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ABSTRACT 

Firewalls are used to protect networks from 

malicious traffic from the outside and Limit the 

flow of information from inside protected 

networks to the outside world. Most firewalls 

filter traffic based on network addresses and 

packet contents. Unfortunately, one major goal 

of firewalling that of limiting the users and 

programs that can communicate, is not well 

served by such designs: it is difficult to 

accurately map network addresses and packet 

contents to user and program names. Firewalls 

can solve the problem of securely mapping user 

names to addresses when filtering inbound traffic 

from un trusted networks through the use of 

covert authentication systems such as port 

knocking and single packet authorization. Egress 

firewalls can identify users and programs on 

trusted networks through the use of application 

filters. In this thesis, I survey the current state of 

both types of systems, describe their weaknesses, 

and introduce techniques to alleviate some of 

these weaknesses.  
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INTRODUCTION 

In ancient times, towns and villages were based 

around market-places, where goods from many 

sources could be traded freely. Over time, as 

towns grew into cities and gathered wealth, 

barbarians grew envious of the city-dwellers. In 

response to this threat, cities erected defensive 

walls to protect against outsiders. However, as 

the cities were still dependent on trade, the walls 

needed to have many gates to allow passage in 

and out of the cities; guards monitored who 

entered and exited and attempted to keep the 

barbarians out. 

So it is with the Internet. When first created, it 

was designed to foster sharing and collaboration. 

True to this goal, it was built to be as open as 

possible, with few to no restrictions. Later, as 

threats grew, network administrators deployed 

firewalls, which restrict the network traffic 

allowed to enter and leave local networks, while 

still allowing ―legitimate‖ traffic to pass. 

Unfortunately, discriminating between 

―legitimate‖ and ―illegitimate‖ traffic is not easy. 

The best practice is to allow only traffic that is 

explicitly recognized as legitimate while 

blocking everything else, but this is easier said 

than done. Factors to take into account when 

examining traffic include sources, destinations, 

the users and programs that sent or will receive 

the traffic, the information being exchanged, the 

format of the information being exchanged, the 
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time of day, the volume of traffic that has been 

sent by the source, and others; while not all of 

these are necessarily appropriate under all 

circumstances, others that are important are 

frequently ignored due to lack of information or 

the difficulty of checking. Also, no defensive 

measure is perfect: walls can be scaled with 

ladders or battered down by trebuchets, and 

security software can be disabled or bypassed by 

exploiting software or configuration 

vulnerabilities. For this reason, security (of both 

cities and computers) depends on the principle of 

defense in depth: the principle that security 

comes in layers, where the defeat of one layer 

doesn‘t leave everything vulnerable and that 

attackers must bypass multiple layers to reach 

anything important. 

 
Problems with Existing Firewall Technology 

1. Firewalls can easily limit what services can 

be reached from outside. However, it may 

also be necessary to limit which users can 

connect to those services. A common 

assumption, made by many modern firewalls, 

is that trusted users only connect from small 

sets of trusted hosts with specific addresses; 

they implement user filtering by blocking 

incoming packets with source addresses not 

in these sets. Unfortunately, the source 

addresses on incoming packets tell little 

about the user who sent them; malicious 

users can spoof trusted hosts, and trusted 

users can connect from un trusted hosts. 

Since many trusted hosts may have dynamic 

(DHCP-assigned) IP addresses, opening a 

firewall to one trusted host may require 

opening it to thousands of IP addresses, 

making it easier for an attacker to find an 

address to spoof or a machine with a trusted 

address to hijack. Adjusting the set of trusted 

IP addresses typically involves either manual 

reconfiguration by a firewall administrator or 

connecting to some world-accessible 

authentication service, which itself may be 

vulnerable to attack. 

 

2. Although users usually can be accurately 

linked to IP addresses within a local network, 

it can be difficult to limit the services with 

which those users are allowed to 

communicate. Firewalls generally attempt to 

filter outbound traffic by restricting the ports 

to which users may connect: for example, 

disallowing outbound connections to 

anything except TCP ports 80 (HTTP), 443 

(HTTPS), and 20 and 21 (FTP). 

Unfortunately, this isn‘t particularly 

effective: non-standard services may be 

running on these allowed ports. Whereas 

application-layer firewalls can easily filter 

traffic that doesn‘t match the expected 

protocol for a port, it is much more difficult 

to detect disallowed applications that tunnel 

traffic through standard protocols on standard 

ports. For instance, tunneling various 

protocols through port 80, normally used for 

unencrypted WWW traffic, has become quite 

common [Alb04, BP04], and encryption 

renders most application layer filters useless. 

Also, standard protocols can run on standard 

ports and still be used for unauthorized 

purposes. Restricting network access to only 

authorized local users and programs has the 

potential to alleviate these problems, but 

information about the users and applications 

that generated or will receive network traffic 

is usually only available at the source or 

destination hosts themselves, and isn‘t 

necessarily reliable. 

 

1.1 Contributions of this thesis 
This thesis introduces and describes methods for 

addressing both of these problems. The first can 

be addressed by using covert authentication 

systems, systems that allow users to authenticate 

without making their presence easy for attackers 

to detect, to allow legitimate users to inform 

ingress firewalls of their current network 

addresses and request that subsequent 

connections be accepted. Two such systems used 

today are port knocking and single packet 

authorization (SPA); I survey existing designs 

for both and highlight their strengths and 

weaknesses. Of particular concern are their 

weaknesses: both are frequently implemented 

with insecure authentication systems, do not 

authenticate servers to clients, fail in the 

presence of network address translation, are 

susceptible to denial-of-service attacks, and do 

not logically associate authentication exchanges 

with the network connections that they enable. 

Port knocking in particular is highly vulnerable 

to packet loss and reordering. With these flaws in 

mind, I then propose techniques that can be used 

to improve on existing port knocking and SPA 

systems. Challenge-response authentication 
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provides both cryptographically secure 

authentication and a method to authentication 

servers to clients; I propose port knocking and 

SPA designs using challenge-response 

authentication and show that the overhead 

imposed by such a system is not unreasonable 

under most circumstances. I present experimental 

analysis quantifying the degree of packet loss 

and re-ordering in packet streams typical of port 

knocking, and describe and compare several 

techniques for ensuring that messages 

transmitted by port knocking can be properly 

reassembled on delivery, regardless of the degree 

of reordering. I also propose several novel 

designs for port knocking systems and discuss 

their strengths and weaknesses compared to 

existing systems. Finally, I present and discuss 

several methods for creating logical associations 

between authentication exchanges and 

subsequent connections. This material expands 

and improves on my previously published work 

[dAJ05]. 

The second problem can be addressed by 

extending the capabilities of application filtering 

firewalls. Existing systems generally only 

provide application filtering on host firewalls; I 

discuss the advantages of extending network 

firewalls to also provide application filtering and 

mechanisms for communicating user and 

program information to network firewalls. Many 

designs for application filtering do not detect 

malicious programs masquerading as legitimate 

ones under certain circumstances; I suggest ways 

of preventing this through the use of integrity 

shells, but point out that solving this problem 

requires that the operating systems of hosts using 

application filtering must be trusted by the 

filtering system. Also, application filtering is 

ineffective against interpreted programs and 

those running inside virtual machines, unless the 

interpreters and virtual environments are also 

trusted. Finally, existing network firewalls do not 

always reliably detect when one process uses 

another as a client, potentially allowing 

malicious or un trusted programs to make 

unauthorized network connections. To solve this 

problem, I present an algorithm for tracking 

inter-process communication that can identify 

most such attempts. 

 

Background 

As background for the ideas presented in the 

following chapters, this chapter 

presents a general overview of networking, 

cryptography, and relevant offensive and 

defensive computer security technologies. 

 

2.1 Bibliography of Networking 
The Internet was designed in the 1960s, ‘70s and 

‘80s as a robust communication system between 

diverse local networks. Its design is based on a 

stack of five protocol layers: 

1. Physical – responsible for encoding and 

decoding signals over a transmission      medium, 

such as a wire, optical fiber, radio frequency, or 

avian carrier; 

2. Data link – responsible for communication 

between hosts on a physical network segment; 

3. Network – responsible for global addressing 

and routing packets between physical network 

segments; 

4. Transport – responsible for communication 

between processes, and optionally, reliable 

connections; 

5. Application – responsible for encoding and 

decoding information in formats 

understood by applications, as well as providing 

any necessary services not provided by lower 

layers. 

 

Each protocol layer provides services to layers 

above it; information being sent is passed down 

from the application layer to the physical layer, 

with each level performing transformations 

appropriate to that layer, before the physical 

layer handles the actual work of transmission. 

When information is received, each protocol 

layer undoes its transformations and passes 

information back up the stack, until it reaches the 

application layer. This design is similar to the 

OSI network stack model [Tan96], which 

mandates seven layers and a somewhat different 

breakdown of responsibilities. 

The infrastructure of the Internet consists of a 

number of routers, interconnected computers 

whose function is to forward information from its 

source to its intended destination; the process of 

finding such a path and forwarding information 

along it is known as routing. Computers and 

other devices that communicate over the Internet 

are known as hosts. 

