

control mechanism blocks an operation of a

transaction, if it may cause violation of the

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2252

GSJ© 2022
www.globalscientificjournal.com

4

rules, until the possibility of violation

disappears. Blocking operations is typically

involved with performance reduction. It

acquires locks when transactions start so

conflicts are not possible. It is useful if there

are a lot of updates and relatively high

chances of users trying to update data at the

same time. In pessimistic locking method

data to be updated is locked in advance.

Once the data to be updated has been

locked, the application can make the

required changes, and then commit or

rollback during which the lock is

automatically dropped. If anyone else

attempts to acquire a lock of the same data

during this process, they will be forced to

wait until the first transaction has completed

. This approach is called pessimistic because

it assumes that another transaction might

change the data between the read and the

update. In order to prevent that change from

happening and the data inconsistency that

would result the read statement locks the

data to prevent any other transaction from

changing.

Dag Nystrom et.al (2004) in their paper

presented a Concurrency Control Algorithm

that allows co-existence of soft real-time,

relational database transactions, and hard

real-time database pointer transactions in

real-time database management systems.

Their algorithm used traditional Pessimistic

Concurrency Control (i.e. locking) for soft

transactions and versioning for hard

transactions to allow them to execute

regardless of any database lock. They

provided a formal proof that the Algorithm

is deadlock free and formally verify that

transactions have atomic semantics. They

also presented an evaluation that

demonstrates significant benefits for both

soft and hard transactions when their

algorithm is used. Their proposed algorithm

is suited for resource-constrained safety

critical, real-time systems that have a mix of

hard real-time control applications and soft

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2253

GSJ© 2022
www.globalscientificjournal.com

5

real-time management, maintenance, or

user-interface applications

According to Gohil et al. (2013), Pessimistic

control mechanism prevents the execution of

concurrent transaction if any conflict is

detected between the concurrent transaction

in a distributed database system. This

control mechanism blocks an operation of a

transaction, if it may cause violation of the

rules, until the possibility of violation

disappears. Blocking operations is typically

involved with performance reduction. It

acquires locks when transactions start so

conflicts are not possible. It is useful if there

are a lot of updates and relatively high

chances of users trying to update data at the

same time. In pessimistic locking method

data to be updated is locked in advance.

Once the data to be updated has been

locked, the application can make the

required changes, and then commit or

rollback during which the lock is

automatically dropped. If anyone else

attempts to acquire a lock of the same data

during this process, they will be forced to

wait until the first transaction has completed

. This approach is called pessimistic because

it assumes that another transaction might

change the data between the read and the

update. In order to prevent that change from

happening and the data inconsistency that

would result the read statement locks the

data to prevent any other transaction from

changing.

The various techniques of Pessimistic

Control and the problems associated with

the various techniques are as shown in

Figure 1.2 and 1.3 respectively.

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2254

GSJ© 2022
www.globalscientificjournal.com

6

Figure 1.2 Pessimistic Control
Techniques

Figure 1.3 Problems of Pessimistic
Locking Techniques

A pessimistic locking technique suffers from

two major problems namely frequent

lockouts and deadlocks. The problem of

frequent lockout arises when a transaction

invoked by a user selects a record for

update, and executing the operations without

finishing or aborting the transaction. All

other users with their respective transaction

that need to update that record are forced to

wait until the user completes its transaction.

The problem of deadlock arises when

Transactions T1 and T2 are both updating

the database at the same time. Now suppose

transaction T1 locks a record and then

attempt to acquire a lock held by transaction

T2 who is waiting to obtain a lock held by

transaction T1. In this situation both

transactions goes in an infinite wait state

which is called deadlock. The main thrust

of this paper is to handle Deadlock issues in

Concurrency.

Handling Deadlock issues in Pessimistic
Locking Techniques:

Prerana Jain (2018) opined that in the

multiprogramming operating system, there

are a number of processing which fights for

a finite number of resources and sometimes

waiting process never gets a chance to

change its state because the resources for

which it is waiting are held by another

waiting process. He said that a set of a

process is called Deadlock when they are

waiting for the happening of an event which

is called by some another event in the same

set. There are different approaches in

handling Deadlock issues in Pessimistic

Locking Techniques of Concurrency

PROBLEMS OF PESSIMISTIC
LOCKING TECHNIQUES

Frequent Lockouts Deadlocks

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2255

GSJ© 2022
www.globalscientificjournal.com

7

Control. We are more concerned with the

Time Stamping Approach.

