
GSJ: VOLUME 6, ISSUE 5, May 2018 9

GSJ© 2018
www.globalscientificjournal.com

GSJ: Volume 6, Issue 5, May 2018, Online: ISSN 2320-9186

www.globalscientificjournal.com

SECURITY ENHANCEMENT & SOLUTION FOR

AUTHENTICATION IN CORPORATE NETWORK WITH FIREWALL

CONFIGURATION AND AUTHENTICATION FOR SERVER

PROTOCOL
 Syed Jamaluddin Ahmad, Roksana Khandoker, Farzana Nawrin

ABSTRACT

Firewalls are used to protect networks from

malicious traffic from the outside and Limit the

flow of information from inside protected

networks to the outside world. Most firewalls

filter traffic based on network addresses and

packet contents. Unfortunately, one major goal

of firewalling that of limiting the users and

programs that can communicate, is not well

served by such designs: it is difficult to

accurately map network addresses and packet

contents to user and program names. Firewalls

can solve the problem of securely mapping user

names to addresses when filtering inbound traffic

from un trusted networks through the use of

covert authentication systems such as port

knocking and single packet authorization. Egress

firewalls can identify users and programs on

trusted networks through the use of application

filters. In this thesis, I survey the current state of

both types of systems, describe their weaknesses,

and introduce techniques to alleviate some of

these weaknesses.

Tools: SMTP, SPA, NAT, HTTP, UDP, GRE,

ICMP, TLS. etc.

Syed Jamaluddin Ahmad, Assistant Professor, Department of Computer

Science & Engineering, Shanto-Mariam University of Creative

Technology, City: Dhaka, Country: Bangladesh,

Mobile No.: +8801633628612 (Email: jamal35@gmail.com)

Roksana Khandoker, Senior Lecturer, Department of Computer

Science & Engineering, University of South Asia, City: Dhaka, Country:

Bangladesh, Mobile No.: +8801737157856

 (Email: jolly.unisa@gmail.com)

Farzana Nawrin, Lecturer, Department of Computer Science &

Engineering, Shanto-Mariam University of Creative Technology, City:

Dhaka, Country: Bangladesh, Mobile No.: +8801686521152

 (Email: tondrafarzana@yahoo.com)

INTRODUCTION

In ancient times, towns and villages were based

around market-places, where goods from many

sources could be traded freely. Over time, as

towns grew into cities and gathered wealth,

barbarians grew envious of the city-dwellers. In

response to this threat, cities erected defensive

walls to protect against outsiders. However, as

the cities were still dependent on trade, the walls

needed to have many gates to allow passage in

and out of the cities; guards monitored who

entered and exited and attempted to keep the

barbarians out.

So it is with the Internet. When first created, it

was designed to foster sharing and collaboration.

True to this goal, it was built to be as open as

possible, with few to no restrictions. Later, as

threats grew, network administrators deployed

firewalls, which restrict the network traffic

allowed to enter and leave local networks, while

still allowing ―legitimate‖ traffic to pass.

Unfortunately, discriminating between

―legitimate‖ and ―illegitimate‖ traffic is not easy.

The best practice is to allow only traffic that is

explicitly recognized as legitimate while

blocking everything else, but this is easier said

than done. Factors to take into account when

examining traffic include sources, destinations,

the users and programs that sent or will receive

the traffic, the information being exchanged, the

format of the information being exchanged, the

http://www.globalscientificjournal.com/

GSJ: VOLUME 6, ISSUE 5, May 2018 10

GSJ© 2018
www.globalscientificjournal.com

time of day, the volume of traffic that has been

sent by the source, and others; while not all of

these are necessarily appropriate under all

circumstances, others that are important are

frequently ignored due to lack of information or

the difficulty of checking. Also, no defensive

measure is perfect: walls can be scaled with

ladders or battered down by trebuchets, and

security software can be disabled or bypassed by

exploiting software or configuration

vulnerabilities. For this reason, security (of both

cities and computers) depends on the principle of

defense in depth: the principle that security

comes in layers, where the defeat of one layer

doesn‘t leave everything vulnerable and that

attackers must bypass multiple layers to reach

anything important.

Problems with Existing Firewall Technology

1. Firewalls can easily limit what services can

be reached from outside. However, it may

also be necessary to limit which users can

connect to those services. A common

assumption, made by many modern firewalls,

is that trusted users only connect from small

sets of trusted hosts with specific addresses;

they implement user filtering by blocking

incoming packets with source addresses not

in these sets. Unfortunately, the source

addresses on incoming packets tell little

about the user who sent them; malicious

users can spoof trusted hosts, and trusted

users can connect from un trusted hosts.

Since many trusted hosts may have dynamic

(DHCP-assigned) IP addresses, opening a

firewall to one trusted host may require

opening it to thousands of IP addresses,

making it easier for an attacker to find an

address to spoof or a machine with a trusted

address to hijack. Adjusting the set of trusted

IP addresses typically involves either manual

reconfiguration by a firewall administrator or

connecting to some world-accessible

authentication service, which itself may be

vulnerable to attack.

2. Although users usually can be accurately

linked to IP addresses within a local network,

it can be difficult to limit the services with

which those users are allowed to

communicate. Firewalls generally attempt to

filter outbound traffic by restricting the ports

to which users may connect: for example,

disallowing outbound connections to

anything except TCP ports 80 (HTTP), 443

(HTTPS), and 20 and 21 (FTP).

Unfortunately, this isn‘t particularly

effective: non-standard services may be

running on these allowed ports. Whereas

application-layer firewalls can easily filter

traffic that doesn‘t match the expected

protocol for a port, it is much more difficult

to detect disallowed applications that tunnel

traffic through standard protocols on standard

ports. For instance, tunneling various

protocols through port 80, normally used for

unencrypted WWW traffic, has become quite

common [Alb04, BP04], and encryption

renders most application layer filters useless.

Also, standard protocols can run on standard

ports and still be used for unauthorized

purposes. Restricting network access to only

authorized local users and programs has the

potential to alleviate these problems, but

information about the users and applications

that generated or will receive network traffic

is usually only available at the source or

destination hosts themselves, and isn‘t

necessarily reliable.

1.1 Contributions of this thesis
This thesis introduces and describes methods for

addressing both of these problems. The first can

be addressed by using covert authentication

systems, systems that allow users to authenticate

without making their presence easy for attackers

to detect, to allow legitimate users to inform

ingress firewalls of their current network

addresses and request that subsequent

connections be accepted. Two such systems used

today are port knocking and single packet

authorization (SPA); I survey existing designs

for both and highlight their strengths and

weaknesses. Of particular concern are their

weaknesses: both are frequently implemented

with insecure authentication systems, do not

authenticate servers to clients, fail in the

presence of network address translation, are

susceptible to denial-of-service attacks, and do

not logically associate authentication exchanges

with the network connections that they enable.

Port knocking in particular is highly vulnerable

to packet loss and reordering. With these flaws in

mind, I then propose techniques that can be used

to improve on existing port knocking and SPA

systems. Challenge-response authentication

GSJ: VOLUME 6, ISSUE 5, May 2018 11

GSJ© 2018
www.globalscientificjournal.com

provides both cryptographically secure

authentication and a method to authentication

servers to clients; I propose port knocking and

SPA designs using challenge-response

authentication and show that the overhead

imposed by such a system is not unreasonable

under most circumstances. I present experimental

analysis quantifying the degree of packet loss

and re-ordering in packet streams typical of port

knocking, and describe and compare several

techniques for ensuring that messages

transmitted by port knocking can be properly

reassembled on delivery, regardless of the degree

of reordering. I also propose several novel

designs for port knocking systems and discuss

their strengths and weaknesses compared to

existing systems. Finally, I present and discuss

several methods for creating logical associations

between authentication exchanges and

subsequent connections. This material expands

and improves on my previously published work

[dAJ05].

The second problem can be addressed by

extending the capabilities of application filtering

firewalls. Existing systems generally only

provide application filtering on host firewalls; I

discuss the advantages of extending network

firewalls to also provide application filtering and

mechanisms for communicating user and

program information to network firewalls. Many

designs for application filtering do not detect

malicious programs masquerading as legitimate

ones under certain circumstances; I suggest ways

of preventing this through the use of integrity

shells, but point out that solving this problem

requires that the operating systems of hosts using

application filtering must be trusted by the

filtering system. Also, application filtering is

ineffective against interpreted programs and

those running inside virtual machines, unless the

interpreters and virtual environments are also

trusted. Finally, existing network firewalls do not

always reliably detect when one process uses

another as a client, potentially allowing

malicious or un trusted programs to make

unauthorized network connections. To solve this

problem, I present an algorithm for tracking

inter-process communication that can identify

most such attempts.

Background

As background for the ideas presented in the

following chapters, this chapter

presents a general overview of networking,

cryptography, and relevant offensive and

defensive computer security technologies.

2.1 Bibliography of Networking
The Internet was designed in the 1960s, ‘70s and

‘80s as a robust communication system between

diverse local networks. Its design is based on a

stack of five protocol layers:

1. Physical – responsible for encoding and

decoding signals over a transmission medium,

such as a wire, optical fiber, radio frequency, or

avian carrier;

2. Data link – responsible for communication

between hosts on a physical network segment;

3. Network – responsible for global addressing

and routing packets between physical network

segments;

4. Transport – responsible for communication

between processes, and optionally, reliable

connections;

5. Application – responsible for encoding and

decoding information in formats

understood by applications, as well as providing

any necessary services not provided by lower

layers.

Each protocol layer provides services to layers

above it; information being sent is passed down

from the application layer to the physical layer,

with each level performing transformations

appropriate to that layer, before the physical

layer handles the actual work of transmission.

When information is received, each protocol

layer undoes its transformations and passes

information back up the stack, until it reaches the

application layer. This design is similar to the

OSI network stack model [Tan96], which

mandates seven layers and a somewhat different

breakdown of responsibilities.

The infrastructure of the Internet consists of a

number of routers, interconnected computers

whose function is to forward information from its

source to its intended destination; the process of

finding such a path and forwarding information

along it is known as routing. Computers and

other devices that communicate over the Internet

are known as hosts.

2.2 Network and Transport Protocols
The standard network protocol on the Internet is

known as the Internet Protocol, version 4 (IPv4)

[Pos81c]. (In this thesis, the abbreviation ―IP‖,

GSJ: VOLUME 6, ISSUE 5, May 2018 12

GSJ© 2018
www.globalscientificjournal.com

for ―Internet Protocol‖, always refers to IPv4; the

next-generation Internet protocol, IPv6 will not

be discussed.) IP provides an unreliable datagram

service: it breaks the information that it transmits

into packets (also known as data grams) and

routes each to its destination independently, but

provides no guarantees that packets are properly

delivered. Packets may be dropped, duplicated,

delayed, re-ordered, or corrupted in transit; error

messages (in the form of ICMP packets

[Pos81b]) may or may not be returned if delivery

fails. IP packets contain a header of 20 to 60

bytes and a payload of 8 to 65,516 bytes of data;

packet sizes are selected based on the properties

of lower protocol layers. IP headers contain

metadata that enables packets to be routed to

their destinations, such as the addresses of

packets‘ sources and destinations. IP addresses

are 32-bit numbers and are not necessarily

unique; routers necessarily have more than one

address, and some techniques allow hosts to

share IP addresses.

The Internet doesn‘t strictly follow the OSI stack

model: various protocols exist that allow IP

packets to be encapsulated inside protocols that

run on top of IP. This encapsulation of protocols

is known as tunneling. For instance, IPsec (a

security architecture for IP) [KS05] can create

encrypted tunnels for IP and other network

protocols on top of IP, whereas GRE (―Generic

Routing Encapsulation‖) [FLH+00] can create

plain-text tunnels. More information on

tunneling is available in [CBR03].

A number of transport layers exist, each

providing different services. ICMP (―Internet

Control Message Protocol‖) is used for

delivering many types of error messages from the

network and transport layers as well as

performing a variety of administrative functions

[Pos81b]. UDP (―User Datagram Protocol‖)

provides an unreliable datagram service between

applications [Pos80]; the only important feature

that it adds to IP is application addressing. TCP

(―Transmission Control Protocol‖), the most

common transport protocol on the Internet,

provides reliable bidirectional streams between

applications [Pos81a]. Other transport protocols

exist, providing other services.