 

2.2 Network and Transport Protocols 
The standard network protocol on the Internet is 

known as the Internet Protocol, version 4 (IPv4 ) 

[Pos81c]. (In this thesis, the abbreviation ―IP‖, 
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for ―Internet Protocol‖, always refers to IPv4; the 

next-generation Internet protocol, IPv6 will not 

be discussed.) IP provides an unreliable datagram 

service: it breaks the information that it transmits 

into packets (also known as data grams) and 

routes each to its destination independently, but 

provides no guarantees that packets are properly 

delivered. Packets may be dropped, duplicated, 

delayed, re-ordered, or corrupted in transit; error 

messages (in the form of ICMP packets 

[Pos81b]) may or may not be returned if delivery 

fails. IP packets contain a header of 20 to 60 

bytes and a payload of 8 to 65,516 bytes of data; 

packet sizes are selected based on the properties 

of lower protocol layers. IP headers contain 

metadata that enables packets to be routed to 

their destinations, such as the addresses of 

packets‘ sources and destinations. IP addresses 

are 32-bit numbers and are not necessarily 

unique; routers necessarily have more than one 

address, and some techniques allow hosts to 

share IP addresses. 

The Internet doesn‘t strictly follow the OSI stack 

model: various protocols exist that allow IP 

packets to be encapsulated inside protocols that 

run on top of IP. This encapsulation of protocols 

is known as tunneling. For instance, IPsec (a 

security architecture for IP) [KS05] can create 

encrypted tunnels for IP and other network 

protocols on top of IP, whereas GRE (―Generic 

Routing Encapsulation‖) [FLH+00] can create 

plain-text tunnels. More information on 

tunneling is available in [CBR03]. 

A number of transport layers exist, each 

providing different services. ICMP (―Internet 

Control Message Protocol‖) is used for 

delivering many types of error messages from the 

network and transport layers as well as 

performing a variety of administrative functions 

[Pos81b]. UDP (―User Datagram Protocol‖) 

provides an unreliable datagram service between 

applications [Pos80]; the only important feature 

that it adds to IP is application addressing. TCP 

(―Transmission Control Protocol‖), the most 

common transport protocol on the Internet, 

provides reliable bidirectional streams between 

applications [Pos81a]. Other transport protocols 

exist, providing other services. 

TCP breaks streams down into segments which 

are then encapsulated into IP packets. Like IP 

packets, TCP segments contain both headers and 

payload data. TCP assigns sequence numbers to 

every byte of payload data sent and requires that 

every byte be acknowledged; if any segments are 

lost or corrupted, either they will be resent or an 

error will be detected. Duplicate and out-of-order 

packets can also be detected and corrected using 

the sequence numbers. TCP headers contain 

application-layer addresses, data and 

acknowledgement sequence numbers, and 

control flags, among other fields. Segments used 

to initiate connections have the SYN 

(―synchronize‖) 

flag set; those used to finalize connections have 

the FIN flag set. The ACK flag indicates that a 

segment is acknowledging data received from the 

other end of the connection. Opening a TCP 

connection requires that both endpoints exchange 

initial sequence numbers (ISNs) using an 

algorithm known as the three-way handshake, 

shown in Figure 2.1. The client starts the 

handshake by choosing an ISN and sending it to 

the server in a segment with the SYN flag set. If 

the server chooses to accept the connection, it 

responds with its own ISN in a segment carrying 

the SYN flag; it also signals that it received the 

client‘s ISN by setting its acknowledgement 

number to the client‘s ISN plus one and setting 

the ACK flag. The client then acknowledges 

receipt of the server‘s ISN with an ACK segment 

carrying the server‘s ISN plus one in its 

acknowledgement number field. After 

completing this exchange, a TCP connection is 

established and both the client and server can 

send and receive data. 

Both TCP and UDP use ports for addressing 

applications. A port is simply a 16-bit integer. 

Any application can register itself (bind) to any 

unused port to send or receive data, although 

some common services customarily receive 

connections (listen) on particular ports. For 

instance, SSH (―Secure Shell‖, used for secure 

remote logins, file transfer, and tunneling other 

protocols) servers typically listen on port 

22/TCP, HTTP (used for retrieving documents 

from web servers) uses port 80/TCP, and DNS 

(―Domain Name System‖, responsible for 

mapping easy-to-remember names to numeric IP 

addresses) servers listen on port 53/UDP. Unix-

based operating systems typically allow only  
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Figure 2.2: TCP connection establishment 

handshake 

privileged applications (those with super user or 

administrative privileges) to use TCP and UDP 

ports with numbers below 1024. 

On most operating systems, applications use the 

socket interface [LFJ+86] to send and receive 

messages. Unprivileged applications are typically 

limited to using TCP and UDP; headers, with the 

exception of addressing information, are 

automatically generated by the operating system, 

as are TCP connection establishment and 

finalization messages. Privileged applications 

can use the raw socket interface to generate 

arbitrary packets [LFJ+86]. 

Neither IPv4, TCP, nor UDP provide any 

authentication or privacy services; any host can 

generate any packet and any host observing 

packets at the network layer can read the 

packets‘ payloads. If these services are 

important, then they can be provided by 

application-layer protocols, TCP extensions such 

as TLS [DR06], IP extensions such as IPsec 

[KS05], or the next-generation Internet Protocol, 

IPv6 [DH98]. 

 

2.3 Network Application Architectures 
Applications that communicate over networks 

usually follow the client-server model: client 

programs, which may interface with users, 

connect to servers and request resources. For 

instance, web browsers connect to servers and 

request documents, and SSH clients connect to 

servers and request login shells. Peer-to-peer 

(p2p) applications operate as both clients and 

servers, allowing them to connect to each other. 

Proxy servers act as intermediaries between 

clients and servers; clients connect to proxies, 

which then connect to servers on their behalf and 

forward data between the two connections. Such 

systems are often used for firewalling (as in 

circuit and application gateways; see Section 

2.4.1), caching, and load balancing. 

 

2.4 Vulnerabilities in Internet Protocols 
When the core Internet protocols were designed, 

the Internet was a research network with a small 

user community who knew and trusted each 

other. As a result, security was not a high 

priority. Many pro tocols have useful features 

that easily lend themselves to malicious use; 

many even have outright design flaws that 

weaken security to no tangible benefit. For 

example, 

 

• Hosts can assert any source IP address they 

want on packets that they generate (IP spoofing). 

Routers often have no way of determining if 

packets‘ source addresses are correct and are not 

required to block invalid packets even when they 

can be detected. 

 

• Especially in early TCP implementations, the 

initial sequence numbers used for new 

connections were predictable; in conjunction 

with IP spoofing, this allowed attackers to 

establish TCP sessions with remote hosts while 

using spoofed IP addresses [Mor85]. 

 

• Many of the protocols used to distribute routing 

information on the Internet and map physical 

addresses to IP addresses on local networks are 

not secure, allowing attackers to intercept traffic 

destined to other hosts [Bel89, dVdVI98]. 

 

• IP packets can be fragmented at (almost) 

arbitrary boundaries, allowing attackers to split 

attack signatures between multiple packets. 

Furthermore, IP fragments and TCP segments are 

allowed to overlap; it is up to the receiver to 

decide how to re-assemble them. As a result, 

firewalls and IDSs that re-assemble streams 

before checking them may miss attacks against 

hosts that use different re-assembly strategies 

[PN98]. 

Only in the late 1980s did the effects of the 

insecurity of the Internet start to become well 

known and, even then, few people worried about 

it; even well-publicized, high impact events such 

as the Morris Worm outbreak [Spa89] did little 

to sway users. Since then, as the Internet has 

experienced rapid growth, corrections to many of 

its fundamental flaws have been few and far 

between, mostly consisting of patches designed 
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to reduce the risk of an attack with minimal 

disruption to users. 

 

2.5 Cryptography 
Modern cryptography seeks to provide the 

services of authentication, data integrity, 

confidentiality and non-repudiation [MvOV96, p. 

4] through the use of well-known algorithms 

whose security relies solely on the knowledge of 

relatively small cryptographic keys. Generally, 

the strengths of related cryptographic algorithms 

within a class of algorithms are proportional to 

the sizes of their keys; an algorithm is considered 

to be strong if it is computationally infeasible to 

determine anything about the key, given full 

knowledge of the plaintext, ciphertext, and 

algorithm; this is a principle known as 

Kerckhoffs‘ law [Ker83]. For instance, 

identifying properly-chosen keys for most 

modern ciphers is estimated to require thousands 

of years, even if all the computational power in 

the world was applied to the problem [Sch06b]. 

This section provides a brief overview of some 

of the building blocks of modern cryptography; 

more information can be found in [MvOV96, 

Sch06b, Sta03]. 

 

Security Services 
Cryptographic algorithms are generally used to 

provide the following five services [IT91, Sta03]: 

Authentication The assurance that the identity 

an entity is as claimed. 

Access control The prevention of unauthorized 

use of a resource. 

Data confidentiality The protection of data 

against unauthorized disclosure. 

Data integrity The assurance that data is 

received or retrieved exactly as it was sent or 

stored. 

