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Abstract 

In multiple linear regression analysis, the ordinary least squares (OLS) method has been the most popular 
technique for estimating parameters of linear regression model due to its optimal properties. OLS 
estimator may fail when the assumption of independence is violated. This assumption can be violated 
when there is correlation between the exploratory variables. In this situation, the data is said to contain 
multicollinearity and eventually will mislead the inferential statistics. However, the problem becomes more 
complicated when there are abnormal observational data known as outliers. Multicollinearity and Outliers 
are two main problems. When multicollinearity exists, biased estimation technique Ridge Estimator are 
preferable to OLS. On the other hand, when outliers exist in the data, robust estimator like LTS Estimator, 
are preferred. To handle these two problems jointly, the study ussed Robust Ridge Regression estimator. 
This study aims to examine the performances of four estimators of multiple linear regression model with 
combined problems of multicollinearity and outliers. The performance of the four estimators, namely the 
Ordinary Least Squares (OLS), Ridge Regression (RIDGE), Least Trimmed Square (LTS) and a robust ridge 
regression estimator based on Least Trimmed Square estimator (RIDGE LTS) are compared using mean 
square error as criteria for assessment. For this purpose, a simulation data with p = 3; n = 25, 50,100; and 
full multicollinearity (r = 0.90, 0.95, 0.99) and outliers (0%, 20%) was used. The existence of 
multicollinearity was evaluated using VIF value. The empirical evidence shows that RIDGE LTS is the best 
among the four estimators for degree of multicollinearity and number of outliers and is more efficient 
because it has the smallest MSE than LTS and RIDGE in any samples sizes. 
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1.0 Introduction 

Multiple linear regression is a widely used statistical techniques in the study of relationship between a 

single response variable Y, and one or more explanatory variable(s)  𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝   using linear models. 

Ordinary Least Squares (OLS) is a method commonly used in estimating the parameters of linear 

regression models, it is said to be the Best Linear Unbiased Estimator (BLUE) when all the required 

assumptions are satisfied. However, in real life situations these assumptions are hardly satisfied thereby 

GSJ: Volume 9, Issue 12, December 2021 
ISSN 2320-9186 1505

GSJ© 2021 
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
mailto:tujjaniadamu@gmail.com
mailto:yusufabbakarm@gmail.com
mailto:adeniyiogunmola@mail.com
mailto:pndibal@unimaid.edu.ng


influencing parameter estimates negatively. The major problems faced in multiple linear regression 

analysis are the issues of multicollinearity and outliers are the two main problems. When multicollinearity 

exists, the OLS estimation is seriously affected, as such, unbiased estimation techniques such as Ridge 

(Hoerl and Kennard, 1970) and Liu (Liu, 1993) Estimators are preferable to Ordinary Least Square. On the 

other hand, when outliers exist in the data, robust estimators like M, MM, LTS and S Estimators, are 

preferred (Adegoke et al., 2016). Multiple linear regression model is commonly used to determine the 

best set of parameters of the linear model so that the predicted value of dependent variables approaches 

the real values (Fitrianto, A. and Yik, L.C., 2014). The assumption of independence of the predictor 

variables are normally violated in real life situation and predictor variables are found to be correlated. This 

inter-relation between the explanatory variables is called multicollinearity. Multicollinearity, or 

collinearity, is the existence of near linear relationships among the independent variables, its presence 

creates inaccurate estimates of the regression coefficients, inflate the standard errors of the regression 

coefficients, deflate the partial t-tests for the regression coefficients, give false, nonsignificant  and 

degrade the predictability of the model. The source of multicollinearity must be identified to be able to 

reduce its effect on the analysis and interpretation of the linear model. The ridge regression is a 

regression technique that allows for biased estimation of regression parameters that are quite close to 

the true values in the presence of correlated predictor variables in the model. All the various forms of the 

ridge regression techniques were meant to shrink the least square coefficients towards the origin of the 

parameter space and consequently reduce the mean square errors of estimates (Yahya and Olaif, 2014). 