TCP breaks streams down into segments which

are then encapsulated into IP packets. Like IP

packets, TCP segments contain both headers and

payload data. TCP assigns sequence numbers to

every byte of payload data sent and requires that

every byte be acknowledged; if any segments are

lost or corrupted, either they will be resent or an

error will be detected. Duplicate and out-of-order

packets can also be detected and corrected using

the sequence numbers. TCP headers contain

application-layer addresses, data and

acknowledgement sequence numbers, and

control flags, among other fields. Segments used

to initiate connections have the SYN

(―synchronize‖)

flag set; those used to finalize connections have

the FIN flag set. The ACK flag indicates that a

segment is acknowledging data received from the

other end of the connection. Opening a TCP

connection requires that both endpoints exchange

initial sequence numbers (ISNs) using an

algorithm known as the three-way handshake,

shown in Figure 2.1. The client starts the

handshake by choosing an ISN and sending it to

the server in a segment with the SYN flag set. If

the server chooses to accept the connection, it

responds with its own ISN in a segment carrying

the SYN flag; it also signals that it received the

client‘s ISN by setting its acknowledgement

number to the client‘s ISN plus one and setting

the ACK flag. The client then acknowledges

receipt of the server‘s ISN with an ACK segment

carrying the server‘s ISN plus one in its

acknowledgement number field. After

completing this exchange, a TCP connection is

established and both the client and server can

send and receive data.

Both TCP and UDP use ports for addressing

applications. A port is simply a 16-bit integer.

Any application can register itself (bind) to any

unused port to send or receive data, although

some common services customarily receive

connections (listen) on particular ports. For

instance, SSH (―Secure Shell‖, used for secure

remote logins, file transfer, and tunneling other

protocols) servers typically listen on port

22/TCP, HTTP (used for retrieving documents

from web servers) uses port 80/TCP, and DNS

(―Domain Name System‖, responsible for

mapping easy-to-remember names to numeric IP

addresses) servers listen on port 53/UDP. Unix-

based operating systems typically allow only

GSJ: VOLUME 6, ISSUE 5, May 2018 13

GSJ© 2018
www.globalscientificjournal.com

Figure 2.2: TCP connection establishment

handshake

privileged applications (those with super user or

administrative privileges) to use TCP and UDP

ports with numbers below 1024.

On most operating systems, applications use the

socket interface [LFJ+86] to send and receive

messages. Unprivileged applications are typically

limited to using TCP and UDP; headers, with the

exception of addressing information, are

automatically generated by the operating system,

as are TCP connection establishment and

finalization messages. Privileged applications

can use the raw socket interface to generate

arbitrary packets [LFJ+86].

Neither IPv4, TCP, nor UDP provide any

authentication or privacy services; any host can

generate any packet and any host observing

packets at the network layer can read the

packets‘ payloads. If these services are

important, then they can be provided by

application-layer protocols, TCP extensions such

as TLS [DR06], IP extensions such as IPsec

[KS05], or the next-generation Internet Protocol,

IPv6 [DH98].

2.3 Network Application Architectures
Applications that communicate over networks

usually follow the client-server model: client

programs, which may interface with users,

connect to servers and request resources. For

instance, web browsers connect to servers and

request documents, and SSH clients connect to

servers and request login shells. Peer-to-peer

(p2p) applications operate as both clients and

servers, allowing them to connect to each other.

Proxy servers act as intermediaries between

clients and servers; clients connect to proxies,

which then connect to servers on their behalf and

forward data between the two connections. Such

systems are often used for firewalling (as in

circuit and application gateways; see Section

2.4.1), caching, and load balancing.

2.4 Vulnerabilities in Internet Protocols
When the core Internet protocols were designed,

the Internet was a research network with a small

user community who knew and trusted each

other. As a result, security was not a high

priority. Many pro tocols have useful features

that easily lend themselves to malicious use;

many even have outright design flaws that

weaken security to no tangible benefit. For

example,

• Hosts can assert any source IP address they

want on packets that they generate (IP spoofing).

Routers often have no way of determining if

packets‘ source addresses are correct and are not

required to block invalid packets even when they

can be detected.

• Especially in early TCP implementations, the

initial sequence numbers used for new

connections were predictable; in conjunction

with IP spoofing, this allowed attackers to

establish TCP sessions with remote hosts while

using spoofed IP addresses [Mor85].

• Many of the protocols used to distribute routing

information on the Internet and map physical

addresses to IP addresses on local networks are

not secure, allowing attackers to intercept traffic

destined to other hosts [Bel89, dVdVI98].

• IP packets can be fragmented at (almost)

arbitrary boundaries, allowing attackers to split

attack signatures between multiple packets.

Furthermore, IP fragments and TCP segments are

allowed to overlap; it is up to the receiver to

decide how to re-assemble them. As a result,

firewalls and IDSs that re-assemble streams

before checking them may miss attacks against

hosts that use different re-assembly strategies

[PN98].

Only in the late 1980s did the effects of the

insecurity of the Internet start to become well

known and, even then, few people worried about

it; even well-publicized, high impact events such

as the Morris Worm outbreak [Spa89] did little

to sway users. Since then, as the Internet has

experienced rapid growth, corrections to many of

its fundamental flaws have been few and far

between, mostly consisting of patches designed

GSJ: VOLUME 6, ISSUE 5, May 2018 14

GSJ© 2018
www.globalscientificjournal.com

to reduce the risk of an attack with minimal

disruption to users.

2.5 Cryptography
Modern cryptography seeks to provide the

services of authentication, data integrity,

confidentiality and non-repudiation [MvOV96, p.

4] through the use of well-known algorithms

whose security relies solely on the knowledge of

relatively small cryptographic keys. Generally,

the strengths of related cryptographic algorithms

within a class of algorithms are proportional to

the sizes of their keys; an algorithm is considered

to be strong if it is computationally infeasible to

determine anything about the key, given full

knowledge of the plaintext, ciphertext, and

algorithm; this is a principle known as

Kerckhoffs‘ law [Ker83]. For instance,

identifying properly-chosen keys for most

modern ciphers is estimated to require thousands

of years, even if all the computational power in

the world was applied to the problem [Sch06b].

This section provides a brief overview of some

of the building blocks of modern cryptography;

more information can be found in [MvOV96,

Sch06b, Sta03].

Security Services
Cryptographic algorithms are generally used to

provide the following five services [IT91, Sta03]:

Authentication The assurance that the identity

an entity is as claimed.

Access control The prevention of unauthorized

use of a resource.

Data confidentiality The protection of data

against unauthorized disclosure.

Data integrity The assurance that data is

received or retrieved exactly as it was sent or

stored.

Non-repudiation Protection against an entity

performing an action and later denying that it did

so.

Digital Signatures
While MACs provide integrity and

authentication, they depend on symmetric keys

and don‘t provide non-repudiation. In a digital

signature scheme, messages signatures are

generated using senders‘ private keys; any party

can use a sender‘s public key to verify the

signature on a message. Unlike asymmetric

ciphers, digital signatures do not provide

confidentiality, but they do provide message

integrity, authentication and non-repudiation. In

order to improve execution performance (the

algorithms used in asymmetric cryptography tend

to be slow) and prevent existential forgery

attacks (in which an attacker can generate a valid

signature for a message without having control

over the message‘s contents) [MvOV96, p. 432],

digital signatures are typically computed over

cryptographic hashes of the original messages.

Verification of a signature then requires applying

the public key to the signature to recover the

sender‘s hash and re computing the hash on the

message; if the two hashes match, then the

message must have been sent by the owner of the

public key and has not been altered.

Digital signature algorithms are often constructed

from asymmetric ciphers. For instance, the RSA

cipher can be used to generate digital signatures

by ―encrypting‖ message hashes with the

sender‘s private key; the hash can be recovered

by ―decrypting‖ the signature with the sender‘s

public key [MvOV96, p. 433]. Other algorithms

designed specifically for digital signatures

include DSA [MvOV96, p. 451] and ECDSA

[Cer00].

2.6 Key Exchange Algorithms
Both symmetric ciphers and MACs require that

all participating parties know a secret key,

whereas asymmetric ciphers and digital

signatures require that all parties know each

others‘ public keys. Securely distributing these

keys is a difficult problem, requiring that all

parties are able to guarantee that they received

the correct keys and that they were not modified

in transit.

The easiest way to solve the problem (for

symmetric keys) is for one party to generate the

key and distribute it to all other parties in person

[Sta03, p. 212], but this is not always practical. If

all parties already share a key, then the existing

key can be used to create a secure channel to

transmit the new one [Sta03, p. 211]; however, if

the existing key has been compromised, then so

will the new one. When a pre-shared key is

available a common strategy is to use it as a

master key and use it only for distribution of

session keys [Sta03, p. 213]; the loss of a session

key does not compromise the master, and the

infrequent use of the master reduces the risk of it

being compromised. Other strategies for key

distribution rely on a trusted third party, with

whom all parties already share keys. The third

GSJ: VOLUME 6, ISSUE 5, May 2018 15

GSJ© 2018
www.globalscientificjournal.com

party generates the new key, establishes secure

channels with all parties, and uses the secure

channels to distribute the new shared key [Sta03,

p. 211]. Similar techniques can be used for

distributing public keys.

Instead of one party choosing a symmetric key

and passing it to the other, the Diffie-Hellman

key exchange algorithm [MvOV96, p. 515] (also

known as exponential key exchange) can be used

to allow both parties to contribute to the shared

key. Diffie-Hellman is based on the believed

intractability of computing discrete logarithms in

multiplicative groups of integers modulo primes

(with an equivalent existing for elliptic curves); it

is computationally infeasible to calculate the

shared secret given the messages exchanged

between the two parties. However, to prevent

man-in-the middle attacks (see the next section),

the messages exchanged must authenticated,

requiring that the two parties share a master key

or have authenticated public keys for each other.

2.7 Attacks and Offensive Technologies
The barbarians at the gates of ancient cities came

from many tribes and carried many different

weapons. Likewise, attackers against computer

systems take many forms and use many different

strategies. This section describes some common

attack strategies, including port scans, 0-day

exploits, worms, and denial-of-service attacks.

Port Scans
Before an attacker, be it person or program, can

launch an attack against something, it needs to

gather information about its target. Possibly the

single most important information about a target

computer, from an attacker‘s perspective, is what

services are running. The easiest way to gather

this information is by attempting to connect to all

ports suspected of running services of interest, in

what is known as a port scan [Fyo97].

Attackers with a particular target in mind will

often scan many or even all ports on the target, in

order to identify all running services and gather

as much information as possible. Scanning

multiple ports on a single target in this manner is

known as vertical scanning [SHM02]; the

unqualified term ―port scan‖ generally refers to

vertical scans. Other attackers looking for a

particular service, not caring about what host is

running it, will scan a single port over a large

number of hosts; this is known as horizontal

scanning [SHM02] or network scanning

[MMB05].

Port scans can take many forms [dVCIdV99,

Fyo97]. The simplest form of scan against TCP

ports is the connect scan, in which the attacker

attempts to open a TCP connection to each port.

If the connection attempt succeeds, then the

attacker knows that something is listening there

and can either attempt to determine what it is or

simply make a guess based on the port number; if

the connection attempt fails, then the attacker

typically assumes that no service is using that

port. Connect scans are not particularly stealthy,

since a successful connection establishment will

be noticed by the application listening on the

target, which may log the event. However, there

is no need to fully open a TCP connection to

determine if something is listening; a TCP stack

is required to send a SYN-ACK packet in

response to a SYN to any open port and will

either send an ICMP error or nothing at all in

response to a SYN packet sent to a closed port.

This takes place at the kernel level on the target

system; the application is never informed of

connections that are never fully opened. SYN

scans take advantage of this by scanning with

SYN packets only; the scanner may send RST

packets to tear down the half-open connections

that it creates. Other types of TCP scans include

ACK scans, FIN scans, Xmas scans (using

packets with many flags set) and null scans

(using packets with no TCP flags set); these are

used to penetrate certain firewalls that interfere

with other types of scans or to gather information

about firewall rule sets. UDP scanning is

somewhat more difficult: ICMP errors in

response to a packet sent to a UDP port imply

that it is closed; UDP responses suggest that it is

open, and no response at all can mean anything.

0-Day Exploits
When the ―good guys‖ learn of a new

vulnerability in a computer system, the typical

response is to try to fix it and to learn how to

detect exploitation attempts. Usually,

vulnerabilities are caused by defects in software

implementations, which are ideally corrected by

patches written and made available by the

vendors or maintainers of the vulnerable

software within a few hours to a few weeks. If no

patch is immediately available, then instructions

on how to prevent or lessen the impact of a

successful exploitation are frequently published;

GSJ: VOLUME 6, ISSUE 5, May 2018 16

GSJ© 2018
www.globalscientificjournal.com

these may involve disabling certain functionality

or even disabling vulnerable services entirely.