Non-repudiation Protection against an entity 

performing an action and later denying that it did 

so. 

 

Digital Signatures 
While MACs provide integrity and 

authentication, they depend on symmetric keys 

and don‘t provide non-repudiation. In a digital 

signature scheme, messages signatures are 

generated using senders‘ private keys; any party 

can use a sender‘s public key to verify the 

signature on a message. Unlike asymmetric 

ciphers, digital signatures do not provide 

confidentiality, but they do provide message 

integrity, authentication and non-repudiation. In 

order to improve execution performance (the 

algorithms used in asymmetric cryptography tend 

to be slow) and prevent existential forgery 

attacks (in which an attacker can generate a valid 

signature for a message without having control 

over the message‘s contents) [MvOV96, p. 432], 

digital signatures are typically computed over 

cryptographic hashes of the original messages. 

Verification of a signature then requires applying 

the public key to the signature to recover the 

sender‘s hash and re computing the hash on the 

message; if the two hashes match, then the 

message must have been sent by the owner of the 

public key and has not been altered. 

Digital signature algorithms are often constructed 

from asymmetric ciphers. For instance, the RSA 

cipher can be used to generate digital signatures 

by ―encrypting‖ message hashes with the 

sender‘s private key; the hash can be recovered 

by ―decrypting‖ the signature with the sender‘s 

public key [MvOV96, p. 433]. Other algorithms 

designed specifically for digital signatures 

include DSA [MvOV96, p. 451] and ECDSA 

[Cer00]. 

 

2.6 Key Exchange Algorithms 
Both symmetric ciphers and MACs require that 

all participating parties know a secret key, 

whereas asymmetric ciphers and digital 

signatures require that all parties know each 

others‘ public keys. Securely distributing these 

keys is a difficult problem, requiring that all 

parties are able to guarantee that they received 

the correct keys and that they were not modified 

in transit. 

The easiest way to solve the problem (for 

symmetric keys) is for one party to generate the 

key and distribute it to all other parties in person 

[Sta03, p. 212], but this is not always practical. If 

all parties already share a key, then the existing 

key can be used to create a secure channel to 

transmit the new one [Sta03, p. 211]; however, if 

the existing key has been compromised, then so 

will the new one. When a pre-shared key is 

available a common strategy is to use it as a 

master key and use it only for distribution of 

session keys [Sta03, p. 213]; the loss of a session 

key does not compromise the master, and the 

infrequent use of the master reduces the risk of it 

being compromised. Other strategies for key 

distribution rely on a trusted third party, with 

whom all parties already share keys. The third 
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party generates the new key, establishes secure 

channels with all parties, and uses the secure 

channels to distribute the new shared key [Sta03, 

p. 211]. Similar techniques can be used for 

distributing public keys. 

Instead of one party choosing a symmetric key 

and passing it to the other, the Diffie-Hellman 

key exchange algorithm [MvOV96, p. 515] (also 

known as exponential key exchange) can be used 

to allow both parties to contribute to the shared 

key. Diffie-Hellman is based on the believed 

intractability of computing discrete logarithms in 

multiplicative groups of integers modulo primes 

(with an equivalent existing for elliptic curves); it 

is computationally infeasible to calculate the 

shared secret given the messages exchanged 

between the two parties. However, to prevent 

man-in-the middle attacks (see the next section), 

the messages exchanged must authenticated, 

requiring that the two parties share a master key 

or have authenticated public keys for each other. 

 

2.7 Attacks and Offensive Technologies 
The barbarians at the gates of ancient cities came 

from many tribes and carried many different 

weapons. Likewise, attackers against computer 

systems take many forms and use many different 

strategies. This section describes some common 

attack strategies, including port scans, 0-day 

exploits, worms, and denial-of-service attacks. 

 

Port Scans 
Before an attacker, be it person or program, can 

launch an attack against something, it needs to 

gather information about its target. Possibly the 

single most important information about a target 

computer, from an attacker‘s perspective, is what 

services are running. The easiest way to gather 

this information is by attempting to connect to all 

ports suspected of running services of interest, in 

what is known as a port scan [Fyo97]. 

Attackers with a particular target in mind will 

often scan many or even all ports on the target, in 

order to identify all running services and gather 

as much information as possible. Scanning 

multiple ports on a single target in this manner is 

known as vertical scanning [SHM02]; the 

unqualified term ―port scan‖ generally refers to 

vertical scans. Other attackers looking for a 

particular service, not caring about what host is 

running it, will scan a single port over a large 

number of hosts; this is known as horizontal 

scanning [SHM02] or network scanning 

[MMB05]. 

Port scans can take many forms [dVCIdV99, 

Fyo97]. The simplest form of scan against TCP 

ports is the connect scan, in which the attacker 

attempts to open a TCP connection to each port. 

If the connection attempt succeeds, then the 

attacker knows that something is listening there 

and can either attempt to determine what it is or 

simply make a guess based on the port number; if 

the connection attempt fails, then the attacker 

typically assumes that no service is using that 

port. Connect scans are not particularly stealthy, 

since a successful connection establishment will 

be noticed by the application listening on the 

target, which may log the event. However, there 

is no need to fully open a TCP connection to 

determine if something is listening; a TCP stack 

is required to send a SYN-ACK packet in 

response to a SYN to any open port and will 

either send an ICMP error or nothing at all in 

response to a SYN packet sent to a closed port. 

This takes place at the kernel level on the target 

system; the application is never informed of 

connections that are never fully opened. SYN 

scans take advantage of this by scanning with 

SYN packets only; the scanner may send RST 

packets to tear down the half-open connections 

that it creates. Other types of TCP scans include 

ACK scans, FIN scans, Xmas scans (using 

packets with many flags set) and null scans 

(using packets with no TCP flags set); these are 

used to penetrate certain firewalls that interfere 

with other types of scans or to gather information 

about firewall rule sets. UDP scanning is 

somewhat more difficult: ICMP errors in 

response to a packet sent to a UDP port imply 

that it is closed; UDP responses suggest that it is 

open, and no response at all can mean anything. 

 

0-Day Exploits 
When the ―good guys‖ learn of a new 

vulnerability in a computer system, the typical 

response is to try to fix it and to learn how to 

detect exploitation attempts. Usually, 

vulnerabilities are caused by defects in software 

implementations, which are ideally corrected by 

patches written and made available by the 

vendors or maintainers of the vulnerable 

software within a few hours to a few weeks. If no 

patch is immediately available, then instructions 

on how to prevent or lessen the impact of a 

successful exploitation are frequently published; 
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these may involve disabling certain functionality 

or even disabling vulnerable services entirely. 

When a new vulnerability is discovered, the 

practice of responsible disclosure is to first 

privately inform the vendor or maintainer of the 

vulnerable software of the existence of the flaw 

and wait until a patch or work-around is 

available before publishing details of the flaw. 

Unfortunately, the ―bad guys‖ rarely follow this 

practice: new vulnerabilities are often kept secret 

or circulated privately among the ―hacker‖ 

community, not becoming known to the security 

community until long after automated tools to 

exploit them are available. Newly discovered 

vulnerabilities to which the security community 

has not yet had the chance to react are known as 

0-day vulnerabilities; methods to exploit them 

are known as 0-day exploits. 

Defending against 0-day exploits is no easy task: 

since their existence is not known to defenders, 

no reactive measures can be taken. The only 

option is proactive security: using multiple layers 

of security so that a breach in one exposes little 

(a practice known as defense in depth) and 

aggressively auditing potentially vulnerable 

systems to attempt to detect flaws before the bad 

guys do. Unfortunately, defense in depth is not 

always easily implemented and many protocols 

and software systems are too complex to 

effectively audit: many flaws in common 

software have gone undiscovered for years. 

Nevertheless, short of disconnecting systems 

entirely, these are the only defenses available 

against 0-day attacks. 

 

2.8 Worms and Malware 
Malware is a generic term for any form of 

malicious software. Malware may take many 

forms, the best known of which is the virus. Two 

forms of malware particularly relevant to this 

thesis are worms and rootkits. 

A worm is a program that replicates itself to new 

hosts across networks by scanning for targets and 

infecting them [Ayc06]. Worms usually gain 

access to computer systems by exploiting user 

errors or software vulnerabilities or miss 

configurations, and once inside, continue 

scanning for new targets. This allows worms to 

spread exponentially. The Sapphire worm of 

2003 infected 90% of all vulnerable hosts within 

10 minutes [MPS+03] of release; theoretically, 

some worms could infect nearly all available 

targets in under a second [SMPW04]. Worms are 

usually non-specific as to what hosts they infect; 

they simply use horizontal port scanning to 

locate vulnerable hosts. On hosts that they infect, 

many worms install additional software, such as 

rootkits, backdoor software that allows the 

worms‘ creators to issue commands to infected 

computers, or spyware that attempts to collect 

passwords and credit card numbers. Worms are 

often written to exploit 0-day software 

vulnerabilities. This, combined with worms‘ 

rapid propagation, makes reactive security 

measures largely useless against worms. 