Roozbeh et al. (2021) proposed a robust ridge test statistic which was used to improve the predictions in a 

regression model, they introduced robust ridge type estimator in the presence of multicollinearity and 

outliers which improves it by shrinking toward the origin to incorporate the information contained in the 

null-hypothesis. Zhang and Mahmud (2021) compare the ordinary least squares (OLS) regression and ridge 

regression procedures in dealing with multicollinearity data since it is well known that the LS method is 

extremely unreliable in parameter estimation while the independent variables are dependent 

(multicollinearity problem).  

When multicollinearity and outliers exist together in a data set, robust approach is suggested. The 

methods of ridge regression and robust estimator are combined to handle the problems jointly 

(Montgomery and Peck, 1982). This study investigates the efficiency of some estimators; these are ridge 

least trimmed square (RLTS), least trimmed square (LTS), and ridge regression (RR) in the presence of 

multicollinearity and outliers against ordinary least squares estimator (OLS) using Mean square error 

(MSE) as model’s assessment criteria for examining the performance of the estimators. This paper is 

organized as follows: methodology in Section 2 followed by simulation in Section 3, data analysis in 

Section 4 and the concluding remarks in the last section. 

2.0 Methodology 
The ordinary least squares (OLS) for estimating the parameters of a linear model, the least trimmed 

squares (LTS) which is a robust estimator of parameters in contaminated data and the ridge regression 

estimator were used followed by robust ridge estimator. 
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i) Ordinary Least Squares (OLS) 
Ordinary least square is a statistical technique used to estimate the parameters of a linear regression 

equation. The aim of this technique is to determine the line of best fit for the given data by minimizing the 

sum of squared errors. The standard regression model is represented by matrix notation of a multiple 

linear regression model:   

𝑌𝑌 = 𝑋𝑋𝑋𝑋 +  𝜀𝜀                                                                                                                                                                      (1) 

Note that both XꞋs and Y have been standardized. The OLS estimate of 𝛽𝛽 �  of β is obtained by minimizing the 

residual sum of squares as: 

  𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 =  (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑋𝑋                 (2) 

            𝑣𝑣𝑣𝑣𝑣𝑣�𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂� =  𝛿̂𝛿2(𝑋𝑋𝑇𝑇𝑋𝑋)−1                                                                       (3)  

where 𝜎𝜎�2 is the mean squares error. This estimator 𝛽̂𝛽 is unbiased and has a minimum variance. 

 
ii)  Ridge Regression Method 

The least-squares method gives weak estimates of the regression coefficients on non-orthogonal data 

(Hoerl and Kennard, 1970). Ridge regression estimator is a method that is more efficient than ordinary 

least squares when the data exhibit multicollinearity. The method works by adding a scalar ridge 

parameter which is called the biasing constant to the main diagonal of matrix. In the presence of 

multicollinearity, the is singular and may result in poor estimates. Here, the parameter is then added to 

improve the matrix condition before computing s by using method of Hoerl and Kennard (1970). The ridge 

solution is given by: 

                                𝛽𝛽�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  (𝑋𝑋𝐼𝐼𝑋𝑋 + 𝑘𝑘𝑘𝑘)−1𝑋𝑋𝐼𝐼𝑌𝑌              𝑘𝑘 ≥ 0                                                            (4) 

Where I is (p × p) identity matrix and is a scalar ridge parameter. Various methods have been introduced 

to obtain the value of k   which is the main challenge in ridge regression. In general, Ridge Trace, 

Generalized Cross Validation methods is commonly used, however the Hoerl, Kennard and Baldwin (1975) 

method were employed in this study to find.  

                           𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑃𝑃𝑆𝑆𝐿𝐿𝐿𝐿
2

𝛽𝛽𝐿𝐿𝐿𝐿
𝐼𝐼 𝛽𝛽�𝐿𝐿𝐿𝐿

                                (5) 

where  𝑠𝑠𝐿𝐿𝐿𝐿2   =  �𝑌𝑌−𝑋𝑋𝛽𝛽
�𝐿𝐿𝐿𝐿 �

𝐼𝐼
�𝑌𝑌−𝑋𝑋𝛽𝛽�𝐿𝐿𝐿𝐿 �

𝑛𝑛−𝑝𝑝
                      (6)  