Timestamp-based concurrency control

algorithms use a transaction’s timestamp to

coordinate concurrent access to a data item

to ensure serializability. A timestamp is a

unique identifier given by DBMS to a

transaction that represents the transaction’s

start time. Some of timestamp based

concurrency control algorithms are: Basic

timestamp ordering algorithm, Conservative

timestamp ordering algorithm and

Multiversion algorithm based upon

timestamp ordering, these various

algorithms are depicted in Figure 1.4.

Timestamp of any transaction is determined

by the physical clock reading. But, in a

distributed system, any site’s local

physical/logical clock readings cannot be

used as global timestamps, since they are not

globally unique. So, a timestamp comprises

of a combination of site ID and that site’s

clock reading, (Makundi et. al. 2017).

Figure 1.3 Types of Time Stamp
Algorithms

Using Time Stamping to solve Unrepeated
Read Problem (P1) of Concurrency

Unrepeated Read problem (P1) occurs when

a transaction gets to read unrepeatedly i.e.

different values of the same variable in its

different read operations even when it has

not updated its value. In certain simple

cases it is possible to ensure that an

Time Stamp
Algorithm

Basic
Timestamp

Conservative
Timestamp

Multi-version
Timestamp

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2256

GSJ© 2022
www.globalscientificjournal.com

8

operation can be repeated without causing

any errors or inconsistencies. When deciding

how certain operations should be specified,

such as the form their arguments should

take, it may be possible to choose an

idempotent implementation. For example,

the repeatable method of writing a sequence

of bytes to the end of a file is to specify the

precise byte position at which the new bytes

should be written and make this an argument

of an 'append' operation. If an append

operation is relative to a system-maintained

pointer, the bytes could be written more than

once if the operation was repeated. It is not

always possible to achieve repeatable

operations. This point becomes more

important in distributed systems, when a

congested network may cause a reply

message saying 'operation done' to be

greatly delayed or lost. The invoker does not

know this and repeats the request when the

operation requested has already been carried

out. Unrepeatable Read occurs when T1

transaction wants to read Q data again, but

Q data just for once after reading is altered

by T2 transaction, therefore T1 transaction

cannot read the same amount of Q data

again and it is a critical problem.

Manuel (2000), worked on solving the

Phantom Problem by Predicative Optimistic

Concurrency Control. His Predicative

Optimistic Concurrency Control is used to

attack problems inherent in Predicate

Locking for detecting conflicts that actually

occurred between transactions. He divided

each transaction into three phases; Read,

Validation and Write phase. For each

transaction, two sets are maintained; a Read

and Write set. He compared the Predicative

Concurrency with other control method; the

Locking method. Our work shall attempt to

solve the Unrepeated Read (P1) problem

using the Hybrid Concurrency Control

approach unlike that of Manuel (2000) that

used only the Optimistic approach.

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2257

GSJ© 2022
www.globalscientificjournal.com

9

Related Work:

Timestamping after commit of time-varying

data in local and distributed environments

was studied by Salzberg (2010). In his

paper, he extends and refines that study in

several respects. While Salzberg is

concerned with timestamping the

transaction-time dimension, this paper also

considers time stamping in transaction time

of Inconsistent Analysis problem of

Concurrency. In Salzberg’s study, timeslice

queries are considered; this paper proceeds

to consider general queries in Inconsistent

Analysis. Finally, Salzberg assumes an

integrated DBMS architecture, which may

be extended to incorporate a new recovery

algorithm and as well as multidimensional

temporal indexes; in contrast, this paper

describes how timestamping

implementation techniques after commit

may be achieved, without necessitating any

changes to the underlying DBMS.

Finger et.el (2011) studied timestamping,

including the use of the validtime variable.

They took into consideration that the actual

execution of a transaction has a duration in

time, and they argue that the value should

remain constant within a transaction.

However, they rule out using the commit

time for timestamping the valid-time

dimension and instead suggest using the

start time or the time of the first update.

They showed that using the start time can

lead to appearing to be moving backwards in

time and in the case of using the time of the

first update that the serialization of

transactions can be violated. They suggested

ignoring the problem of time moving

backwards or making transactions

serializable on their start-times. This paper

takes the opposite approach, ruling out using

any value for now other than the commit

time. We show first that the problem of

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2258

GSJ© 2022
www.globalscientificjournal.com

10

moving backwards cannot be ignored

because it may also violate the isolation

principle. Second, we argue that transaction

executions cannot be serializable in the

order of their start times, if concurrency is

allowed. Finally, we show that using the

commit time, can solve the two problems

identified by Finger and McBrien. eight

extra attributes to each table.

3.0 MATERIALS AND METHODS

In this section, we investigate how to

prevent global deadlocks using Time Stamp

approach, which happens more often than

local deadlocks. Existing technologies for

global deadlock prevention are generally

based on sequential resource access. It is a

pessimistic static resource allocation scheme

that needs to exploit prior knowledge of

transaction access patterns.