Rootkits [HB06] are software that is used to hide 

the presence or activity of other software. These 

can take the form of modified user space 

programs or kernel drivers that modify the 

behavior of other drivers under certain 

circumstances. Common uses are to hide certain 

files from directory listings or certain processes 

from process listings; these files and processes 

typically belong to other forms of malware. In 

general, rootkits can be used to modify just about 

any form of operating system behavior. 
 

2.9 Denial-of-Service Attacks 
A denial-of-service (DoS) attack is simply any 

attack that results in the degradation of the 

quality of service of a targeted system, limiting 

or denying its use to legitimate users. DoS 

attacks can range from the unintentional [wik07] 

to the criminal [Vij04], and from single-packet 

logic attacks [Ken97] to massive resource-

consumption attacks [Gib05]. Logic attacks 

leading to denial-of-service conditions are 

usually caused by software bugs and are easily 

correctable; more interesting (and more difficult 

to defend against) are the resource-consumption 

attacks. 

Resource-consumption attacks can attempt to 

saturate network links, burn CPU time, fill 

available memory, or use up other scarce 

resources. If the target host has sufficiently 

limited resources, then a single host may be able 

to effect a resource consumption attack, but more 

often, several hosts need to cooperate to bring 

down a target, in what is known as a distributed 

denial-of-service (DDoS) attack [LRST00]. A 

common type of resource-consumption attack is 

the SYN-flood [dri96], in which attackers 

attempt to fill TCP data structures on targets with 

half-open connections, preventing them from 

accepting any new legitimate connections. In 

order to prevent targets from blocking traffic 

from attackers, SYN floods normally employ 
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random spoofed source IP addresses. Since 

targets will attempt to open TCP connections 

with all of these apparent sources, a side effect of 

SYN floods is SYN-ACK packets being sent all 

over the Internet; this is known as backscatter 

[MSB+06]. 

 

2.10 Firewalls and Defensive Technologies 

Like the defenses of ancient cities, defensive 

network technologies are primarily based on 

keeping intruders out and identifying them when 

they manage to gain entrance. Firewalls are the 

walls themselves - they restrict the traffic that is 

allowed to enter and leave a protected area. 

Intrusion Detection Systems (IDSs) and related 

technologies take a more active role in 

attempting to detect and identify attacks that are 

being attempted or have succeeded, making them 

more like guards. Other technologies, such as 

Network Address Translators (NATs) and 

Virtual Private Networks (VPNs), also have roles 

in securing networks. 

 

Firewalls 
Bellovin and Cheswick [BC94] defined the 

following three design goals for firewalls: 

1. All traffic from inside to outside, and vice-

versa, must pass through the firewall. 

2. Only authorized traffic, as defined by a 

local security policy, will be allowed to pass. 

3. The firewall itself is immune to 

penetration. 

 

Two architectural designs are possible to satisfy 

the first requirement: either firewalls are situated 

on all network paths in and out of protected 

networks (network or perimeter firewalls), or 

firewalls are situated on the protected hosts 

themselves (host firewalls). Local security policy 

differs from place to place. Firewalls are most 

frequently deployed as proactive security 

mechanisms that limit the traffic that is allowed 

to enter the protected host or network in order to 

block attacks: this is known as ingress filtering. 

Firewalls can also be used for egress filtering: 

restricting outbound traffic in order to limit 

information leaks, the spread of malware, and the 

outside resources that can be accessed. In 

general, firewalls can be used to enforce a 

number of types of access-control policies on 

both inbound and outbound traffic: 

 

1. what services are available, 

2. who may access those services, 

3. from where those services may be accessed, 

4. when those services may be accessed, and 

5. how those services may be used. 

 

There are many different types of firewalls, 

differing in how they filter traffic and what 

information is available to them. The properties 

of each are summarized in the following 

sections; more information is available in 

[CBR03]. 

 

Packet filters 
The simplest type of firewall is the packet filter 

[CBR03, p. 176], which examines packets one at 

a time at the network layer and decides to accept 

or reject them based on available information. 

Packet filters typically have no knowledge of 

application layer protocols, but can make 

decisions based on link-, network- and transport-

layer protocol headers and the network links on 

which packets arrive. Some packet filters are also 

capable of making decisions based on the current 

time, the volume of data transferred to or from a 

host within a time frame, the number of packets 

matching a rule within a time frame, and other 

conditions not directly related to the packets 

themselves. Common uses of packet filters 

include: 

 

• preventing hosts outside the local network from 

connecting to an internal server, 

• blocking packets with obviously spoofed source 

addresses (such as internal addresses on packets 

on an external network interface), 

• blocking tiny IP fragments, packets using 

source routing, directed broadcasts, and other 

suspicious packets, and 

• preventing employees from using peer-to-peer 

file-sharing software. 

 

Packet filters are simple to implement and 

require few resources; they are found on many 

network devices (bridges, routers, etc.) and older 

operating systems (such as Linux 2.2‘s ipchains 

[Rus00]). Packet filters are good at limiting what 

services are available from where and when, but 

are poor at tracking connections and have little 

knowledge of who is using network services or 

how they are being used. For instance, TCP 

clients typically connect from high-numbered 

ports, whereas servers listen on low-numbered 

ports. If a firewall wants to allow users to 
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connect to external web servers, then it must 

allow outbound TCP traffic to port 80. However, 

responses from these web servers must also be 

allowed through the firewall. Simply allowing all 

packets originating at port 80 through is not 

adequate; anyone could run a program on port 80 

and bypass the firewall entirely. The usual 

solution is to allow all packets with the ACK flag 

coming from port 80 and destined to high-

numbered ports, but this will still allow some 

packets through the firewall that are not part of 

any legitimate connection. Since packet filters 

have no knowledge of application-layer data, 

they can‘t prevent hapless users from 

downloading viruses from a web pages, nor can 

they prevent malicious insiders from sending 

trade secrets to third parties. They also have no 

knowledge of who or what is sending the packets 

they see. Packet filters can only identify users 

and programs by IP addresses and ports: they 

can‘t distinguish between worms and web 

browsers. Newer operating systems and firewall 

appliances generally use more elaborate forms of 

firewalls that address some of these problems. 

Some packet filters attempt to process 

application-layer data as well, in order to identify 

the application protocol being used or to detect 

and reject malformed or malicious application-

layer messages. This is known as deep packet 

inspection [Dub03]. Unless deep packet filters 

perform some re assembly of packets, they can 

be confused by pathological fragmentation. They 

are often considered to be a form of Intrusion 

Prevention System (see Section 2.4.2). 

 

Stateful packet filters 
As opposed to simple packet filters, which 

consider packets independently, stateful (also 

known as dynamic) packet filters [CBR03, p. 

188] consider packets to be parts of connections. 

Connections can be accepted or denied; packets 

associated with accepted connections are 

generally accepted with little further inspection. 

Stateful packet filters are also capable of the 

sorts of analysis performed by simple packet 

filters: connections may be filtered based on 

source, destination or any other packet 

characteristics, and packets may be blocked even 

if they belong to valid connections. 

How packets are associated with connections 

differs based on the transport protocol being 

used. TCP connections are easily tracked; a 

partial implementation of the TCP state machine 

is enough to determine when connections open 

and close. More advanced stateful firewalls may 

track TCP window sizes and other aspects of 

TCP to more accurately determine if a packet 

belongs to a given connection. UDP doesn‘t 

define ―connections‖ on its own, so UDP 

connections are usually tracked using intervals 

between packets; connections are opened for any 

UDP packet traveling between a pair of 

addresses and are closed when a timeout is 

reached without any more packets between the 

addresses being observed. ICMP error messages 

are usually treated as part of the TCP or UDP 

connections associated with the packets that 

triggered them; other types of ICMP messages 

(such as ―pings‖) may be treated as connections 

of their own. Other protocols‘ connection states 

are tracked in manners appropriate to those 

protocols. Since the underlying network protocol 

(IPv4) is fundamentally unreliable, connection-

closing messages from TCP and other stateful 

transport protocols may never be received, so 

stateful packet filters may also use timeouts to 

close such connections. 

Application-layer semantics can also play a role 

in connection tracking. Several common 

application-layer protocols, such as FTP, make 

use of more than one transport-layer connection. 

Stateful firewalls often have extensions that 

perform limited parsing of application-layer 

messages to treat these secondary connections as 

parts of the connections that created them, 

greatly simplifying firewall rules. 

The ability to track connection state gives 

stateful packet filters many advantages over 

simple packet filters: it allows rule-sets to more 

accurately reflect legitimate traffic patterns and 

reduces the chance of passing packets that should 

be rejected. However, 
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Figure 2.10: Flaw in UDP state tracking 

 

this comes at a cost: stateful packet filters are far 

more complex and require large amounts of 

memory for state tracking. Additionally, the 

methods of generating state information for 

stateless protocols like UDP can be fooled. Two 

hosts whose firewalls allow outbound UDP 

packets between their addresses but deny 

inbound packets can nevertheless establish a 

connection by both attempting to connect to each 

other, as in Figure 2.2; many peer-to-peer 

applications use this technique to bypass 

firewalls [Sch06a]. As with simple packet filters, 

stateful packet filters have limited knowledge of 

application-layer protocols or of the actual users 

and programs sending and receiving the packets 

that they examine. 