This method reduces MSE of the regression parameter by adding a positive value of ridge parameter, such 

that an increase in the bias lead to the reduction of the variance. Note that if k = 0, the ridge estimator (4) 

is name as the OLS (2) which means 𝛽̂𝛽𝑅𝑅   = 𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 . When the value of k > 0, MSE(𝛽̂𝛽𝑅𝑅) ˂ MSE(𝛽̂𝛽𝑜𝑜𝑜𝑜𝑜𝑜 ), 𝛽̂𝛽𝑅𝑅  is 

biased but will be more precise and stable for the ridge regression estimator (4). It is also true that  𝛽𝛽�𝑅𝑅  →

0 when the estimator k → ∞. If all 𝑘𝑘𝑠𝑠͗͗  are the same the resulting estimators are called the ordinary ridge 

estimators. 
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iii) Least Trimmed Square (LTS) 
The most used robust estimator is the Least Trimmed Square (LTS) proposed by (Rousseuw, 1984) which is 

used to fit a regression by using estimators that dampen the effect of influential points in both dependent 

and the explanatory variables, however the LTS estimates perform badly on a normally distributed data. 

The estimator is very robust to the presence of outliers. This estimator minimizes the sum of trimmed 

squared residuals and is written as; 

 

                        𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿  = min∑ 𝜀𝜀𝑖𝑖2(𝛽𝛽)ℎ
𝑖𝑖=1                                   (7) 

Such that h= 𝑛𝑛
2
 + �𝑝𝑝+1

2
� with n and p being sample size and number of variables respectively, and, 𝜀𝜀(1)

2 ≤

𝜀𝜀(2)
2 ≤ 𝜀𝜀(3)

2 ≤, … ,≤ 𝜀𝜀(𝑛𝑛)
2 , the ordered squared residuals. LTS estimator may be very efficient based on the 

value of and the outliers. The largest squared residuals are being excluded from the summation in this 

method. Therefore, it allows those outlier data points to be excluded completely. Contradictory, LTS 

estimator may not be efficient if the number of trimmed data points is more than actual outliers as some 

good data will be excluded. Furthermore, if the exact numbers of outliers in the data set are trimmed, this 

method of calculation is like the OLS. 

iv) Robust Ridge Regression Estimator 

When both outlier and multicollinearity occur in a data set, it would seem preferred to combine methods 

for dealing with these problems simultaneously. To illustrate the idea of how the combination of ridge 

regression and robust estimators work, for robust ridge regression by combining the properties of the 

least trimmed square (LTS) and the ridge regression estimator referred to as Ridge trimmed square (Ridge 

LTS) estimator: 

                   𝛽̂𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼)−1𝑋𝑋𝑇𝑇𝑌𝑌                            (8) 

where the value of k is determined using: 

      𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑝𝑝𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿
2

𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿
𝐼𝐼 𝛽𝛽�𝐿𝐿𝐿𝐿𝐿𝐿

                      (9) 

And         𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿    = 
2 �𝑌𝑌−𝑋𝑋𝛽𝛽�𝐿𝐿𝐿𝐿𝐿𝐿 �

𝐼𝐼
�𝑌𝑌−𝑋𝑋𝛽𝛽�𝐿𝐿𝐿𝐿𝐿𝐿 �

𝑛𝑛−𝑝𝑝
                            (10) 

where p is the number of parameters, n is the sample size and 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿2  is the estimated variance.            

3.0 Simulation Study 
Simulation study was conducted to assess the performance of Ordinary Least Square (OLS), Ridge 

Regression (Ridge), Least Trimmed Square (LTS) and Ridge Least Trimmed Square (Ridge LTS) estimators. 

The simulation study was designed with three levels of high correlation (r=0.90, 0.95, 0.99) between the 

explanatory variables and three sample sizes (n=25, 50, 100) was used. The standard normal distribution 

is used with 1000 trials (replication) for each sample size. The percentages of outlier injected is (0%, 20%). 