When a new vulnerability is discovered, the

practice of responsible disclosure is to first

privately inform the vendor or maintainer of the

vulnerable software of the existence of the flaw

and wait until a patch or work-around is

available before publishing details of the flaw.

Unfortunately, the ―bad guys‖ rarely follow this

practice: new vulnerabilities are often kept secret

or circulated privately among the ―hacker‖

community, not becoming known to the security

community until long after automated tools to

exploit them are available. Newly discovered

vulnerabilities to which the security community

has not yet had the chance to react are known as

0-day vulnerabilities; methods to exploit them

are known as 0-day exploits.

Defending against 0-day exploits is no easy task:

since their existence is not known to defenders,

no reactive measures can be taken. The only

option is proactive security: using multiple layers

of security so that a breach in one exposes little

(a practice known as defense in depth) and

aggressively auditing potentially vulnerable

systems to attempt to detect flaws before the bad

guys do. Unfortunately, defense in depth is not

always easily implemented and many protocols

and software systems are too complex to

effectively audit: many flaws in common

software have gone undiscovered for years.

Nevertheless, short of disconnecting systems

entirely, these are the only defenses available

against 0-day attacks.

2.8 Worms and Malware
Malware is a generic term for any form of

malicious software. Malware may take many

forms, the best known of which is the virus. Two

forms of malware particularly relevant to this

thesis are worms and rootkits.

A worm is a program that replicates itself to new

hosts across networks by scanning for targets and

infecting them [Ayc06]. Worms usually gain

access to computer systems by exploiting user

errors or software vulnerabilities or miss

configurations, and once inside, continue

scanning for new targets. This allows worms to

spread exponentially. The Sapphire worm of

2003 infected 90% of all vulnerable hosts within

10 minutes [MPS+03] of release; theoretically,

some worms could infect nearly all available

targets in under a second [SMPW04]. Worms are

usually non-specific as to what hosts they infect;

they simply use horizontal port scanning to

locate vulnerable hosts. On hosts that they infect,

many worms install additional software, such as

rootkits, backdoor software that allows the

worms‘ creators to issue commands to infected

computers, or spyware that attempts to collect

passwords and credit card numbers. Worms are

often written to exploit 0-day software

vulnerabilities. This, combined with worms‘

rapid propagation, makes reactive security

measures largely useless against worms.

Rootkits [HB06] are software that is used to hide

the presence or activity of other software. These

can take the form of modified user space

programs or kernel drivers that modify the

behavior of other drivers under certain

circumstances. Common uses are to hide certain

files from directory listings or certain processes

from process listings; these files and processes

typically belong to other forms of malware. In

general, rootkits can be used to modify just about

any form of operating system behavior.

2.9 Denial-of-Service Attacks
A denial-of-service (DoS) attack is simply any

attack that results in the degradation of the

quality of service of a targeted system, limiting

or denying its use to legitimate users. DoS

attacks can range from the unintentional [wik07]

to the criminal [Vij04], and from single-packet

logic attacks [Ken97] to massive resource-

consumption attacks [Gib05]. Logic attacks

leading to denial-of-service conditions are

usually caused by software bugs and are easily

correctable; more interesting (and more difficult

to defend against) are the resource-consumption

attacks.

Resource-consumption attacks can attempt to

saturate network links, burn CPU time, fill

available memory, or use up other scarce

resources. If the target host has sufficiently

limited resources, then a single host may be able

to effect a resource consumption attack, but more

often, several hosts need to cooperate to bring

down a target, in what is known as a distributed

denial-of-service (DDoS) attack [LRST00]. A

common type of resource-consumption attack is

the SYN-flood [dri96], in which attackers

attempt to fill TCP data structures on targets with

half-open connections, preventing them from

accepting any new legitimate connections. In

order to prevent targets from blocking traffic

from attackers, SYN floods normally employ

GSJ: VOLUME 6, ISSUE 5, May 2018 17

GSJ© 2018
www.globalscientificjournal.com

random spoofed source IP addresses. Since

targets will attempt to open TCP connections

with all of these apparent sources, a side effect of

SYN floods is SYN-ACK packets being sent all

over the Internet; this is known as backscatter

[MSB+06].

2.10 Firewalls and Defensive Technologies

Like the defenses of ancient cities, defensive

network technologies are primarily based on

keeping intruders out and identifying them when

they manage to gain entrance. Firewalls are the

walls themselves - they restrict the traffic that is

allowed to enter and leave a protected area.

Intrusion Detection Systems (IDSs) and related

technologies take a more active role in

attempting to detect and identify attacks that are

being attempted or have succeeded, making them

more like guards. Other technologies, such as

Network Address Translators (NATs) and

Virtual Private Networks (VPNs), also have roles

in securing networks.

Firewalls
Bellovin and Cheswick [BC94] defined the

following three design goals for firewalls:

1. All traffic from inside to outside, and vice-

versa, must pass through the firewall.

2. Only authorized traffic, as defined by a

local security policy, will be allowed to pass.

3. The firewall itself is immune to

penetration.

Two architectural designs are possible to satisfy

the first requirement: either firewalls are situated

on all network paths in and out of protected

networks (network or perimeter firewalls), or

firewalls are situated on the protected hosts

themselves (host firewalls). Local security policy

differs from place to place. Firewalls are most

frequently deployed as proactive security

mechanisms that limit the traffic that is allowed

to enter the protected host or network in order to

block attacks: this is known as ingress filtering.

Firewalls can also be used for egress filtering:

restricting outbound traffic in order to limit

information leaks, the spread of malware, and the

outside resources that can be accessed. In

general, firewalls can be used to enforce a

number of types of access-control policies on

both inbound and outbound traffic:

1. what services are available,

2. who may access those services,

3. from where those services may be accessed,

4. when those services may be accessed, and

5. how those services may be used.

There are many different types of firewalls,

differing in how they filter traffic and what

information is available to them. The properties

of each are summarized in the following

sections; more information is available in

[CBR03].

Packet filters
The simplest type of firewall is the packet filter

[CBR03, p. 176], which examines packets one at

a time at the network layer and decides to accept

or reject them based on available information.

Packet filters typically have no knowledge of

application layer protocols, but can make

decisions based on link-, network- and transport-

layer protocol headers and the network links on

which packets arrive. Some packet filters are also

capable of making decisions based on the current

time, the volume of data transferred to or from a

host within a time frame, the number of packets

matching a rule within a time frame, and other

conditions not directly related to the packets

themselves. Common uses of packet filters

include:

• preventing hosts outside the local network from

connecting to an internal server,

• blocking packets with obviously spoofed source

addresses (such as internal addresses on packets

on an external network interface),

• blocking tiny IP fragments, packets using

source routing, directed broadcasts, and other

suspicious packets, and

• preventing employees from using peer-to-peer

file-sharing software.

Packet filters are simple to implement and

require few resources; they are found on many

network devices (bridges, routers, etc.) and older

operating systems (such as Linux 2.2‘s ipchains

[Rus00]). Packet filters are good at limiting what

services are available from where and when, but

are poor at tracking connections and have little

knowledge of who is using network services or

how they are being used. For instance, TCP

clients typically connect from high-numbered

ports, whereas servers listen on low-numbered

ports. If a firewall wants to allow users to

GSJ: VOLUME 6, ISSUE 5, May 2018 18

GSJ© 2018
www.globalscientificjournal.com

connect to external web servers, then it must

allow outbound TCP traffic to port 80. However,

responses from these web servers must also be

allowed through the firewall. Simply allowing all

packets originating at port 80 through is not

adequate; anyone could run a program on port 80

and bypass the firewall entirely. The usual

solution is to allow all packets with the ACK flag

coming from port 80 and destined to high-

numbered ports, but this will still allow some

packets through the firewall that are not part of

any legitimate connection. Since packet filters

have no knowledge of application-layer data,

they can‘t prevent hapless users from

downloading viruses from a web pages, nor can

they prevent malicious insiders from sending

trade secrets to third parties. They also have no

knowledge of who or what is sending the packets

they see. Packet filters can only identify users

and programs by IP addresses and ports: they

can‘t distinguish between worms and web

browsers. Newer operating systems and firewall

appliances generally use more elaborate forms of

firewalls that address some of these problems.

Some packet filters attempt to process

application-layer data as well, in order to identify

the application protocol being used or to detect

and reject malformed or malicious application-

layer messages. This is known as deep packet

inspection [Dub03]. Unless deep packet filters

perform some re assembly of packets, they can

be confused by pathological fragmentation. They

are often considered to be a form of Intrusion

Prevention System (see Section 2.4.2).

Stateful packet filters
As opposed to simple packet filters, which

consider packets independently, stateful (also

known as dynamic) packet filters [CBR03, p.

188] consider packets to be parts of connections.

Connections can be accepted or denied; packets

associated with accepted connections are

generally accepted with little further inspection.

Stateful packet filters are also capable of the

sorts of analysis performed by simple packet

filters: connections may be filtered based on

source, destination or any other packet

characteristics, and packets may be blocked even

if they belong to valid connections.

How packets are associated with connections

differs based on the transport protocol being

used. TCP connections are easily tracked; a

partial implementation of the TCP state machine

is enough to determine when connections open

and close. More advanced stateful firewalls may

track TCP window sizes and other aspects of

TCP to more accurately determine if a packet

belongs to a given connection. UDP doesn‘t

define ―connections‖ on its own, so UDP

connections are usually tracked using intervals

between packets; connections are opened for any

UDP packet traveling between a pair of

addresses and are closed when a timeout is

reached without any more packets between the

addresses being observed. ICMP error messages

are usually treated as part of the TCP or UDP

connections associated with the packets that

triggered them; other types of ICMP messages

(such as ―pings‖) may be treated as connections

of their own. Other protocols‘ connection states

are tracked in manners appropriate to those

protocols. Since the underlying network protocol

(IPv4) is fundamentally unreliable, connection-

closing messages from TCP and other stateful

transport protocols may never be received, so

stateful packet filters may also use timeouts to

close such connections.

Application-layer semantics can also play a role

in connection tracking. Several common

application-layer protocols, such as FTP, make

use of more than one transport-layer connection.

Stateful firewalls often have extensions that

perform limited parsing of application-layer

messages to treat these secondary connections as

parts of the connections that created them,

greatly simplifying firewall rules.

The ability to track connection state gives

stateful packet filters many advantages over

simple packet filters: it allows rule-sets to more

accurately reflect legitimate traffic patterns and

reduces the chance of passing packets that should

be rejected. However,

GSJ: VOLUME 6, ISSUE 5, May 2018 19

GSJ© 2018
www.globalscientificjournal.com

Figure 2.10: Flaw in UDP state tracking

this comes at a cost: stateful packet filters are far

more complex and require large amounts of

memory for state tracking. Additionally, the

methods of generating state information for

stateless protocols like UDP can be fooled. Two

hosts whose firewalls allow outbound UDP

packets between their addresses but deny

inbound packets can nevertheless establish a

connection by both attempting to connect to each

other, as in Figure 2.2; many peer-to-peer

applications use this technique to bypass

firewalls [Sch06a]. As with simple packet filters,

stateful packet filters have limited knowledge of

application-layer protocols or of the actual users

and programs sending and receiving the packets

that they examine.

Most modern operating systems come with built-

in stateful packet filters, as do most dedicated

firewall appliances on the market. Typical

examples include Linux‘s iptables [Wel06a] and

OpenBSD‘s pf [KHM06]. Details of how

iptables tracks connections are available in

[And06].

Application filters
Packet filters are only capable of identifying

users by IP address; all users of shared

computers are treated alike. Likewise, packet

filters are only capable of identifying programs

by port numbers and treat all programs using the

same ports alike. They cannot implement per-

user access restrictions or limit network access to

specific applications. There is good reason for

this: the information necessary to implement

such filters, user and application names, is not

included in IP packet headers and thus is not

available to packet filters. This information is

generally only available at the hosts sending or

receiving the packets in question, thus preventing

any form of network firewall from using it.

However, host firewalls do have access to this

information; most modern host firewalling

software (including PC firewalling packages,

such as Check Point‘s ZoneAlarm [Zon07])

make use of it to implement user and application

filtering1 [CBR03, p. 226], as well as stateful

packet filtering.