Most modern operating systems come with built-

in stateful packet filters, as do most dedicated 

firewall appliances on the market. Typical 

examples include Linux‘s iptables [Wel06a] and 

OpenBSD‘s pf [KHM06]. Details of how 

iptables tracks connections are available in 

[And06]. 

Application filters 
Packet filters are only capable of identifying 

users by IP address; all users of shared 

computers are treated alike. Likewise, packet 

filters are only capable of identifying programs 

by port numbers and treat all programs using the 

same ports alike. They cannot implement per-

user access restrictions or limit network access to 

specific applications. There is good reason for 

this: the information necessary to implement 

such filters, user and application names, is not 

included in IP packet headers and thus is not 

available to packet filters. This information is 

generally only available at the hosts sending or 

receiving the packets in question, thus preventing 

any form of network firewall from using it. 

However, host firewalls do have access to this 

information; most modern host firewalling 

software (including PC firewalling packages, 

such as Check Point‘s ZoneAlarm [Zon07]) 

make use of it to implement user and application 

filtering1 [CBR03, p. 226], as well as stateful 

packet filtering. 

Unlike packet filters, application filters can tell 

the difference between legitimate software and 

malware that uses the same ports: for instance, 

spyware that communicates with valid HTTP 

messages over port 80/TCP would be 

indistinguishable from a web browser to a packet 

filter, but an application filter would be able to 

tell the difference. Application filters can also be 

used to block certain software that is known to 

have questionable security records, even if 

preventing its installation is not feasible or it is 

integrated into an operating system and cannot be 

removed, while still permitting network access to 

functionally equivalent software. They can also 

be used to prevent any network access when no 

user is logged in. 

Application filtering is primarily used by egress 

firewalls, but may also be used on ingress. 

 

Circuit gateways 
Circuit gateways [CBR03, p. 186] are proxy 

servers that run at the transport layer. They don‘t 

allow end-to-end connections through 

themselves: instead, protected clients are 

required to connect to a gateway and 

communicate with it using a special protocol to 

request connections to the outside world. The 

gateway then makes the requested connection (if 

it is allowed by the gateway‘s security policy) 

and forwards data between the two connections. 

A similar approach is taken with local servers 

that want to make services available from outside 

the protected network. 

Because circuit gateways re-assemble data at the 

transport layer before passing it in or out, they 

can easily protect against IP-layer attacks such as 

source routing and pathological fragmentation. 

They are even able to exchange data between the 

IP-based Internet and local networks using other 

network-layer protocols or between logically 

disconnected networks. However, their abilities 
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to filter traffic are not much different than those 

of stateful packet filters, despite requiring 

significantly more resources. Circuit gateways 

may require user names, passwords, and other 

information from clients before creating 

connections to the outside, potentially allowing 

them to filter based on local user and application, 

but they still have no knowledge of remote users, 

nor of application-layer protocols. 

Circuit gateways are generally used as network 

firewalls; host-based circuit gateways would be 

pointless. A common circuit gateway system is 

SOCKS [KK92, LGL+96]. 

 

Application gateways 
Application gateways [CBR03, p. 185] work as 

proxies at the application layer. As with circuit 

gateways, connections are not end-to-end but are 

made by the gateways on request. In addition to 

the information available to circuit gateways, 

application gateways are able to filter based on 

application-layer information, and possibly also 

user and application information, but, due to the 

diversity and complexity of application-layer 

protocols, separate gateways are required for 

each application. 

Typical uses of application gateways are to filter 

for malware, malformed messages that could 

represent attacks against servers, and content that 

should not be entering or leaving the protected 

network, such as pornography or trade secrets. 

The tradeoff for this power is that application 

gateways require large amounts of memory and 

processing time and frequently cannot be made 

fully transparent to users. Most common web 

proxies and SMTP servers are able to function as 

application gateways for their respective 

protocols; gateways for more obscure or 

proprietary protocols can be difficult to find. 

 

Distributed firewalls 
Traditionally, network firewalls have been the 

most common method for protecting large 

numbers of hosts; they are easy to deploy and 

manage. However, they do have a number of 

disadvantages: 

• Unauthorized or improperly protected network 

links can allow users to bypass firewalls entirely. 

• Laptops and other roaming hosts move in and 

out of protected areas; while outside of the 

network perimeter, they are not protected by its 

firewalls. 

• Firewalls at network choke-points are single 

points of failure and possible performance 

bottlenecks. 

• In networks with more than one route to the 

Internet, it is possible for packets to leave over 

one link and their responses to arrive on another. 

Stateful packet filters and gateways will not be 

able to re-assemble connections under these 

conditions. 

As a way of improving on these weaknesses, 

Bellovin [Bel99] proposed using distributed 

firewalls in which each host in a protected 

network runs its own firewalling software but 

receives configuration from a central 

management server. Such a system has a number 

of advantages: 

• The firewall is independent of network 

topology; hosts no longer need to be classified as 

―inside‖ or ―outside‖ of a security perimeter. 

• There is no longer a single point of failure or 

performance bottleneck; if one host goes down, 

others are unaffected. 

• The firewall can base its decisions on additional 

information that is not available to most network 

firewalls, such as user and application names and 

dynamically assigned ports, without needing to 

resort to computationally expensive application 

layer processing. 

• Hosts that move between networks or otherwise 

change addresses frequently, such as laptop 

computers, are easily protected, regardless of 

their current locations. 

The independence of network topology provided 

by this model is particularly important: many of 

the threats faced by modern networks are from 

the inside (spyware, worms carried into protected 

areas on laptops, malicious insiders, etc.). The 

traditional model of walled-in networks with 

barbarians outside that forms the basis of most 

firewall architectures provides little to no defense 

against internal attackers. 

One disadvantage of distributed firewalls is that 

hosts cannot make any assumptions about 

spoofed IP addresses on the local network and 

don‘t know which hosts to trust. Bellovin 

[Bel99] suggests working around this by using 

IPsec to cryptographically verify host identities. 

In any case, this is a stronger form of 

authentication than relying on IP addresses, and 

works even if IP addresses change. However, 

IPsec adoption is nowhere near the point of 

making this practical over domains larger than 

corporate networks, so hosts will still have to 
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rely on address-based authentication for 

communication with hosts outside of their 

administrative domains. Also, many older and 

less-capable systems are still in use for which 

IPsec support is not available. 

Other disadvantages of distributed firewalls lie in 

the difficulty of managing configuration. 

Management servers may either attempt to push 

configuration updates to all hosts, in which case 

any hosts that are currently unreachable do not 

receive the updates, or rely on hosts polling for 

and pulling updates, in which case hosts that 

neglect to poll regularly (or are prevented from 

doing so) do not receive them. It is difficult to 

ensure that all hosts that should be running 

firewalling software actually are; hosts whose 

firewalls are malfunctioning or not present may 

not be protected at all. Finally, some malware 

(such as Y3K Rat 1.6 [Whi01]) attempts to 

disable local security software on hosts that it 

infects; if this succeeds, then the firewall is 

disabled at the moment when it is needed most. 

In one implementation [IKBS00] of Bellovin‘s 

concept [Bel99], simply disabling the policy 

daemon will disable the firewall. Since there are 

many fewer avenues for malware to be executed 

on network firewalls, this attack is much less of a 

threat for traditional firewalling systems. 

 

Hybrid firewalls 
Bellovin [Bel99] recognized some of the 

weaknesses of distributed firewalls in his original 

paper and suggested that hybrid firewalls, 

combinations of distributed and choke-point 

elements, could address some of them. There are 

a number of ways that such a system could be 

structured: 

 

• A network of non-mobile hosts, each protected 

by distributed firewalling software but without 

cryptographic authentication of peers, could use 

simple network firewalls to drop inbound packets 

with spoofed internal addresses. This would 

prevent many spoofing attacks under the 

assumption that no internal hosts are engaging in 

spoofing. 

• A network that uses distributed firewalling 

could employ network firewalls as a secondary 

protection mechanism: this would protect hosts 

whose firewalling software is missing, 

malfunctioning, or not configured correctly. If 

the network firewall failed, it could fail open 

without leaving the network completely exposed. 

• Networks that contain both mobile and 

stationary hosts could use network firewalls with 

knowledge of network topology to protect 

stationary hosts, while using a distributed 

firewall and an IPsec gateway to allow protection 

for and secure communication with mobile hosts. 

 

2.11 Intrusion Detection Systems 
Unlike firewalls, intrusion detection systems 

(IDSs) take a reactive approach, attempting to 

identify attacks in progress or to detect evidence 

of past attacks and taking appropriate 

countermeasures. IDSs can use either statistical 

methods or pattern-matching to detect intrusions, 

can operate by monitoring logs or events on 

individual hosts or by monitoring network traffic, 

and can run periodically or in real time 

[DDW99]. 

Responses made by IDSs depend on the type of 

IDS and the type of attack. Single host signature 

matchers, such as some anti-virus engines, that 

detect successful intrusions may attempt 

automated clean-up operations or may simply 

notify an operator that clean-up is needed. Worm 

traffic detected on a local network may indicate 

that an intrusion has taken place; an IDS 

detecting such an event may attempt to isolate 

the infected host(s) in order to contain the worm 

[MSVS03]. Port scans detected at a perimeter 

firewall may result in all traffic from the 

scanning hosts being blocked [Sol98] or 

subjected to rate limitations [Wil02]. 