The simulation model used for the study is: 

 
            𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑜𝑜 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + 𝛽𝛽3𝑥𝑥𝑖𝑖3 + 𝜀𝜀𝑖𝑖                                                             (11) 
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The explanatory variables  𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2  𝑎𝑎𝑎𝑎𝑎𝑎    𝑥𝑥𝑖𝑖3  were generated using the following equation; 

𝑥𝑥𝑖𝑖𝑖𝑖 = (1 − 𝑟𝑟2)𝑧𝑧𝑖𝑖𝑖𝑖 +  𝑟𝑟𝑧𝑧𝑖𝑖𝑖𝑖      𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 = 1,2, … ,𝑛𝑛       𝑗𝑗 = 1,2,3  𝑎𝑎𝑎𝑎𝑎𝑎     �𝛽𝛽𝑗𝑗 = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 0,1,2,3�                (12) 

where 𝑧𝑧𝑖𝑖𝑖𝑖  are independent standard normal random numbers that is held fixed for given sample of size n, 

and 𝑟𝑟 is the theoretical correlation between the 𝑥𝑥𝑖𝑖𝑖𝑖  and are fixed at 0.90, 0.95 and 0.99. The statistical 

computation of MSE is given by 

  𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ (𝑦𝑦𝑖𝑖−𝑌𝑌�𝑖𝑖)2𝑛𝑛
𝑖𝑖

𝑛𝑛
                     (13) 

where, yi are the true values, 𝑌𝑌�𝑖𝑖  is the predicted values and n is the sample size,                    
Performance Measures of the Estimators 
Using a simulated data set with multicollinearity and outliers, the proposed estimators were compared 

using the Mean Square Error (MSE) criterion. 

4.0 Results 
Full multicollinearity is designed into independent variables. The condition is analyzed using VIF values of 

the variables, which are used to diagnose multicollinearity problems. The VIF can help determine which 

regressors are implicated in the multicollinearity problem. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Except where the correlation, the VIF of the variables in Table 4.1 is more than 5. The maximum VIF is 

1870.7670, indicating that the correlation between independent variables is extremely high, indicating 

that all three independent variables are fully multicollinear. As a result, the multicollinearity problem is 

undeniable. 

 

 

 

 

 

 

 

Table 4.1 The VIF values of Independent Variables 

Variance Inflation Factor (VIF) 
Variable Sample Size (n) r = 0.90 r=0.95 r=0.99 

×1 25 3.3431 17.9207 97.4527 
50 4.4861 8.9639 27.4952 

100 4.0101 45.3533 39.7301 
x2 25 4.9201 27.0229 1340.7848 

50 10.6016 21.1438 55.0810 
100 4.0142 39.6109 882.2348 

x3 25 4.1095 17.3606 1870.7670 
50 7.4700 14.3951 14.3951 

100 1.0138 10.0535 113.7319 
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The VIF is reexamined after the ridge regression is performed to the data to see if the multicollinearity 

problem has been overcome. The results reveal that when ridge regression is used, the VIF values drop 

dramatically approaching one. It shows that ridge regression is quite good at dealing with 

multicollinearity. 

 

 
When data is simulated using sample sizes of 25, 50, and 100, Table 4.3 shows the 
relative performance of the estimators in the presence of three different levels of 
multicollinearity. 
 
 
 
 
 

Table 4.3 Estimated MSE For OLS, Ridge, LTS, Ridge.LTS Estimators for 
Different Sample Sizes and levels of Multicollinearity Without Outliers 

       Mean Square Error (MSE)
Sample Size (n) Estimator r=0.90 r=0.95 r=0.99

25 OLS 0.0405 0.0632 0.1233
Ridge 0.0280 0.0430 0.1230
LTS 0.0423 0.0658 0.1310
Ridge.LTS 0.0300 0.0420 0.1190

50 OLS 0.0144 0.0170 0.0244
Ridge 0.0070 0.0090 0.0190
LTS 0.0125 0.0148 0.0213
Ridge.LTS 0.0060 0.0080 0.0160

100 OLS 0.0073 0.0122 0.0160
Ridge 0.0070 0.0080 0.0160
LTS 0.0079 0.0157 0.0172
Ridge.LTS 0.0070 0.0070 0.0150

Table 4.2. VIF after the Application of Ridge Regression (k=1) 

Variance Inflation Factor (VIF) 
Variable Sample Size (n) r = 0.90 r= 0.95 r= 0.99 