Unlike packet filters, application filters can tell

the difference between legitimate software and

malware that uses the same ports: for instance,

spyware that communicates with valid HTTP

messages over port 80/TCP would be

indistinguishable from a web browser to a packet

filter, but an application filter would be able to

tell the difference. Application filters can also be

used to block certain software that is known to

have questionable security records, even if

preventing its installation is not feasible or it is

integrated into an operating system and cannot be

removed, while still permitting network access to

functionally equivalent software. They can also

be used to prevent any network access when no

user is logged in.

Application filtering is primarily used by egress

firewalls, but may also be used on ingress.

Circuit gateways
Circuit gateways [CBR03, p. 186] are proxy

servers that run at the transport layer. They don‘t

allow end-to-end connections through

themselves: instead, protected clients are

required to connect to a gateway and

communicate with it using a special protocol to

request connections to the outside world. The

gateway then makes the requested connection (if

it is allowed by the gateway‘s security policy)

and forwards data between the two connections.

A similar approach is taken with local servers

that want to make services available from outside

the protected network.

Because circuit gateways re-assemble data at the

transport layer before passing it in or out, they

can easily protect against IP-layer attacks such as

source routing and pathological fragmentation.

They are even able to exchange data between the

IP-based Internet and local networks using other

network-layer protocols or between logically

disconnected networks. However, their abilities

GSJ: VOLUME 6, ISSUE 5, May 2018 20

GSJ© 2018
www.globalscientificjournal.com

to filter traffic are not much different than those

of stateful packet filters, despite requiring

significantly more resources. Circuit gateways

may require user names, passwords, and other

information from clients before creating

connections to the outside, potentially allowing

them to filter based on local user and application,

but they still have no knowledge of remote users,

nor of application-layer protocols.

Circuit gateways are generally used as network

firewalls; host-based circuit gateways would be

pointless. A common circuit gateway system is

SOCKS [KK92, LGL+96].

Application gateways
Application gateways [CBR03, p. 185] work as

proxies at the application layer. As with circuit

gateways, connections are not end-to-end but are

made by the gateways on request. In addition to

the information available to circuit gateways,

application gateways are able to filter based on

application-layer information, and possibly also

user and application information, but, due to the

diversity and complexity of application-layer

protocols, separate gateways are required for

each application.

Typical uses of application gateways are to filter

for malware, malformed messages that could

represent attacks against servers, and content that

should not be entering or leaving the protected

network, such as pornography or trade secrets.

The tradeoff for this power is that application

gateways require large amounts of memory and

processing time and frequently cannot be made

fully transparent to users. Most common web

proxies and SMTP servers are able to function as

application gateways for their respective

protocols; gateways for more obscure or

proprietary protocols can be difficult to find.

Distributed firewalls
Traditionally, network firewalls have been the

most common method for protecting large

numbers of hosts; they are easy to deploy and

manage. However, they do have a number of

disadvantages:

• Unauthorized or improperly protected network

links can allow users to bypass firewalls entirely.

• Laptops and other roaming hosts move in and

out of protected areas; while outside of the

network perimeter, they are not protected by its

firewalls.

• Firewalls at network choke-points are single

points of failure and possible performance

bottlenecks.

• In networks with more than one route to the

Internet, it is possible for packets to leave over

one link and their responses to arrive on another.

Stateful packet filters and gateways will not be

able to re-assemble connections under these

conditions.

As a way of improving on these weaknesses,

Bellovin [Bel99] proposed using distributed

firewalls in which each host in a protected

network runs its own firewalling software but

receives configuration from a central

management server. Such a system has a number

of advantages:

• The firewall is independent of network

topology; hosts no longer need to be classified as

―inside‖ or ―outside‖ of a security perimeter.

• There is no longer a single point of failure or

performance bottleneck; if one host goes down,

others are unaffected.

• The firewall can base its decisions on additional

information that is not available to most network

firewalls, such as user and application names and

dynamically assigned ports, without needing to

resort to computationally expensive application

layer processing.

• Hosts that move between networks or otherwise

change addresses frequently, such as laptop

computers, are easily protected, regardless of

their current locations.

The independence of network topology provided

by this model is particularly important: many of

the threats faced by modern networks are from

the inside (spyware, worms carried into protected

areas on laptops, malicious insiders, etc.). The

traditional model of walled-in networks with

barbarians outside that forms the basis of most

firewall architectures provides little to no defense

against internal attackers.

One disadvantage of distributed firewalls is that

hosts cannot make any assumptions about

spoofed IP addresses on the local network and

don‘t know which hosts to trust. Bellovin

[Bel99] suggests working around this by using

IPsec to cryptographically verify host identities.

In any case, this is a stronger form of

authentication than relying on IP addresses, and

works even if IP addresses change. However,

IPsec adoption is nowhere near the point of

making this practical over domains larger than

corporate networks, so hosts will still have to

GSJ: VOLUME 6, ISSUE 5, May 2018 21

GSJ© 2018
www.globalscientificjournal.com

rely on address-based authentication for

communication with hosts outside of their

administrative domains. Also, many older and

less-capable systems are still in use for which

IPsec support is not available.

Other disadvantages of distributed firewalls lie in

the difficulty of managing configuration.

Management servers may either attempt to push

configuration updates to all hosts, in which case

any hosts that are currently unreachable do not

receive the updates, or rely on hosts polling for

and pulling updates, in which case hosts that

neglect to poll regularly (or are prevented from

doing so) do not receive them. It is difficult to

ensure that all hosts that should be running

firewalling software actually are; hosts whose

firewalls are malfunctioning or not present may

not be protected at all. Finally, some malware

(such as Y3K Rat 1.6 [Whi01]) attempts to

disable local security software on hosts that it

infects; if this succeeds, then the firewall is

disabled at the moment when it is needed most.

In one implementation [IKBS00] of Bellovin‘s

concept [Bel99], simply disabling the policy

daemon will disable the firewall. Since there are

many fewer avenues for malware to be executed

on network firewalls, this attack is much less of a

threat for traditional firewalling systems.

Hybrid firewalls
Bellovin [Bel99] recognized some of the

weaknesses of distributed firewalls in his original

paper and suggested that hybrid firewalls,

combinations of distributed and choke-point

elements, could address some of them. There are

a number of ways that such a system could be

structured:

• A network of non-mobile hosts, each protected

by distributed firewalling software but without

cryptographic authentication of peers, could use

simple network firewalls to drop inbound packets

with spoofed internal addresses. This would

prevent many spoofing attacks under the

assumption that no internal hosts are engaging in

spoofing.

• A network that uses distributed firewalling

could employ network firewalls as a secondary

protection mechanism: this would protect hosts

whose firewalling software is missing,

malfunctioning, or not configured correctly. If

the network firewall failed, it could fail open

without leaving the network completely exposed.

• Networks that contain both mobile and

stationary hosts could use network firewalls with

knowledge of network topology to protect

stationary hosts, while using a distributed

firewall and an IPsec gateway to allow protection

for and secure communication with mobile hosts.

2.11 Intrusion Detection Systems
Unlike firewalls, intrusion detection systems

(IDSs) take a reactive approach, attempting to

identify attacks in progress or to detect evidence

of past attacks and taking appropriate

countermeasures. IDSs can use either statistical

methods or pattern-matching to detect intrusions,

can operate by monitoring logs or events on

individual hosts or by monitoring network traffic,

and can run periodically or in real time

[DDW99].

Responses made by IDSs depend on the type of

IDS and the type of attack. Single host signature

matchers, such as some anti-virus engines, that

detect successful intrusions may attempt

automated clean-up operations or may simply

notify an operator that clean-up is needed. Worm

traffic detected on a local network may indicate

that an intrusion has taken place; an IDS

detecting such an event may attempt to isolate

the infected host(s) in order to contain the worm

[MSVS03]. Port scans detected at a perimeter

firewall may result in all traffic from the

scanning hosts being blocked [Sol98] or

subjected to rate limitations [Wil02].

Unfortunately, automated responses can often

cause unintended side effects: false positive

detections may cause more harm over the long

term than undetected intrusions and, even when

attackers cannot hide from IDSs, they may

attempt to trigger inappropriate responses.

Signature-based detectors can be fooled into

making inappropriate responses by deliberately

matching the signature of different attacks, port

scanners can spoof large numbers of source

addresses in order to make port scan detectors

block off large segments of the Internet, and

worms can use spoofed source addresses to trick

IDSs into quarantining too many hosts [PN98].

In many cases, the only safe automated response

to intrusions is to inform the operator.

Intrusion Prevention Systems (IPSs) use

statistical or pattern-matching methods to attempt

to automatically detect and disrupt attacks in real

time [KVV05]. Due to their similarities in

function, some IDSs (including Snort [MJ]) are

GSJ: VOLUME 6, ISSUE 5, May 2018 22

GSJ© 2018
www.globalscientificjournal.com

also capable of functioning as IPSs. Many

―deep‖ packet filters are essentially combinations

of stateful packet filters and simple IPSs

[Ran05].

2.12 Network Address Translators
Network Address Translators (NATs) [SE01,

SH99] are devices that re-write the source IP

addresses of traffic leaving a network and the

destination addresses of traffic entering it. This

process is known as network address translation.

The most common reason using for network

address translation is to share a single IP address

among many devices. Devices on a network are

assigned IP addresses that are only valid inside

the network (usually chosen from the RFC 1918

private address blocks [RMK+96]); they can

communicate amongst each other using these

addresses, but the addresses are not recognized

by the Internet at large. In order to connect such

a network to the Internet, all traffic entering and

leaving the network is routed through a NAT,

which re-writes the source addresses of all

outbound packets to its own external IP address

(as in Figure 2.3(a)), which is valid on the

Internet. In order for responses to outbound

packets to be correctly received, the NAT keeps

state information allowing it to re-write the

destination addresses of packets it receives to the

appropriate internal addresses (as in Figure

2.3(b)). In such a system, the internal addresses

are known as private addresses and the

externally-valid address of the NAT is known as

the public address. Since TCP and UDP

connections are typically identified by the

combination of source and destination addresses

and source and destination ports, such a NAT

cannot handle two internal hosts making

connections to the same external host and port

from the same source ports; to work around this,

a variation called network address port

translation, which also re-writes source port

numbers on outbound packets, is used. Other

variations on this system allow NATs to use

more than one public address; some NATs

support one-to-one mappings between private

and public addresses.

Figure 2.12: Traffic passing through a NAT.

As a side-effect of network address translation

used in this manner, outside hosts cannot

normally initiate connections through a NAT:

without state information to indicate which

inside host should receive a packet, the NAT will

simply drop it (as with the 2nd packet arriving at

the NAT in Figure 2.3(b)). Therefore, though

NATs are not designed as network security

devices, they can function as simple packet

filters. Since networks employing NATs require

that all outbound traffic pass through them, they

are ideal locations to place network firewalls;

most available NATs have at least limited

packet-filtering capabilities, and many existing

firewalls can also function as NATs. The state-

tracking mechanisms used by NATs are similar

to those used by stateful packet filters and have

the same weaknesses with regards to stateless

transport protocols.

Network address translation can also be used in

reverse in order to share a single IP address

among many network servers or to load-share

between them: this technique is often called port

forwarding. The term destination network

address translation is also used; in this case, re-

writing source addresses of outbound packets is

known as source network address translation.

NATs resemble circuit gateways in that outside

hosts see only the NATs‘ addresses, rather than

those of the protected hosts, but differ in that

protected clients and servers communicate

27

26

GSJ: VOLUME 6, ISSUE 5, May 2018 23

GSJ© 2018
www.globalscientificjournal.com

directly with outside hosts. NATs only re-write

addresses; packet boundaries and other network-

layer semantics are preserved.

2.13 VPNs and Encrypted Channels
Many attacks against network services are only

possible because of IPv4‘s lack of protection

against sniffing and modification and its lack of

verification that packet source addresses are

correct. All of these problems can be solved by

proper application of cryptography: encryption of

payload data makes sniffing useless; data

integrity checks can prevent insertion and

modification attacks, and user or host

authentication allows spoofed source addresses

to be detected.

Virtual Private Networks (VPNs) are private

networks that allow confidential communication

over insecure public networks. VPNs are

normally implemented by tunneling ordinary,

insecure protocols inside encrypted channels on

top of standard network and transport protocols.

This can be done at different protocol layers.

TLS [DR06] is normally used for encrypting

application protocols on top of TCP, but can also

be used to tunnel IP on top of TCP or UDP

[Yon06]. IPsec [KS05] and other protocols

tunnel IP packets inside a secure channel on top

of IP. All of these are complicated cryptographic

protocols that provide host authentication, key

exchange, and confidential, integrity-protected

channels.