Unfortunately, automated responses can often 

cause unintended side effects: false positive 

detections may cause more harm over the long 

term than undetected intrusions and, even when 

attackers cannot hide from IDSs, they may 

attempt to trigger inappropriate responses. 

Signature-based detectors can be fooled into 

making inappropriate responses by deliberately 

matching the signature of different attacks, port 

scanners can spoof large numbers of source 

addresses in order to make port scan detectors 

block off large segments of the Internet, and 

worms can use spoofed source addresses to trick 

IDSs into quarantining too many hosts [PN98]. 

In many cases, the only safe automated response 

to intrusions is to inform the operator. 

Intrusion Prevention Systems (IPSs) use 

statistical or pattern-matching methods to attempt 

to automatically detect and disrupt attacks in real 

time [KVV05]. Due to their similarities in 

function, some IDSs (including Snort [MJ]) are 
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also capable of functioning as IPSs. Many 

―deep‖ packet filters are essentially combinations 

of stateful packet filters and simple IPSs 

[Ran05]. 

 

2.12 Network Address Translators 
Network Address Translators (NATs) [SE01, 

SH99] are devices that re-write the source IP 

addresses of traffic leaving a network and the 

destination addresses of traffic entering it. This 

process is known as network address translation. 

The most common reason using for network 

address translation is to share a single IP address 

among many devices. Devices on a network are 

assigned IP addresses that are only valid inside 

the network (usually chosen from the RFC 1918 

private address blocks [RMK+96]); they can 

communicate amongst each other using these 

addresses, but the addresses are not recognized 

by the Internet at large. In order to connect such 

a network to the Internet, all traffic entering and 

leaving the network is routed through a NAT, 

which re-writes the source addresses of all 

outbound packets to its own external IP address 

(as in Figure 2.3(a)), which is valid on the 

Internet. In order for responses to outbound 

packets to be correctly received, the NAT keeps 

state information allowing it to re-write the 

destination addresses of packets it receives to the 

appropriate internal addresses (as in Figure 

2.3(b)). In such a system, the internal addresses 

are known as private addresses and the 

externally-valid address of the NAT is known as 

the public address. Since TCP and UDP 

connections are typically identified by the 

combination of source and destination addresses 

and source and destination ports, such a NAT 

cannot handle two internal hosts making 

connections to the same external host and port 

from the same source ports; to work around this, 

a variation called network address port 

translation, which also re-writes source port 

numbers on outbound packets, is used. Other 

variations on this system allow NATs to use 

more than one public address; some NATs 

support one-to-one mappings between private 

and public addresses. 

 

 
 

Figure 2.12: Traffic passing through a NAT. 

 

As a side-effect of network address translation 

used in this manner, outside hosts cannot 

normally initiate connections through a NAT: 

without state information to indicate which 

inside host should receive a packet, the NAT will 

simply drop it (as with the 2nd packet arriving at 

the NAT in Figure 2.3(b)). Therefore, though 

NATs are not designed as network security 

devices, they can function as simple packet 

filters. Since networks employing NATs require 

that all outbound traffic pass through them, they 

are ideal locations to place network firewalls; 

most available NATs have at least limited 

packet-filtering capabilities, and many existing 

firewalls can also function as NATs. The state-

tracking mechanisms used by NATs are similar 

to those used by stateful packet filters and have 

the same weaknesses with regards to stateless 

transport protocols. 

Network address translation can also be used in 

reverse in order to share a single IP address 

among many network servers or to load-share 

between them: this technique is often called port 

forwarding. The term destination network 

address translation is also used; in this case, re-

writing source addresses of outbound packets is 

known as source network address translation. 

NATs resemble circuit gateways in that outside 

hosts see only the NATs‘ addresses, rather than 

those of the protected hosts, but differ in that 

protected clients and servers communicate 

27 
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directly with outside hosts. NATs only re-write 

addresses; packet boundaries and other network-

layer semantics are preserved. 

 

2.13 VPNs and Encrypted Channels 
Many attacks against network services are only 

possible because of IPv4‘s lack of protection 

against sniffing and modification and its lack of 

verification that packet source addresses are 

correct. All of these problems can be solved by 

proper application of cryptography: encryption of 

payload data makes sniffing useless; data 

integrity checks can prevent insertion and 

modification attacks, and user or host 

authentication allows spoofed source addresses 

to be detected. 

Virtual Private Networks (VPNs) are private 

networks that allow confidential communication 

over insecure public networks. VPNs are 

normally implemented by tunneling ordinary, 

insecure protocols inside encrypted channels on 

top of standard network and transport protocols. 

This can be done at different protocol layers. 

TLS [DR06] is normally used for encrypting 

application protocols on top of TCP, but can also 

be used to tunnel IP on top of TCP or UDP 

[Yon06]. IPsec [KS05] and other protocols 

tunnel IP packets inside a secure channel on top 

of IP. All of these are complicated cryptographic 

protocols that provide host authentication, key 

exchange, and confidential, integrity-protected 

channels. 

The benefits of VPNs and encrypted channels 

come at a cost. Encryption is CPU intensive, 

adding a cost to communication that may be 

prohibitive for low-powered or busy hosts. VPN 

software often requires operating system support, 

which may not be available for some platforms. 

Tunneling of any sort makes it impossible to 

block access to applications by port number; a 

growing trend on the Internet is the tunneling of 

various protocols on top of HTTP [Alb04, 

BP04]. Furthermore, encryption makes 

firewalling difficult: unless a firewall knows all 

encryption keys in use, it cannot decrypt 

tunneled traffic to make filtering decisions. This 

leaves security up to destination hosts 

themselves, just as it would be without firewalls; 

some firewalls may block encrypted traffic for 

this reason. Thus, it is beneficial to use a 

technology that provides the minimum required 

security at the minimum cost, rather than using 

more powerful VPN systems, wherever possible. 

 

Stealthy Authentication Mechanisms 

A common goal in firewall policy design is to 

limit which remote users can connect to 

particular services. There are many reasons for 

implementing such access restrictions, including 

• strengthening a defense in depth: adding an 

extra layer that attackers must break through 

before reaching anything important, 

• protecting systems with known un patched 

vulnerabilities from attackers until patches are 

available, while still allowing access to certain 

authorized users, and 

• adding a measure of user authentication to 

legacy or proprietary systems with inadequate 

integrated security measures. 

A side benefit of limiting access to services at a 

firewall in this manner is that unauthorized users 

will have difficulty even learning of the existence 

of the protected service; port scans against the 

service from unauthorized hosts cannot tell the 

difference between a port that appears closed 

because nothing is using it and a port that 

appears closed because a firewall is intervening. 

This adds a degree of security to the service: 

attackers are unlikely to attack services that they 

don‘t know about, so measures that make 

services more difficult to detect will reduce the 

number of attackers aware of the service and 

therefore the number of attacks made. Since the 

number of attackers is finite, a reduced number 

of attackers and attacks reduces the probability of 

a security breach. 

Regrettably, most existing firewalls aren‘t very 

good at implementing such restrictions. One 

common method is to assume that trusted users 

connect only from certain small sets of trusted 

computers with known IP addresses, and allow 

connections only from these addresses. This has 

many limitations: attackers can spoof trusted IP 

addresses or hijack trusted hosts and trusted users 

may attempt to connect from hosts not in the 

trusted set. Since many computers on today‘s 

Internet do not have static IP addresses, instead 

relying on DHCP servers to assign addresses that 

change over time, allowing access from one 

particular computer may require granting access 

to many thousands of IP addresses; in the case of 

a worm outbreak, there is a strong chance that an 

attacking worm will reside on a computer with 

one of these addresses. Adjusting the set of 

trusted IP addresses usually requires manual re-

configuration by a firewall administrator. The 
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other method available is to use a world-

accessible service that uses some form of user 

authentication to identify trusted users and grant 

them temporary access to the protected service, 

by creating a temporary association between the 

trusted user and its IP address. Unfortunately, 

this approach typically has drawbacks as well. 

Exploitable flaws in security and authentication 

software are discovered regularly [UC06a, 

UC06b, UC07a, UC07b]. Since the 

authentication service is visible to the world, it 

can be attacked by anyone, and since it controls 

firewall rules, successful attacks could be used to 

completely bypass the firewall. 

Clearly, since IPv4 headers include no 

information about users, there is little that can be 

done with the approach of filtering by fixed sets 

of source IP addresses. The model of 

authenticating to a world-accessible service and 

requesting access has potential, but needs 

enhancements to correct the weaknesses 

described above. In particular: 

• Since the whole point of the firewall access 

restrictions is to keep unauthorized users from 

connecting at all, the authentication service 

should be no easier for attackers to communicate 

with than the protected services. It must still be 

world accessible, but it could be hidden in some 

manner. One way to accomplish this is for 

communication with it to use a covert channel. 