Pre-check based approach for preventing

global deadlocks In service-oriented

environments, each business transaction

knows what resources it will request. So, it

is appropriate to make sure whether

resources needed by a transaction are

available or not before starting the

transaction.

 In the Pre-Check stage, the coordinator

delivers all the sub-transactions to

participants, and then these participants

communicate with resource managers to

check the state of resources. If these

resources are available, the participant will

hold them and at the same time return OK to

the coordinator. Otherwise, it will return a

failed message. After receiving OK

messages from all participants, the

coordinator will start the standard two-phase

commit. Our pre-check phase includes the

following three steps.

Step 1. Transaction delivery. After receiving

a transaction request, transaction manager

(TM) produces a unique root transaction ID,

which can be a function of current time to

distinguish starting time of transactions.

Next, TM divides the task into sub-

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2259

GSJ© 2022
www.globalscientificjournal.com

11

transactions and distributes them to different

sites which host specified services.

Step 2. Resource pre-check. Resource

allocation and local deadlock prevention..

The basic idea is that each global transaction

has to check and then hold all the necessary

resources if they are available at the

beginning of the transaction execution.

On receiving the pre-check instruction, each

participant begins to check all the needed

resources through their resource managers.

We used Time Stamp to lock the entire table

by ensuring that each transaction receives a

Unique TimeStamp (UTS). When the

system is locked, a unique counter is

incremented using a Scheduler.

4.0 CONCLUSION

Haven reviewed several literatures on

various approaches of resolving

Concurrency issues, we observed that

Timestamp approached is the best approach

of resolving the Unrepeated Read problem

(P1) of Concurrency issues. Our Time

Stamp approach used, was able to resolve

conflict in serialization and recoverability.

One can also explore using Timestamp to

resolve the Inconsistent Analysis problem

(P2) of Concurrency issues.

REFERENCES

Chase, D., and Lev, Y. (2005) Dynamic

circular work-stealing deque. In

Proceedings of the seventeenth

annual ACM symposium on

Parallelism in algorithms and

architectures (New York, NY,

USA, 2005), SPAA ’05, ACM,

pp. 21–28

Dag Nystrom, Mikael Nolin, Aleksandra

Tesanovic, Christer Norstrom

and Jorgen Hansson (2004)

Pessimistic Concurrency Control

and Versioning to support

Database Pointers in Real-time

Databases. Proceedings of the

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2260

GSJ© 2022
www.globalscientificjournal.com

12

12th 16th Euromicro Conference

on Real-Time Systems

(ECRTS’04) 1068-3070/04

$20.00 © 2004 IEEE

Felber, P., KORLAND, G., AND SHAVIT,

N. Deuce (2010): Noninvasive

concurrency with a Java STM. In

Electronic Proceedings of the

workshop on Programmability

Issues for Multi-Core Computers

(MULTIPROG) (2010), p. 10

pages.

Karmani, R. K., SHALI, A., AND AGHA,

G. (2009). Actor frameworks for

the JVM platform: a comparative

analysis. In Proceedings of the

7th International Conference on

Principles and Practice of

Programming in Java (New

York, NY, USA, 2009), PPPJ

’09, ACM, pp. 11–20.

M. Finger and P. McBrien. (2011). The

Semantics of ’Current-Time’ in

Temporal Databases. In 11th

Brazilian Symposium on

Databases, pp. 324–337,

Morgan Atkins (2013). Modern

Concurrency Technique: An

Exploration

Prerana Jain (2018). Deadlock and Method

for Handling Dealock

Salzberg B. (2010) Timestamping After

Commit. In Proceedings of the

Conference on Parallel and

Distributed Information Systems,

pp. 160–167.

Sonal Kanungo, Patel Z.S and Ruston D.M.

(2016). Comparison of

Concurrency Control and

Deadlock Handling in Different

OODBMS. An International

Journal of Engineering Research

and Technology (IJERT)

ISSN:2278-0181 Vol 5, Issue 05,

May 2016

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2261

GSJ© 2022
www.globalscientificjournal.com

13

 Stonebraker M. The Design of the Postgres

Storage System. In Proceedings

of VLDB Conference, pp. 289–

300, 1987.

 Stonebraker M., L. A. Rowe, and M.

Hirohama. The Implementation

of Postgres. IEEE Transaction on

Knowledge and Data

Engineering, 2(1):125–142,

March 1990

GSJ: Volume 10, Issue 2, February 2022
ISSN 2320-9186 2262

GSJ© 2022
www.globalscientificjournal.com