The benefits of VPNs and encrypted channels

come at a cost. Encryption is CPU intensive,

adding a cost to communication that may be

prohibitive for low-powered or busy hosts. VPN

software often requires operating system support,

which may not be available for some platforms.

Tunneling of any sort makes it impossible to

block access to applications by port number; a

growing trend on the Internet is the tunneling of

various protocols on top of HTTP [Alb04,

BP04]. Furthermore, encryption makes

firewalling difficult: unless a firewall knows all

encryption keys in use, it cannot decrypt

tunneled traffic to make filtering decisions. This

leaves security up to destination hosts

themselves, just as it would be without firewalls;

some firewalls may block encrypted traffic for

this reason. Thus, it is beneficial to use a

technology that provides the minimum required

security at the minimum cost, rather than using

more powerful VPN systems, wherever possible.

Stealthy Authentication Mechanisms

A common goal in firewall policy design is to

limit which remote users can connect to

particular services. There are many reasons for

implementing such access restrictions, including

• strengthening a defense in depth: adding an

extra layer that attackers must break through

before reaching anything important,

• protecting systems with known un patched

vulnerabilities from attackers until patches are

available, while still allowing access to certain

authorized users, and

• adding a measure of user authentication to

legacy or proprietary systems with inadequate

integrated security measures.

A side benefit of limiting access to services at a

firewall in this manner is that unauthorized users

will have difficulty even learning of the existence

of the protected service; port scans against the

service from unauthorized hosts cannot tell the

difference between a port that appears closed

because nothing is using it and a port that

appears closed because a firewall is intervening.

This adds a degree of security to the service:

attackers are unlikely to attack services that they

don‘t know about, so measures that make

services more difficult to detect will reduce the

number of attackers aware of the service and

therefore the number of attacks made. Since the

number of attackers is finite, a reduced number

of attackers and attacks reduces the probability of

a security breach.

Regrettably, most existing firewalls aren‘t very

good at implementing such restrictions. One

common method is to assume that trusted users

connect only from certain small sets of trusted

computers with known IP addresses, and allow

connections only from these addresses. This has

many limitations: attackers can spoof trusted IP

addresses or hijack trusted hosts and trusted users

may attempt to connect from hosts not in the

trusted set. Since many computers on today‘s

Internet do not have static IP addresses, instead

relying on DHCP servers to assign addresses that

change over time, allowing access from one

particular computer may require granting access

to many thousands of IP addresses; in the case of

a worm outbreak, there is a strong chance that an

attacking worm will reside on a computer with

one of these addresses. Adjusting the set of

trusted IP addresses usually requires manual re-

configuration by a firewall administrator. The

GSJ: VOLUME 6, ISSUE 5, May 2018 24

GSJ© 2018
www.globalscientificjournal.com

other method available is to use a world-

accessible service that uses some form of user

authentication to identify trusted users and grant

them temporary access to the protected service,

by creating a temporary association between the

trusted user and its IP address. Unfortunately,

this approach typically has drawbacks as well.

Exploitable flaws in security and authentication

software are discovered regularly [UC06a,

UC06b, UC07a, UC07b]. Since the

authentication service is visible to the world, it

can be attacked by anyone, and since it controls

firewall rules, successful attacks could be used to

completely bypass the firewall.

Clearly, since IPv4 headers include no

information about users, there is little that can be

done with the approach of filtering by fixed sets

of source IP addresses. The model of

authenticating to a world-accessible service and

requesting access has potential, but needs

enhancements to correct the weaknesses

described above. In particular:

• Since the whole point of the firewall access

restrictions is to keep unauthorized users from

connecting at all, the authentication service

should be no easier for attackers to communicate

with than the protected services. It must still be

world accessible, but it could be hidden in some

manner. One way to accomplish this is for

communication with it to use a covert channel.

• Since any attacker who discovers and is able to

communicate with a hidden authentication

service has already displayed significant skill and

resources, the authentication service must be

cryptographically secure. Also, it should be as

simple as possible, so that it can easily be audited

and reasonable assertions made about its

vulnerability to attack.

Using a complex, highly visible mechanism

would present a risk of attack not significantly

different than that of the original, now protected,

service; using a hidden service that provides

strong authentication and is simple enough to

easily audit provides a target that is both less

likely to be compromised if attacked and less

likely to be attacked at all.

This chapter will begin by discussing covert

channels over networks and then describe several

ways that covert channels could be used by

firewall authentication services. Two existing

techniques, port knocking and single packet

authorization, will be discussed in detail,

including their design issues, strengths,

weaknesses, and current implementations.

3.1 Single Packet Authorization
Single Packet Authorization, or SPA, has the

same goals as port knocking, but, instead of

encoding authentication information in a series

of port numbers, it encodes it in the payload of a

single UDP datagram (see Figure 3.2). This

allows for authentication messages of several

kilobytes to be used without concern for packet

reordering.

The information encoded in an SPA message is

generally similar to what might be encoded in a

port knocking sequence (see Section 3.2.1). A

message containing a plain-text secret could be

used, although most existing implementations

use some sort of encrypted or one-time message.

Unfortunately, the phenomenon of misused

cryptography and broken authentication

protocols is not limited to port knocking.

Cryptknock [Wal04] (actually an SPA system,

despite its name) uses an unauthenticated Diffie-

Hellman exchange to generate a session key

which is then used to encrypt a shared secret; if

the server accepts the secret, then it allows

unrestricted access to the originating host. Since

this protocol doesn‘t associate the shared secret

with the client‘s IP address, an attacker could

break it by re-writing the client‘s IP headers to

make it appear to the server that they originated

at the attacker, then forwarding the server‘s

responses back to the client. Alternately, the

standard man-in-the-middle attack against Diffie-

Hellman [Sta03] would allow an attacker to

recover the shared secret. Tailgate TCP (TGTCP)

[BHI+02], Doorman [War05], tumbler [GC04],

and fwknop [Ras06] implement SPA with more

robust authentication schemes.

SPA servers that use packet sniffers or related

technologies may need to limit packet sizes to

the path MTU between client and server

(typically a minimum of 576 bytes [MD90]) in

order to avoid fragmented packets. However, this

is still ample room for authentication information

in messages of this size.

GSJ: VOLUME 6, ISSUE 5, May 2018 25

GSJ© 2018
www.globalscientificjournal.com

Figure 3.1: SPA example. A port is opened in the

firewall in response to an authentication packet.

Advantages of SPA
As Rash [Ras06] points out, SPA is easier to

implement and less failure-prone than port

knocking and is probably preferable in most

circumstances.

1. An SPA server can be written as a normal

network service on an open port. Since UDP

services are not required to respond to messages

that they receive, and the protocol does not

automatically generate any response, a non-

responding UDP service on an open port on a

system that silently drops unexpected packets is

indistinguishable from a closed port to a port

scan. An SPA server can therefore be written as a

normal network service, without needing to

resort to packet sniffers or any platform-specific

mechanisms. (However, such a design may put

constraints on the available mechanisms to

manipulate firewall states.)

2. Since only one packet must be sent before

opening a connection, an SPA authentication

exchange takes much less time and is less

vulnerable to packet loss than port knocking,

besides being immune to packet reordering.

3. NATs and stateful firewalls between SPA

clients and servers will only have to allocate

resources for at most one logical connection,

rather than one for each knock as required with

port knocking.

4. Compared to port knocking, SPA can use

relatively large authentication messages without

sacrificing performance and reliability.

Disadvantages of SPA
Despite being much less sensitive to packet

ordering than port knocking, SPA systems will

still fail if a connection attempt reaches the

firewall before the authentication packet has

been received and processed. They will also fail

if an authentication packet, or a fragment of one,

is dropped or corrupted in transit.

SPA servers typically cannot be implemented as

log readers, since SPA systems need to access

packet payloads and firewalls generally don‘t log

any more than packet headers. However, this is

not usually a problem, since log reading is an

inefficient design compared to its alternatives

(see Section 3.2.2) and is seldom used for SPA.

Egress filters may not pass outbound traffic

destined to unusual UDP ports, but SPA servers

could run on ports regularly used for ―normal‖

traffic. For instance, most egress filters will

permit DNS traffic; SPA messages bound to a

server running on port 53/UDP would likely pass

unmolested.

3.2 Variations on SPA
It is possible to encode SPA messages into the

payloads of any protocol. In [Ras06], Rash

suggests using the payloads of ICMP or GRE

messages. In theory, raw IP messages with no

transport headers at all could also be used.

Although such systems have the potential to be

extraordinarily stealthy (ICMP echo-request,

(―ping‖) messages are very common in the

Internet background radiation [PYB+04],

although GRE and raw IP messages are rather

unusual), they do present some implementation

challenges.

User applications cannot usually read ICMP,

GRE, or raw IP payloads, requiring that servers

using such encodings hook into network stacks at

a lower level (for example, using packet

sniffers). More importantly, unprivileged user

programs cannot directly send such messages,

thus requiring clients to be privileged

applications. Currently, fwknop [Ras06] and

Cerberus [Epp04] implement SPA over ICMP.

Barham et al. [BHI+02] suggested a variation on

TGTCP in which the authentication information

would be attached as a payload to the SYN

segment opening a TCP connection; this would

prevent race attacks and be invulnerable to out-

of-order delivery. However, this approach is not

without weaknesses: it only works for TCP ports,

it requires modifications to the client‘s network

stack to attach authentication information to

outgoing TCP SYN segments, it requires a

kernel-level server that can process packets

before they reach the transport layer of the

GSJ: VOLUME 6, ISSUE 5, May 2018 26

GSJ© 2018
www.globalscientificjournal.com

firewall‘s network stack, and some egress filters

may drop SYN segments carrying data.

3.3 Active-covert SPA
Since SPA traffic is visible to packet sniffers and

is not disguised as background noise, it cannot

normally be considered active-covert. However,

it is possible to give active-covert properties to

SPA by encoding the payload as something that

might normally be seen in background traffic and

setting the destination port to match. For

instance, authentication information encoded as

ASCII text and sent to port 1026/UDP with the

proper headers would resemble Windows

Messenger spam [LUR03], and a message

resembling Intel x86 machine code sent to port

1434/UDP might be mistaken for the Sapphire

worm [MPS+03].

3.4 Concerns about “Security by Obscurity”
Port knocking systems in particular have often

been accused [BBO05, MMETC05, Nar04] of

being nothing more than ―security by obscurity‖.

Generally, these claims are based on assumptions

that the security of port knocking authentication

systems is based solely on them remaining

hidden, or that concealing security-sensitive

information is bad and that all details of security

systems should be visible.

Beale [Bea00] describes a system relying on

security by obscurity as one that relies on critical

knowledge about the system‘s design being kept

secret, though the secret information could be

discovered by an outsider without unreasonable

effort. The authentication systems used by

traditional services such as telnet and FTP, which

send passwords in plain text, are generally

considered insecure by modern standards

[Bel89], but their well-specified protocols and

documented reliance on the secrecy only of small

easily-changeable per-user passwords leave them

well outside of the realm of security by

obscurity. This is equally true for similarly-

designed services such as SSH, which employ

cryptography to protect secrets in transit.

The security of port knocking systems and other

covert authentication schemes is also dependent

only on the knowledge of small, easily

changeable secrets; in the case of port knocking

systems, these are port sequences. Systems that

send their secrets are equivalent in security to

telnet, whereas those that use cryptographic

protocols are more akin to SSH. In neither case

does the security of the authentication system

depend on any other property. The covertness of

the communication channels being used is not

necessary; if the same information was

transmitted across normal, open ports, the system

would remain secure. Rather, the covertness only

serves to increase the level of effort required to

attack the systems. As Beale points out,

concealing an already-secure service is not a

weakness but rather has a number of advantages,

reducing the number of attacks faced by the

system and forcing attackers to do more work,

which both slows them down and makes their

actions more obvious.

Improvements to Port Knocking and SPA

As presented in the previous chapter, port

knocking and SPA have a number of

weaknesses. In this chapter, novel techniques for

addressing some of these weaknesses and other

improvements to port knocking are introduced.

First, I introduce methods for conducting

challenge-response authentication using SPA or

port knocking, which improve on some of the

limitations of the authentication algorithms

described in Section 3.1 and enable

authentication of the server as well as of the

client. Next, a variety of strategies for ensuring

that port knock sequences can be correctly

decoded, even if delivered out of order, are

discussed. Third, two alternate methods for

encoding information into port sequences are

introduced. Finally, several possible ways of

associating authentication exchanges with

connections and preventing race attacks are

described.