• Since any attacker who discovers and is able to 

communicate with a hidden authentication 

service has already displayed significant skill and 

resources, the authentication service must be 

cryptographically secure. Also, it should be as 

simple as possible, so that it can easily be audited 

and reasonable assertions made about its 

vulnerability to attack. 

Using a complex, highly visible mechanism 

would present a risk of attack not significantly 

different than that of the original, now protected, 

service; using a hidden service that provides 

strong authentication and is simple enough to 

easily audit provides a target that is both less 

likely to be compromised if attacked and less 

likely to be attacked at all. 

This chapter will begin by discussing covert 

channels over networks and then describe several 

ways that covert channels could be used by 

firewall authentication services. Two existing 

techniques, port knocking and single packet 

authorization, will be discussed in detail, 

including their design issues, strengths, 

weaknesses, and current implementations. 

 

3.1 Single Packet Authorization 
Single Packet Authorization, or SPA, has the 

same goals as port knocking, but, instead of 

encoding authentication information in a series 

of port numbers, it encodes it in the payload of a 

single UDP datagram (see Figure 3.2). This 

allows for authentication messages of several 

kilobytes to be used without concern for packet 

reordering. 

The information encoded in an SPA message is 

generally similar to what might be encoded in a 

port knocking sequence (see Section 3.2.1). A 

message containing a plain-text secret could be 

used, although most existing implementations 

use some sort of encrypted or one-time message. 

Unfortunately, the phenomenon of misused 

cryptography and broken authentication 

protocols is not limited to port knocking. 

Cryptknock [Wal04] (actually an SPA system, 

despite its name) uses an unauthenticated Diffie-

Hellman exchange to generate a session key 

which is then used to encrypt a shared secret; if 

the server accepts the secret, then it allows 

unrestricted access to the originating host. Since 

this protocol doesn‘t associate the shared secret 

with the client‘s IP address, an attacker could 

break it by re-writing the client‘s IP headers to 

make it appear to the server that they originated 

at the attacker, then forwarding the server‘s 

responses back to the client. Alternately, the 

standard man-in-the-middle attack against Diffie-

Hellman [Sta03] would allow an attacker to 

recover the shared secret. Tailgate TCP (TGTCP) 

[BHI+02], Doorman [War05], tumbler [GC04], 

and fwknop [Ras06] implement SPA with more 

robust authentication schemes. 

SPA servers that use packet sniffers or related 

technologies may need to limit packet sizes to 

the path MTU between client and server 

(typically a minimum of 576 bytes [MD90]) in 

order to avoid fragmented packets. However, this 

is still ample room for authentication information 

in messages of this size. 
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Figure 3.1: SPA example. A port is opened in the 

firewall in response to an authentication packet. 

 

Advantages of SPA 
As Rash [Ras06] points out, SPA is easier to 

implement and less failure-prone than port 

knocking and is probably preferable in most 

circumstances. 

1. An SPA server can be written as a normal 

network service on an open port. Since UDP 

services are not required to respond to messages 

that they receive, and the protocol does not 

automatically generate any response, a non-

responding UDP service on an open port on a 

system that silently drops unexpected packets is 

indistinguishable from a closed port to a port 

scan. An SPA server can therefore be written as a 

normal network service, without needing to 

resort to packet sniffers or any platform-specific 

mechanisms. (However, such a design may put 

constraints on the available mechanisms to 

manipulate firewall states.) 

2. Since only one packet must be sent before 

opening a connection, an SPA authentication 

exchange takes much less time and is less 

vulnerable to packet loss than port knocking, 

besides being immune to packet reordering. 

3. NATs and stateful firewalls between SPA 

clients and servers will only have to allocate 

resources for at most one logical connection, 

rather than one for each knock as required with 

port knocking. 

4. Compared to port knocking, SPA can use 

relatively large authentication messages without 

sacrificing performance and reliability. 

 

Disadvantages of SPA 
Despite being much less sensitive to packet 

ordering than port knocking, SPA systems will 

still fail if a connection attempt reaches the 

firewall before the authentication packet has 

been received and processed. They will also fail 

if an authentication packet, or a fragment of one, 

is dropped or corrupted in transit. 

SPA servers typically cannot be implemented as 

log readers, since SPA systems need to access 

packet payloads and firewalls generally don‘t log 

any more than packet headers. However, this is 

not usually a problem, since log reading is an 

inefficient design compared to its alternatives 

(see Section 3.2.2) and is seldom used for SPA. 

Egress filters may not pass outbound traffic 

destined to unusual UDP ports, but SPA servers 

could run on ports regularly used for ―normal‖ 

traffic. For instance, most egress filters will 

permit DNS traffic; SPA messages bound to a 

server running on port 53/UDP would likely pass 

unmolested. 

 

3.2 Variations on SPA 
It is possible to encode SPA messages into the 

payloads of any protocol. In [Ras06], Rash 

suggests using the payloads of ICMP or GRE 

messages. In theory, raw IP messages with no 

transport headers at all could also be used. 

Although such systems have the potential to be 

extraordinarily stealthy (ICMP echo-request, 

(―ping‖) messages are very common in the 

Internet background radiation [PYB+04], 

although GRE and raw IP messages are rather 

unusual), they do present some implementation 

challenges. 

User applications cannot usually read ICMP, 

GRE, or raw IP payloads, requiring that servers 

using such encodings hook into network stacks at 

a lower level (for example, using packet 

sniffers). More importantly, unprivileged user 

programs cannot directly send such messages, 

thus requiring clients to be privileged 

applications.  Currently, fwknop [Ras06] and 

Cerberus [Epp04] implement SPA over ICMP. 

Barham et al. [BHI+02] suggested a variation on 

TGTCP in which the authentication information 

would be attached as a payload to the SYN 

segment opening a TCP connection; this would 

prevent race attacks and be invulnerable to out-

of-order delivery. However, this approach is not 

without weaknesses: it only works for TCP ports, 

it requires modifications to the client‘s network 

stack to attach authentication information to 

outgoing TCP SYN segments, it requires a 

kernel-level server that can process packets 

before they reach the transport layer of the 
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firewall‘s network stack, and some egress filters 

may drop SYN segments carrying data. 

 

3.3 Active-covert SPA 
Since SPA traffic is visible to packet sniffers and 

is not disguised as background noise, it cannot 

normally be considered active-covert. However, 

it is possible to give active-covert properties to 

SPA by encoding the payload as something that 

might normally be seen in background traffic and 

setting the destination port to match. For 

instance, authentication information encoded as 

ASCII text and sent to port 1026/UDP with the 

proper headers would resemble Windows 

Messenger spam [LUR03], and a message 

resembling Intel x86 machine code sent to port 

1434/UDP might be mistaken for the Sapphire 

worm [MPS+03]. 

 
3.4 Concerns about “Security by Obscurity” 
Port knocking systems in particular have often 

been accused [BBO05, MMETC05, Nar04] of 

being nothing more than ―security by obscurity‖. 

Generally, these claims are based on assumptions 

that the security of port knocking authentication 

systems is based solely on them remaining 

hidden, or that concealing security-sensitive 

information is bad and that all details of security 

systems should be visible. 

Beale [Bea00] describes a system relying on 

security by obscurity as one that relies on critical 

knowledge about the system‘s design being kept 

secret, though the secret information could be 

discovered by an outsider without unreasonable 

effort. The authentication systems used by 

traditional services such as telnet and FTP, which 

send passwords in plain text, are generally 

considered insecure by modern standards 

[Bel89], but their well-specified protocols and 

documented reliance on the secrecy only of small 

easily-changeable per-user passwords leave them 

well outside of the realm of security by 

obscurity. This is equally true for similarly-

designed services such as SSH, which employ 

cryptography to protect secrets in transit. 

The security of port knocking systems and other 

covert authentication schemes is also dependent 

only on the knowledge of small, easily 

changeable secrets; in the case of port knocking 

systems, these are port sequences. Systems that 

send their secrets are equivalent in security to 

telnet, whereas those that use cryptographic 

protocols are more akin to SSH. In neither case 

does the security of the authentication system 

depend on any other property. The covertness of 

the communication channels being used is not 

necessary; if the same information was 

transmitted across normal, open ports, the system 

would remain secure. Rather, the covertness only 

serves to increase the level of effort required to 

attack the systems. As Beale points out, 

concealing an already-secure service is not a 

weakness but rather has a number of advantages, 

reducing the number of attacks faced by the 

system and forcing attackers to do more work, 

which both slows them down and makes their 

actions more obvious. 

 

Improvements to Port Knocking and SPA 

As presented in the previous chapter, port 

knocking and SPA have a number of 

weaknesses. In this chapter, novel techniques for 

addressing some of these weaknesses and other 

improvements to port knocking are introduced. 

First, I introduce methods for conducting 

challenge-response authentication using SPA or 

port knocking, which improve on some of the 

limitations of the authentication algorithms 

described in Section 3.1 and enable 

authentication of the server as well as of the 

client. Next, a variety of strategies for ensuring 

that port knock sequences can be correctly 

decoded, even if delivered out of order, are 

discussed. Third, two alternate methods for 

encoding information into port sequences are 

introduced. Finally, several possible ways of 

associating authentication exchanges with 

connections and preventing race attacks are 

described. 