×1 25 0.1623 0.0880 0.0707 
50 0.1464 0.1103 0.0960 

100 0.1655 0.0781 0.0804 
x2 25 0.1384 0.0793 0.0661 

50 0.1053 0.0853 0.0737 
100 0.1654 0.0821 0.0693 

x3 25 0.1507 0.0805 0.0641 
50 0.1264 0.0993 0.1067 

100 0.2492 0.1029 0.0664 
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The MSE of the Ridge and Ridge LTS are shown in Table 4.1. When the errors are normally distributed and 

multicollinearity is present at a correlation value of r = 0.90, Ridge LTS is smaller than the other 

estimators. The result in Table 4.2 favors Ridge and Ridge LTS at r = 0.95. LTS is used for normal error 

distributions when collinearity is present in the data. Ridge is better than OLS, LTS, and its performance is 
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virtually as excellent as Ridge, according to the MSE in Table 4.2, which corroborated the conclusion from 

Table 4.3. At r = 0.99, LTS has a high collinearity level. Ridge LTS is superior in every other way. The 

simulation results for bigger samples, n=100, are, nonetheless, consistent with the results for smaller 

samples. Because the MSE values are smaller, the results suggest that estimates for bigger samples are 

more efficient than those for smaller samples. For further clarity, the MSE values were recorded in tables 

4.1, 4.2, and 4.3, and the data were presented in Figs. 4.1a, 4.1b, and 4.1c, respectively. Ridge LTS 

estimators were found to be the best estimators since they have the lowest values of the criterion 

considered in the assessment. Furthermore, as the level of multicollinearity was raised, the estimators' 

performance deteriorated. 

4.4 Effect of Multicollinearity and Outliers on the Estimators. 
When data are simulated using sample sizes of 25, 50, and 100 with 20% outliers, Table 4.4 shows the 

relative performance of the estimators in the presence of three distinct levels of multicollinearity. 

 

 
 
 

Table 4.4 Estimated MSE For OLS, Ridge, LTS, Ridge.LTS Estimators for 
Different Sample Sizes, levels of Multicollinearity  and 20% Outliers 

       Mean Square Error (MSE)
Sample Size (n) Estimator r=0.90 r=0.95 r=0.99

25 OLS 0.0012 0.0078 0.0849
Ridge 0.0010 0.0070 0.0850
LTS 0.0011 0.0071 0.0779
Ridge.LTS 0.0010 0.0070 0.0780

50 OLS 0.0004 0.0031 0.0211
Ridge 0.0000 0.0030 0.0210
LTS 0.0004 0.0028 0.0179
Ridge.LTS 0.0000 0.0030 0.0170

100 OLS 0.0001 0.0011 0.0086
Ridge 0.0000 0.0010 0.0090
LTS 0.0002 0.0010 0.0077
Ridge.LTS 0.0000 0.0010 0.0070
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For data with a non-normal error distribution and multicollinearity, and for each sample size and number 

of outliers, Tables 4.4, 4.5, and 4.6 indicate that Ridge LTS produces the least MSE value, followed by LTS 

and OLS. In any number of sample sizes, Ridge LTS handles multicollinearity and the number of outliers 

substantially better than Ridge, OLS, and LTS. For further clarity, the MSE values were recorded in table 
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4.4, 4.5, and 4.6, and the data were presented in Fig. 4.2a, 4.2b, and 4.2c, respectively. Ridge LTS 

estimators were found to be the best estimators since they have the lowest values of the criterion 

considered in the assessment. 

Furthermore, as the level of multicollinearity was raised, the estimators' performance deteriorated. The 

results of simulations for bigger samples are like those of smaller samples. The results also show that the 

estimator for bigger samples is more efficient than for smaller samples, as evidenced by the lower MSE 

values. As a result, when the errors are uniformly distributed in the presence of multicollinearity and 

outliers, the MSE of the Ridge LTS is smaller than the other estimators. When multicollinearity and 

outliers are present, Ridge LTS is more efficient than LTS and Ridge, and certainly much more efficient 

than OLS. 

5.0 Conclusion  

The MSE derived via Ridge LTS is the lowest, as can be shown. When both multicollinearity and outliers 

are present, simulation tests clearly reveal that the Ridge LTS estimate is the most practical option over 

other estimators. The MSE value for a large sample size is much lower than for a small sample size, 

implying that a larger sample size produces better and more reliable results. As the sample size grows, the 

case results of the estimation methods become more stable. It can be concluded that Ridge LTS is a better 

method for handling multicollinearity and outliers than OLS, Ridge, and LTS for small and large sample 

sizes. 
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