4.1 Basic Unilateral Authentication
The ISO two-pass unilateral authentication

[ISO95, MvOV96] is designed to authenticate a

client A to a server B; no attempt to authenticate

the server to the client is made. A slightly

modified version of this algorithm, intended to

be suitable for port knocking or SPA, is shown in

Algorithm 4.1. In the following discussion, I

refer to message 1 as the request, message 2 as

the challenge, and message 3 as the response.

GSJ: VOLUME 6, ISSUE 5, May 2018 27

GSJ© 2018
www.globalscientificjournal.com

Algorithm 4.1: Challenge-response unilateral

authentication

A begins the sequence by sending a request,

which serves both to initialize the protocol and

identify the operation to be performed upon

successful authentication. Cryptographically, this

must be considered public information. B

responds to a recognized request by issuing a

unique nonce as a challenge, to which A

responds with a MAC covering the nonce, the IP

addresses of A and B, and the request sequence,

keyed with a symmetric key associated with the

request. Upon receipt of the response, B will re-

compute the MAC using the request that it

received, the nonce that it sent, A‘s IP address as

taken from the packet headers, and B‘s own IP

address. If the MAC is valid, then B will perform

the requested operation; otherwise, no action will

be taken.

If HMAC-SHA1 is used as the MAC algorithm,

then response messages will be 160 bits long.

Due to birthday attacks [MvOV96], nonces used

in this situation should be at least half the bit

length of the MAC, or 80 bits in this case. As

argued above, a hard-to-guess sequence of 8 to

10 bytes will serve as a request sequence.

This protocol is suitable for port knocking or

SPA systems employing either preconfigured or

user-issued commands. Servers can identify pre-

configured commands by associating unique

request sequences with each command. User-

issued commands could be constructed by

appending port numbers and other information to

request sequences; if the command must be kept

secret, it can be encrypted using Kreq . No

integrity-checking information is needed in such

request messages, because they are covered by

the MAC in the response message, and none of

the information in the command will be acted

upon until after successful authentication. Pre-

configured commands are best for port knocking

systems, due to the relatively high overhead of

sending data, but there is little penalty for

attaching additional data to SPA requests.

A‘s IP address has been added to the MAC in

Step 3 of the original algorithm to prevent

possible Mafia fraud-based attacks [DGB87] (see

Figure 4.1) in which an attacker C initiates the

protocol and receives a challenge, intercepts (and

blocks) a challenge issued to A in another

protocol session, and forwards its own challenge

to A in order to get A to generate a valid

response for C (see Algorithm 4.3 for an

example). By covering both IDs with the MAC,

Algorithm 4.1 prevents C from subverting the

protocol to authenticate to B as itself, but does

not prevent C from subverting the protocol by

masquerading as A. Such an attack still requires

A to initiate an authentication exchange itself

before it will generate a response, and would

have the effect of causing B to perform the action

specified by C‘s request. If A‘s and C‘s requests

are the same, then there is no security breach: B

does exactly what A asked, under A‘s

credentials, and nothing more. If the request

caused a port to be opened, then C could attempt

to connect to it while continuing to masquerade

as A, but this is then equivalent to C ignoring the

authentication exchange and attempting to hijack

a successful authentication, as in Section 3.2.3. If

A‘s and C‘s requests are different, then

authentication will fail, since A also covered its

own request in the MAC and B will expect C‘s

request when verifying it.

Instead of adding A‘s address to the MAC in the

response, a MAC covering IDA and NB could

have been added to the challenge message; this

would have equivalent security properties but

increase the amount of data to be transmitted.

This is the approach suggested by van Oorschot

and Stubblebine [vOS06] for preventing Mafia

fraud-based attacks.

The original version of Algorithm 4.1, presented

in [dAJ05], did not cover the request in the MAC

and therefore depended on the keys associated

with the two requests being different in order to

resist Mafia frauds.

4.2 Authentication in the Presence of NATs

One flaw in Algorithm 4.1 is that it requires the

client, A, to know its identity as seen by the

server, B. Unfortunately, if the client is behind a

NAT, then it may not know its public address

and may not even know that the NAT exists.

(Since the server is intending to receive

GSJ: VOLUME 6, ISSUE 5, May 2018 28

GSJ© 2018
www.globalscientificjournal.com

connections, it is assumed to have have a valid

public address.) In the above protocol, A will use

its private address PIDA to compute the

response, but if A‘s address is re-written on the

packets that it sends, then B will use A‘s public

address IDA to verify it and authentication will

fail.

Algorithm 4.2.1: NAT-aware unilateral

authentication

In an earlier work [dAJ05], I presented an

algorithm called ―NAT-aware unilateral

authentication‖ (Algorithm 4.2) which I claimed

would authenticate a client A that doesn‘t know

its public IP address to a server B while resisting

Mafia frauds. Unfortunately, I have since

discovered an attack against this algorithm,

shown in Algorithm.

Algorithm 4.2.2 Attack against NAT-aware

unilateral authentication

In this attack, an attacker C waits for a legitimate

client A to initiate the protocol and then opens its

own protocol session by sending a copy of A‘s

request. C then blocks the delivery of B‘s

challenge to A and substitutes its own challenge.

(The notation B ! /A means that B sends a

message to A, but it is not delivered.) A accepts

B‘s assertion that its public IP address is IDC and

generates a response, which B rejects since it

knows A‘s correct public IP address. However,

this response is valid for C, which is then able to

complete the protocol successfully without

knowing Kreq .= This attack also works if C

blocks the request and response sent by A or

masquerades as B to A.

Figure 4.2: The Mafia fraud. A and B think that

that they are authenticating to each other, but C

is forwarding messages between them with the

goal of convincing A that it is B and B that it is

A.

Since this attack is exactly what Algorithm 4.1

was designed to prevent, there is no point in ever

using Algorithm 4.2. However, the Mafia fraud

(a man-in-themiddle attack related to the

grandmaster postal-chess problem [MvOV96,

BD90] and known as the MiG-in-the-middle

attack in military contexts [And01], see Figure

4.1), which works because the verifier, B, has no

knowledge of the physical location of the prover,

A, is generally considered difficult to prevent

and is frequently ignored by authentication

systems [AS02]. None of the general solutions to

this problem available are appropriate under

these circumstances because A cannot practically

be isolated during authentication [BBD+91], the

only communication channel available can be

accurately monitored by attackers [AS02] and

doesn‘t have a constant communication delay

[BD90], and A‘s physical description (here, A‘s

IP address is sufficient – see Section 4.1.1)

cannot be included in the exchange [Des88]

because A doesn‘t know its IP address.

The lesson to learn here is that it is difficult to

prevent Mafia frauds when the client does not

know its identity (in this case, its public IP

address). Even if it does, any other computer

sharing the same public IP address (i.e., any

computer behind the same NAT) can still carry

out a Mafia fraud. The Mafia fraud is generally

irrelevant in protocols that combine

authentication with key agreement, because, even

if an attacker succeeds in authenticating as some

other entity, it will still not know the agreed-

upon key [DvOW92]. Some of the solutions to

the race attack problem presented in Section 4.4

are based on key agreement techniques, so they

GSJ: VOLUME 6, ISSUE 5, May 2018 29

GSJ© 2018
www.globalscientificjournal.com

may mitigate this problem. Another partial

solution is for clients to request their public IP

addresses from trusted third party identity oracles

before starting the authentication protocol.

In addition to this attack, since req is not covered

in the MAC in the response, C could substitute

A‘s request with another one employing the same

key to cause B to execute a command other than

the one that A intended. This is easily corrected

by adding req to the MAC, as in Algorithm 4.1.

Improvements to Application Filtering

Port knocking and SPA are primarily designed to

communicate information about users to remote

ingress packet filters, allowing them to filter on a

per-user basis without relying on assumptions

about IP addresses. However, neither are ideal

for communicating with egress firewalls on local

networks. On relatively trusted local networks,

stealth is irrelevant: everyone on the inside

knows where the firewall is and what it is

capable of doing; there‘s no value in hiding it.

Also, whereas filtering by applications is of

limited use to ingress firewalls (allowing

connections from poorly-implemented clients

presents little risk to the server and malware is

not likely to be able to authenticate as a valid

user), it is of significant value to egress firewalls.

Finally, whereas port knocking and SPA are

designed to protect services that receive small

numbers of connections, egress firewalls must

handle much larger numbers; the overhead of

port knocking may be a liability in this case.

Application filtering provides an efficient

mechanism for host and network firewalls to

make decisions based on the users and programs

that are sending and receiving network traffic.

This chapter discusses existing designs and

implementations of application filters and a

variety of common problems with such systems.

It then presents partial solutions to some of these

problems.

5.1 Existing Application Filtering Systems

Since user and application information is not

included in IP packet headers, this information is

generally not available to network firewalls.

Some circuit and application gateways use

special protocols to authorize connections that

authenticate users (such as SOCKS [LGL+96]),

but no existing network firewalls seem to make

any checks on the applications making

connections.

Host firewalls, on the other hand, do have access

to user and application information. Although the

built-in firewalling systems on most operating

systems don‘t support application filtering, most

third party packages do. Judging by its

behaviour, ZoneAlarm [Zon07] (a popular

commercial firewalling package for Microsoft

Windows) checks hashes of programs and shared

libraries that attempt to make connections and

performs some tracking of programs that make

connections on behalf of others. By default,

when it detects a connection attempt from an

unknown program which is not otherwise

explicitly allowed or denied by the current

configuration, it prompts the user for a decision.

Unfortunately, information about the algorithms

used internally by this and other proprietary

packages is not publicly available. Prior to

August 2005, the netfilter firewalling system on

Linux supported a form of application filtering

through the owner match module. This support

was removed in kernel 2.6.14 due to conflicts

with kernel locking [HM05]; the owner match

still supports user and group matching.

Originally, this module attempted to match

packets to specified program names or process

IDs by iterating over the list of currently running

processes, searching for one matching a given

command name or process ID, and then iterating

over all files held by that process to check if any

of them matched the socket used by the packet

being matched; there was no interactive

component. TuxGuardian [dS06] provides

application-filtering support to Linux using a

different approach: rather than working through

net filter, it uses the Linux Security Modules

system [WCM+02] to hook into attempts to open

sockets or listen for connections and call out to a

user space program to ask for permission to

allow the attempt. The user-space program

checks both the program‘s name and the MD5

hash of the executable file against its

configuration, optionally prompts the local user

if the program is not recognized, and allows or

denies the request.

5.2 Problems with Application Filtering
Application filtering is a useful and powerful

technique, but it cannot be trusted absolutely. It

has many flaws, both in concept and in

implementation, that restrict what application

filters can feasibly do.

5.3 Dealing with Unrecognized Applications

GSJ: VOLUME 6, ISSUE 5, May 2018 30

GSJ© 2018
www.globalscientificjournal.com

The most obvious problem is what to do when

unrecognized applications attempt to make

connections. There are three possible responses

in this situation:

1. always allow the request,

2. always deny the request, or

3. ask the user if the program should be allowed

to use the network.

The first option is dangerous: the firewalling

software cannot be expected to have a

comprehensive database of all untrustworthy

software and will end up letting worms and

spyware communicate with impunity. No

firewall should accept by default; application

filters are no different.

The second requires that the firewall have a

comprehensive database of all trusted software.

This may be appropriate for professionally-

managed networks, where the set of allowed

applications is well defined and relatively small,

but is problematic in other situations where no

such list is available. It is infeasible to require

firewall vendors to ship lists of trusted software

with their products and impractical to trust them

if they do. It is equally infeasible to require end

users to build such databases when installing the

firewalling software. Applications themselves

can obviously not be trusted to assert their own

trustworthiness to the firewall.

The third option is also troublesome. People will

make mistakes and grant access to programs that

they meant to deny. Many users are not

sufficiently familiar with their computers to

know what applications they should trust and

under what circumstances they should trust them.

Many will simply click ―accept‖ to any request

for a connection, regardless of what is asking

[Nor83]. Others will not know the names of all

trusted programs, but will recognize that

applications should only make connections in

response to their requests and will only grant

permission shortly after performing some action

that could reasonably be expected to make a

network connection. However, malware could

abuse this trust by monitoring other software and

attempting to make network accesses only when

something else does. This is compounded by the

fact that many network-using programs do not

make connections themselves but pass requests

to other processes via inter-process

communications (IPC), resulting in the

application names being presented to the user

having little to do with what the user is running.

For instance, in some versions of Microsoft

Windows, the Windows Update program‘s

connection requests show up to many firewalls as

originating in a program called wupdmgr.exe,

despite being initiated by Microsoft Internet

Explorer (iexplore.exe). Also, many components

of Microsoft Windows (such as the DHCP client,

network browser, time synchronizer, and

messenger) make connections through a program

called svchost.exe [Mic06], and some legitimate

software (such as time synchronizers) runs

automatically, rather than in response to user

inputs; users who are unaware of this may deny

network access to important software. Finally,

malicious programs could explicitly instruct

users to allow them access; suitably convincing

messages would persuade many users to grant

access when they otherwise would not [CBR03].

5.4 Application Spoofing
It is not sufficient for application filters to

identify trusted programs solely by executable

file names. Anyone could give an arbitrary

program the same name as a trusted program;

without further checks, an application filter could

be completely bypassed in this manner. Some

existing malware attempts to use this approach

by mimicking operating system components or

other trusted software. For instance, the Welchia

worm stores a copy of itself with the name

svchost.exe under a different path than the

legitimate program of this name on Microsoft

Windows systems [Sym07d].

A slightly stronger approach is to identify trusted

programs by the absolute paths of executable

files. This would prevent the sort of file name

spoofing used by Welchia but would not catch

malware that modifies or overwrites trusted

programs, such as some versions of the Spybot

(which insert themselves into the command-line

FTP client on Microsoft Windows systems)

[Sym07c] or Erkez (which attempts to overwrite

executable files belonging to Symantec products)

[Sym07b] worms. This approach would also be

ineffective if the firewall‘s view of the directory

tree could be changed; on Unix-based systems

this could be done by mounting a new filesystem

on top of an existing one so that a new program

occupies the path of the original.

A stronger approach again is to identify trusted

programs by cryptographic hashes of executable

files. This would detect any attempts to modify

or replace trusted programs and would defeat the

GSJ: VOLUME 6, ISSUE 5, May 2018 31

GSJ© 2018
www.globalscientificjournal.com

above worms. However, even this method can be

attacked. Malware need not live in executable

programs; it can live in shared libraries.

Legitimate shared libraries could be modified to

launch malware as a side-effect of a normal

library call, or malicious plugins could be written

to launch malware instead of their advertised

functions. For example, the Fuwudoor back door

takes advantage of svchost.exe‘s ability to run

code from arbitrary shared libraries on Microsoft

Windows systems to launch itself [Sym07a]. File

hash checking may also be vulnerable to race

conditions: malware could overwrite a legitimate

file, launch, and overwrite itself with the

original, legitimate file before attempting

network access. An application firewall that

checked file hashes would see only the legitimate

trusted program, and grant access to the malware.

The directory re-mapping trick suggested above

could also be used to accomplish this.

Attacks using plugins or shared libraries could be

prevented by not only verifying the executable

files making network requests, but also all shared

libraries currently linked; however, malware

could switch shared libraries just as easily as it

could executables. Defeating the file-switching

attack is more difficult; unless the operating

system prevents modifications to currently-

loaded executable files and shared libraries, then

no checks of these files can be trusted. Malcode

inserted into a legitimate running process via a

buffer overflow or other exploit also cannot be

detected using checks against files.

5.5 Interpreted Languages and Virtualization

Application filtering relies on being able to

uniquely identify the application that is

requesting a connection. With traditional

compiled programs, this is feasible; each instance

of such an application is loaded and has its

resources managed by the operating system, so it

is possible to map packets to programs.

Unfortunately, when programs written in

interpreted languages load or request resources,

the operating system sees the interpreter, not the

program itself. To an application firewall, a news

reader running in a Java virtual machine is

indistinguishable from a backdoor running in a

Java virtual machine.

This could be fixed by requiring interpreters to

pass information to operating systems about what

program they are currently executing, but the

diversity of interpreters makes this infeasible.

Growing numbers of applications have built-in

Turing-complete scripting languages capable of

making network connections, and there is no

feasible way for operating systems to check if a

given program can execute arbitrary code within

its execution context. Even if there was, this

moves critical firewalling functionality to

untrusted user-space programs; there is no way to

prevent interpreters from lying to the operating

systems about what they are running. Finally, the

name of a script is largely meaningless to a

firewall; an application filter must make some

check against the script‘s codebase. But

interpreted languages may not have code that

exists on disk; it might exist solely in a memory

buffer or even be retrieved on demand from an

external source. In other words, application

filtering is mostly useless against interpreted

programs.

The same problem applies to programs running

in virtualized environments. No program running

in a virtualized environment, compiled or

interpreted, can be accurately identified by the

host operating system unless the virtualized

environment is trusted to the same degree as the

host OS and can supply information about

internal processes to the host. Although the

relatively small numbers of virtualization

platforms available makes adding such support

feasible, many existing virtualization packages

(such as VMware [VMw07]) are designed to run

operating systems that were not specifically

designed for virtualization, and may not even be

aware that they are running in virtualized

environments. Thus, proper support for

application filtering virtualized environments

would be at cross-purposes with many existing

tools and is not likely to be available any time

soon.

Connections by Proxy
Programs that use network resources do not

necessarily make network connections

themselves. They can instead start different

programs or pass requests to existing processes

to perform actions on their behalf [CBR03]. An

application firewall will see connections

originating in the processes that attempt to open

them, not the processes that requested them. This

flaw can be abused both ways: legitimate

programs that pass network connections to

others, such as inetd, may be fooled into passing

connections to malicious software, and malware

GSJ: VOLUME 6, ISSUE 5, May 2018 32

GSJ© 2018
www.globalscientificjournal.com

could use legitimate software, such as web

browsers, FTP clients or the ping command, to

do its dirty work.

Detecting the true originator of network

connections requires tracking process parent-

child relationships and IPC. Some commercial

application firewalls, including ZoneAlarm,

appear to use some form of this, but information

on the algorithms involved is not publicly

available.

5.6 Attacks Against Firewalling Software
Instead of attempting to exploit weaknesses in

how application firewalls verify that applications

are trusted, malware could attack the application

firewalls directly. Malware that attempts to shut

down security software is known to exist in the

wild [Sym07b]; user-space application filters

may have no effective defense against this sort of

attack. Malware running at sufficiently high

privilege levels may be able to bypass firewalls

and send or receive packets without firewall

checks. Malware may even be able to interfere

with firewalls‘ perceptions of file contents or

paths by intercepting system calls; rootkit

software frequently uses this technique to hide

itself from IDSs. This is not a likely attack

against host firewalls — any malware that has

compromised a host to the point that it can do

this is more likely to simply disable, cripple, or

circumvent the firewall — but could be used

against application filters on network firewalls.

For these reasons, host firewalls should never be

trusted to the same degree as network firewalls,

and even network firewalls should not fully trust

packet metadata that they cannot independently

verify.

5.7 An Improved Architecture for Application

Filtering
As pointed out above, application filtering has

many flaws. In this section, I present an

architecture for application filtering that

addresses many of them. It is possible that some

or all of these techniques are used by existing

proprietary software, but to the best of my

knowledge, none of these have appeared in

published literature.

Application Filtering by Network Firewalls
Since user and application information is

normally not available to network firewalls,

application filtering is normally only done by

host firewalls. However, there is no reason why

it can‘t be done at network firewalls. Protocols

like SOCKS, TAP [Ber92] and Ident [Joh93] can

be used to pass information about users to

network firewalls; these could be extended to

supply application information as well. There are

disadvantages to such a system, the most notable

being the overhead required for passing user and

application information and the possibility of

forgery, but there are also a number of

advantages. Since there are few avenues to

execute arbitrary code on network firewalls (as

compared to hosts employing host firewalls), it is

more difficult for malware to attack and

circumvent network firewalls. Also, network

firewalls allow centralized policy management

without needing to distribute policy to hosts, thus

avoiding the problems that policy distribution

entails (see Section 2.4.1).

Two basic methods can be used for application

filtering; either can be extended to enable

application filtering by network firewalls. One

way is to look for packets that open connections

and then look up the users and applications that

sent or will receive them. This is the approach

taken by the pre-2.6.14 Linux owner match, and

is necessarily inefficient since the application

must be identified by matching the properties of

the packet to a socket in kernel data structures,

an operation which requires at least O(n)

operations (where n is the number of currently-

executing processes) an requires locking.

However, if this is done inside a stateful packet

filter, which already has the ability to detect new

connections, then it is trivial to combine

application and packet filtering. The other way is

to hook into appropriate system calls (such as

connect() and accept()) to intercept applications‘

attempts to open connections. Since this must be

done on the hosts running the applications and

occurs within the applications‘ execution

contexts, it is trivial to identify the applications

involved using this method. However, packet

filtering is not normally done inside system calls,

so it may be difficult to perform both packet and

application filtering using this method.

Either design may be extended to support

application firewalling at network firewalls.

Again, two basic approaches are possible: hosts

wishing to open connections can pre-approve

them with firewalls, or firewalls can detect

attempts to open connections and ask hosts for

application information. Network firewalls can

GSJ: VOLUME 6, ISSUE 5, May 2018 33

GSJ© 2018
www.globalscientificjournal.com

only detect new connections by packet analysis,

so the obvious place to implement application

filters is inside stateful packet filters or circuit

gateways. Hosts using the pre-approval strategy

could detect new connections using either

method (although system call hooking is more

efficient) and send information about the user

and application to the firewall before sending the

connection-opening packet. Inbound connections

can be handled in the same way: a host that

detects an application attempting to listen for

connections can inform the firewall of this and

let the firewall decide what to do when an

attempt to connect arrives. Pre-approval requires

a minimum of only one extra message (for

outbound connections, pre-approval messages

could be attacked to connection establishment

packets, but this may interfere with some

existing protocols), sent from the host to the

firewall, making it relatively fast, but does have a

few drawbacks. Since pre-approval messages can

be generated at any time, malicious hosts could

attempt to flood firewalls with pre-approval

messages for connections that they have no

intention of establishing. Pre-approval messages

must expire after some period of time in order to

prevent firewalls from accumulating too many

valid pre-approval messages for programs that

have exited or will otherwise never follow

through. Short lifetimes will require hosts

listening for connections to periodically send

new pre-approval messages as long as they

continue to listen; long lifetimes may make

forgery easier. When using the call-back

strategy, hosts could either look up processes via

socket addresses on demand or build a list of

processes that are attempting to open connections

via system call hooking, then look up requesting

processes there. Either method is slower than the

pre-approval strategy, especially since this

approach requires a minimum of two messages: a

request from a firewall to the host and a

response. However, approval lifetimes and DoS

attacks against the firewall are no longer an

issue.

In order to make forgery of pre-approval

messages more difficult, pre-approval messages

for outgoing packets should include a hash of the

packet to be sent. Since the contents of

connection-establishing packets may be

predictable, it may be preferable to use a MAC

that covers both the packet and a nonce or

timestamp instead. The contents of packets won‘t

be known when pre-approval messages are

created for hosts that want to receive

connections, but MACs covering the hosts‘

addresses could be used in this case. Similarly,

information requests for outgoing messages

under the call-back strategy should contain a

hash or MAC covering the packet being sent; the

originating host can then verify that it actually

sent that packet.

In order for any form of application filtering at

network firewalls to work, the operating systems

(although not the user-space processes) of all

protected hosts must be trusted; malicious

operating systems (such as those infected with

rootkits) could lie to the firewall about what

processes are running or any other requested

information. However, if application filtering is

combined with some other form of firewalling on

a network firewall, then traffic from hosts with

malicious operating systems is still subject to

some form of filtering, whereas such traffic can

bypass any form of host firewall.

Preventing Application Spoofing
Since attempts to verify that connections come

from legitimate applications by checking files on

demand suffer from race conditions and are

prone to abuse, an alternate method must be

found. One possibility is to verify programs and

libraries when loaded, as done by integrity shells

[Coh89], and cache the hashes of each file until

needed. This scheme will generally require that

all programs and libraries, not only those

involved in making network connections, be

verified; if this overhead is too high, then

programs expected to make network connections

could be flagged for load-time verification, and

connection attempts from all others could be

summarily refused. Applications will take longer

to load when using this method, but there will be

less overhead when opening connections at run-

time. If the operating system can load and verify

files atomically, this should not suffer from race

conditions. Even if a race condition still exists, it

should only be exploitable in a much smaller

time window (no more than a few milliseconds)

than the race condition with on-demand

checking.

However, this approach is not without flaws. As

with on-demand file checks, it is ineffective

against interpreted programs or those running in

virtual machines. Hostile operating systems

could substitute hash values for legitimate

programs to disguise malware. If a collision can

GSJ: VOLUME 6, ISSUE 5, May 2018 34

GSJ© 2018
www.globalscientificjournal.com

be found in the hash function used, then a

malicious program could be substituted for a

legitimate one even on a computer with a trusted

operating system. A network firewall could foil

this last attack by requesting a hash or MAC

covering both the program and a nonce, but this

requires that hashing be done on demand and that

the firewall store copies of all relevant files. An

alternative possibility is to eschew files

altogether and hash processes‘ memory images

instead. Obviously, writable memory pages must

be excluded from such a hash. Unfortunately,

this will not work on systems that perform any

sort of relocation at load time (including most

modern operating systems), since memory

addresses inside the code in processes‘ memory

images may differ between executions [Lev00].

Even if all memory addresses were constant

between executions, a hostile operating system

could still substitute the memory image of a

legitimate program in the hashing algorithm or

could allow another process to launch a page-

replication attack along the lines of Wurster et

al.‘s [WvOS05]. Finally, this method can‘t

effectively verify programs that execute code

from writable pages in memory (although

operating systems can prevent this by preventing

code execution from writable memory pages, as

in PaX [the05]).

Neither method presented here will detect

processes that are executing code injected by

malware (through buffer overflows or other

exploits) rather than their own original code.

Other countermeasures (such as non-executable

writable memory and address space

randomization [dR07, the05, BDS03]) must be

taken against these threats.

5.8 Detecting Connections by Proxy
Detecting libraries linked to a process, malicious

or otherwise, can be done by simply monitoring

what it loads or analyzing its memory space

(assuming that processes cannot execute code

from writable memory). However, detecting

actions taken on behalf of other processes is

more difficult. In this section, I present an

algorithm that will detect many situations where

a process could be opening connections on behalf

of others.

A process will be considered to be opening a

connection on behalf of another if there is a

possible causal relationship between an action of

another process and the connection

establishment. A causal relationship exists

whenever a process receives information from

another process before opening a connection. For

example, a process could read from shared

memory or a socket, pipe or other IPC

mechanism to which another process had written.

Alternately, a process could have been started,

directly or indirectly, by another process. Files

could also be used for IPC, but, since files are

persistent, tracking reads and writes to files over

long periods of time may not be practical; for this

reason, a configurable limit of n seconds is

placed on how long records of file writes are

kept. Using these rules, a directed graph of

process interactions can be constructed as

follows:

• When a process starts another, a link is added

from the new process to the old one.

• When a process writes to shared memory or to

a pipe, socket, or other object that is shared

between processes, its identity is added to a list

associated with that object.

• When a process receives a signal from another

process or reads from shared memory, a pipe,

socket, or other object that is shared between

processes, a link is added from the reader to all

processes that have written to it.

• When a process writes to a file or other

persistent object, its identity is added to a list

associated with that file, which may only be

removed after at least n seconds have passed.

• When a process reads from a file, a link is

added from the reader to all processes that have

written to it within the past n seconds.

Note that the process relationship graph must

include processes that have terminated but which

still have causal relationships to existing

processes. Processes‘ identities must include all

information that the application filter uses to

identify processes, such as executable file names,

shared library names, and file hashes. Using this

graph, all processes having causal relationships

to a process that is attempting to open a

connection can be identified by performing a

traversal of the weakly connected component of

the graph rooted at the process that is attempting

to open the connection; this set of processes will

be known as a process group.

As an example, consider the following

interactions:

1. Process A starts process B

2. Process B starts processes C and D

GSJ: VOLUME 6, ISSUE 5, May 2018 35

GSJ© 2018
www.globalscientificjournal.com

3. Process E writes to a pipe which is read by

process C

4. Process D writes to a multicast socket, which

is read by processes E, B, and F

The graph generated for these interactions will

then be that shown in Figure 5.8. The groups for

all processes are as shown in Table 5.8.

Figure 5.8: Graph of causal relationships

between processes.

Process Process group

A {A}

B {A, B, D}

C {A, B, C, D, E}

D {A, B, D}

E {A, B, D, E}

F {A, B, D, F}

Table 5.8: Process groups for all processes in

A firewall that attempts to detect connections by

proxy in this manner would need to be

configured with not only the set of programs

allowed to make connections, but also all other

programs allowed to be in the process groups of

a program that is attempting to make a

connection. Using the above example, a firewall

could only allow connections from process D if it

both recognizes processes A, B and D, and it was

configured to allow connections from D while it

has causal relationships from A and B. If, for

instance, D was a web browser and A and B were

recognized operating system components, then

connections would be allowed. On the other

hand, if A was not recognized by the firewall,

then all connections from B would be rejected.

Unfortunately, this form of IPC tracking cannot

detect all forms of interaction between processes.

For example, the inetd program on Unix-based

systems receives connections from remote

processes and then executes arbitrary commands

to handle them. There is no way to detect this

interaction when the connection is opened, since

the process interaction hasn‘t occurred yet.

Programs may be able to use covert channels,

such as those described by Lampson [Lam73] to

pass commands in manners

undetectable to this algorithm. This algorithm

also can‘t detect any communication that is

persistent across reboots, reads from files that

were written to by processes that have timed out

of the graph, or anything that involves processes

on more than one computer. However, it can be

used to track most common forms of inter-

process communication and will be effective

against most attempts to use another program as

a network client.

Further Research in Application Firewalling

• The application firewalling techniques

described in Chapter 5 have not been

implemented and tested. While I believe them to

be practical, I have no figures on the overhead

imposed by such a system or the effect of this

overhead on network communications. A

complete implementation would require

significant amounts of work, but would be

necessary for a thorough analysis of the

efficiency and effectiveness of such an

application firewalling system.

• In Section 5.3.2, I identified several ways that

my techniques for identifying legitimate

applications could be fooled or bypassed using

virtual machines, interpreters, or malicious

operating systems. I do not believe that these can

be solved without making unrealistic

assumptions about the trustworthiness of

software, but I have no proof of this.

• The process graph mechanism described in

Section 5.3.3 should detect causal relationships

between process established via communication

over normal IPC channels, but does not take into

account inter-process covert channels [Lam73].

It also does not take into account programs like

inetd that accept connections and then execute

arbitrary programs to handle them. It may be

possible to devise another mechanism that can

more accurately identify connections by proxy.

Even without these enhancements, application

firewalls and covert authentication systems such

as port knocking and SPA, as presented in this

thesis, are useful tools that can significantly

enhance existing firewall systems by providing

them with additional information about who and

what is attempting to communicate through

them.

REFERENCES

GSJ: VOLUME 6, ISSUE 5, May 2018 36

GSJ© 2018
www.globalscientificjournal.com

[1] wikipedia.org. Slashdot effect.

http://en.wikipedia.org/wiki/Slashdot effect,3

April 2014

[2] New Trojan disables firewall defenses

http://totaldefense.iyogi.com/?p=77, 3 April

2014

[3] James Yonan. OpenVPN.

http://openvpn.net/, 4.April 2014

[4] VMware, Inc. Vmware.

http://www.vmware.com/, 2 April 2014

[5] About Network Security

http://www.technologyevaluation.com/search/for

/thesis-on-network-security.html,2 April,2014

[6] Harald Welte. Netfilter: firewalling, NAT,

and packet mangling for Linux.

http://www.netfilter.org/, 3 April 2014

[7] Online book Bruce Schneier. Applied

Cryptography. John Wiley & Sons, Inc., 2nd

edition, 2006.

[8] Wikipedia about Malware

http://en.wikipedia.org/wiki/Malware , 5 April

2014

[9] About Port firewall

http://support.microsoft.com/kb/308127 10 4

April 2014

[10]https://its.ucsc.edu/security/training/intro.ht

ml

[11] http://www.open.edu/openlearn/science-

maths-technology/computing-and-ict/systems-

computer/network-security/content-section---

references

[12]https://searchnetworking.techtarget.com/fea

ture/Network-Security-The-Complete-Reference-

Chapter-10-Network-device-security

[13]http://people.scs.carleton.ca/~paulv/5900wB

ooks.html

[14] Boyle and Panko, Corporate Computer

Security, 3/e (2013, Prentice Hall). See also:

Panko, Corporate Computer and Network

Security, 2/e (2009, Prentice Hall).

.

Syed Jamaluddin Ahmad, achieved Bachelor

of Science in Computer Science and

Engineering (BCSE) from Dhaka International

University, Masters of Science in Computing

Science Associates with research:

Telecommunication Engineering from

Athabasca University, Alberta, Canada and

IT-Pro of Diploma from Global Business

College, Munich, Germany. Presently

Working as an Assistant Professor, Computer

Science and Engineering, Shanto-Mariam University of Creative

Technology, Dhaka, Bangladesh. Formerly, was head of the Department

of Computer Science & Engineering, University of South Asia from

2012-2014, also Lecturer and Assistant Professor at Dhaka International

University from 2005-2007 and 2011-2012 respectively and was a

lecturer at Loyalist College, Canada, was Assistant Professor at

American International University, Fareast International University,

Royal University, Southeast University and Many more. He has already

15th international publications, 12th seminar papers, and conference

articles. He is also a founder member of a famous IT institute named

Arcadia IT (www.arcadia-it.com). Achieved Chancellor‘s Gold Crest in

2010 for M.Sc. in Canada and Outstanding result in the year of 2005.

and obtained ―President Gold Medal‖ for B.Sc.(Hon‘s). Best conductor

award in Germany for IT relevant works. Membership of ―The

NewYork International Thesis Justification Institute, USA, British

Council Language Club, National Debate Club, Dhaka, English

Language Club and DIU . Developed projects: Mail Server, Web

Server, Proxy Server, DNS(Primary, Secondary, Sub, Virtual DNS),

FTP Server, Samba Server, Virtual Web Server, Web mail Server,

DHCP Server, Dial in Server, Simulation on GAMBLING GAME Using

C/C++, Inventory System Project, Single Server Queuing System

Project, Multi Server Queuing System Project, Random walk Simulation

Project, Pure Pursuit Project (Air Scheduling), Cricket Management

Project, Daily Life Management Project, Many Little Projects Using

Graphics on C/C++, Corporate Network With Firewall Configure

OS:LINUX (REDHAT) Library Management Project Using Visual

Basic, Cyber View Network System:Tools:Php OS: Windows Xp Back-

end: My SQL Server, Online Shopping: Tools: Php, HTML, XML.

OS:Windows Xp, Back-end: My SQL and Cyber Security‖ Activities-

‗Nirapad Cyber Jogat, Atai hok ajker shapoth‘-To increase the

awareness about the laws, 2006 (2013 amendment) of Information and

Communication and attended Workshop on LINUX Authentication‖-

Lead by- Prof. Andrew Hall, Dean, Sorbon University, France,

Organized By- Athabasca University, CANADA, April, 2009. His areas

of interest include Data Mining, Big Data Management,

Telecommunications, Network Security, WiFi, Wimax, 3g, 4g network,

UNIX, LINUX Network Security,Programming Language(C/C++ or

JAVA), Database (Oracle), Algorithm Design, Graphics Design & Image
Processing and Algorithm Design.

Roksana Khandoker, achieved Bachelor of

Science in Computer Science and Engineering

(BCSE) from United International University,

Masters of Science in Computer Science and

Engineering from University of South Asia.

Presently Working as a Senior Lecturer,

Computer Science and Engineering,

University of South Asia, Dhaka, Bangladesh.

Formerly, was also a lecturer at different poly-

technique institutes. She has 4th international journals and attended

different international and national conferences. She is the Chairman of

the famous IT institute named Arcadia IT and Chairman of Brighton

International Alliance. Her areas of interest include Data Mining, Big

Data Management, Telecommunications, Network Security, WiFi,

Wimax, 3g and 4g network.

Farzana Nawrin achieved Bachelor of Science

in Computer Science and Engineering (BCSE)

from Dhaka City College under National

University, Masters of Science in Computer

Science from Jahangirnagar University. She

achieved 1st class 1st both B.Sc. and M.Sc.

degree. Presently working as a lecturer,

Computer Science and Engineering department,

Shanto-Mariam University of Creative Technology, Dhaka, Bangladesh.

Formerly, was also a lecturer of Computer Science and Engineering

department of Dhaka City College under National University. She has

done two thesis about network security in her B.Sc. and M.Sc. level. She

was also attended many national workshop. She has got special training

from Bangladesh Institute of Design and Development(BIDD). She has

special certification in CCNA and CompTIA A+. Her areas of interest

include Network Security, Telecommunication, System analysis,

Automata Design, Routing and Switching, Design and Analysis Compiler,

Wifi,Wimax,3g and 4g Network.

http://www.arcadia-it.com/