 

4.1 Basic Unilateral Authentication 
The ISO two-pass unilateral authentication 

[ISO95, MvOV96] is designed to authenticate a 

client A to a server B; no attempt to authenticate 

the server to the client is made. A slightly 

modified version of this algorithm, intended to 

be suitable for port knocking or SPA, is shown in 

Algorithm 4.1. In the following discussion, I 

refer to message 1 as the request, message 2 as 

the challenge, and message 3 as the response. 
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Algorithm 4.1: Challenge-response unilateral 

authentication 

 
A begins the sequence by sending a request, 

which serves both to initialize the protocol and 

identify the operation to be performed upon 

successful authentication. Cryptographically, this 

must be considered public information. B 

responds to a recognized request by issuing a 

unique nonce as a challenge, to which A 

responds with a MAC covering the nonce, the IP 

addresses of A and B, and the request sequence, 

keyed with a symmetric key associated with the 

request. Upon receipt of the response, B will re-

compute the MAC using the request that it 

received, the nonce that it sent, A‘s IP address as 

taken from the packet headers, and B‘s own IP 

address. If the MAC is valid, then B will perform 

the requested operation; otherwise, no action will 

be taken. 

If  HMAC-SHA1 is used as the MAC algorithm, 

then response messages will be 160 bits long. 

Due to birthday attacks [MvOV96], nonces used 

in this situation should be at least half the bit 

length of the MAC, or 80 bits in this case. As 

argued above, a hard-to-guess sequence of 8 to 

10 bytes will serve as a request sequence. 

This protocol is suitable for port knocking or 

SPA systems employing either preconfigured or 

user-issued commands. Servers can identify pre-

configured commands by associating unique 

request sequences with each command. User-

issued commands could be constructed by 

appending port numbers and other information to 

request sequences; if the command must be kept 

secret, it can be encrypted using Kreq . No 

integrity-checking information is needed in such 

request messages, because they are covered by 

the MAC in the response message, and none of 

the information in the command will be acted 

upon until after successful authentication. Pre-

configured commands are best for port knocking 

systems, due to the relatively high overhead of 

sending data, but there is little penalty for 

attaching additional data to SPA requests. 

A‘s IP address has been added to the MAC in 

Step 3 of the original algorithm to prevent 

possible Mafia fraud-based attacks [DGB87] (see 

Figure 4.1) in which an attacker C initiates the 

protocol and receives a challenge, intercepts (and 

blocks) a challenge issued to A in another 

protocol session, and forwards its own challenge 

to A in order to get A to generate a valid 

response for C (see Algorithm 4.3 for an 

example). By covering both IDs with the MAC, 

Algorithm 4.1 prevents C from subverting the 

protocol to authenticate to B as itself, but does 

not prevent C from subverting the protocol by 

masquerading as A. Such an attack still requires 

A to initiate an authentication exchange itself 

before it will generate a response, and would 

have the effect of causing B to perform the action 

specified by C‘s request. If A‘s and C‘s requests 

are the same, then there is no security breach: B 

does exactly what A asked, under A‘s 

credentials, and nothing more. If the request 

caused a port to be opened, then C could attempt 

to connect to it while continuing to masquerade 

as A, but this is then equivalent to C ignoring the 

authentication exchange and attempting to hijack 

a successful authentication, as in Section 3.2.3. If 

A‘s and C‘s requests are different, then 

authentication will fail, since A also covered its 

own request in the MAC and B will expect C‘s 

request when verifying it. 

Instead of adding A‘s address to the MAC in the 

response, a MAC covering IDA and NB could 

have been added to the challenge message; this 

would have equivalent security properties but 

increase the amount of data to be transmitted. 

This is the approach suggested by van Oorschot 

and Stubblebine [vOS06] for preventing Mafia 

fraud-based attacks. 

The original version of Algorithm 4.1, presented 

in [dAJ05], did not cover the request in the MAC 

and therefore depended on the keys associated 

with the two requests being different in order to 

resist Mafia frauds. 

 

4.2 Authentication in the Presence of NATs 

One flaw in Algorithm 4.1 is that it requires the 

client, A, to know its identity as seen by the 

server, B. Unfortunately, if the client is behind a 

NAT, then it may not know its public address 

and may not even know that the NAT exists. 

(Since the server is intending to receive 
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connections, it is assumed to have have a valid 

public address.) In the above protocol, A will use 

its private address PIDA to compute the 

response, but if A‘s address is re-written on the 

packets that it sends, then B will use A‘s public 

address IDA to verify it and authentication will 

fail. 

Algorithm 4.2.1: NAT-aware unilateral 

authentication 

 

 
 

In an earlier work [dAJ05], I presented an 

algorithm called ―NAT-aware unilateral 

authentication‖ (Algorithm 4.2) which I claimed 

would authenticate a client A that doesn‘t know 

its public IP address to a server B while resisting 

Mafia frauds. Unfortunately, I have since 

discovered an attack against this algorithm, 

shown in Algorithm. 

 

Algorithm 4.2.2 Attack against NAT-aware 

unilateral authentication 

 
In this attack, an attacker C waits for a legitimate 

client A to initiate the protocol and then opens its 

own protocol session by sending a copy of A‘s 

request. C then blocks the delivery of B‘s 

challenge to A and substitutes its own challenge. 

(The notation B ! /A means that B sends a 

message to A, but it is not delivered.) A accepts 

B‘s assertion that its public IP address is IDC and 

generates a response, which B rejects since it 

knows A‘s correct public IP address. However, 

this response is valid for C, which is then able to 

complete the protocol successfully without 

knowing Kreq .= This attack also works if C 

blocks the request and response sent by A or 

masquerades as B to A. 

 
 

Figure 4.2: The Mafia fraud. A and B think that 

that they are authenticating to each other, but C 

is forwarding messages between them with the 

goal of convincing A that it is B and B that it is 

A. 

Since this attack is exactly what Algorithm 4.1 

was designed to prevent, there is no point in ever 

using Algorithm 4.2. However, the Mafia fraud 

(a man-in-themiddle attack related to the 

grandmaster postal-chess problem [MvOV96, 

BD90] and known as the MiG-in-the-middle 

attack in military contexts [And01], see Figure 

4.1), which works because the verifier, B, has no 

knowledge of the physical location of the prover, 

A, is generally considered difficult to prevent 

and is frequently ignored by authentication 

systems [AS02]. None of the general solutions to 

this problem available are appropriate under 

these circumstances because A cannot practically 

be isolated during authentication [BBD+91], the 

only communication channel available can be 

accurately monitored by attackers [AS02] and 

doesn‘t have a constant communication delay 

[BD90], and A‘s physical description (here, A‘s 

IP address is sufficient – see Section 4.1.1) 

cannot be included in the exchange [Des88] 

because A doesn‘t know its IP address. 

The lesson to learn here is that it is difficult to 

prevent Mafia frauds when the client does not 

know its identity (in this case, its public IP 

address). Even if it does, any other computer 

sharing the same public IP address (i.e., any 

computer behind the same NAT) can still carry 

out a Mafia fraud. The Mafia fraud is generally 

irrelevant in protocols that combine 

authentication with key agreement, because, even 

if an attacker succeeds in authenticating as some 

other entity, it will still not know the agreed-

upon key [DvOW92]. Some of the solutions to 

the race attack problem presented in Section 4.4 

are based on key agreement techniques, so they 
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may mitigate this problem. Another partial 

solution is for clients to request their public IP 

addresses from trusted third party identity oracles 

before starting the authentication protocol. 

In addition to this attack, since req is not covered 

in the MAC in the response, C could substitute 

A‘s request with another one employing the same 

key to cause B to execute a command other than 

the one that A intended. This is easily corrected 

by adding req to the MAC, as in Algorithm 4.1. 

Improvements to Application Filtering 

Port knocking and SPA are primarily designed to 

communicate information about users to remote 

ingress packet filters, allowing them to filter on a 

per-user basis without relying on assumptions 

about IP addresses. However, neither are ideal 

for communicating with egress firewalls on local 

networks. On relatively trusted local networks, 

stealth is irrelevant: everyone on the inside 

knows where the firewall is and what it is 

capable of doing; there‘s no value in hiding it. 

Also, whereas filtering by applications is of 

limited use to ingress firewalls (allowing 

connections from poorly-implemented clients 

presents little risk to the server and malware is 

not likely to be able to authenticate as a valid 

user), it is of significant value to egress firewalls. 

Finally, whereas port knocking and SPA are 

designed to protect services that receive small 

numbers of connections, egress firewalls must 

handle much larger numbers; the overhead of 

port knocking may be a liability in this case. 

Application filtering provides an efficient 

mechanism for host and network firewalls to 

make decisions based on the users and programs 

that are sending and receiving network traffic. 

This chapter discusses existing designs and 

implementations of application filters and a 

variety of common problems with such systems. 

It then presents partial solutions to some of these 

problems. 

 

5.1 Existing Application Filtering Systems 

Since user and application information is not 

included in IP packet headers, this information is 

generally not available to network firewalls. 

Some circuit and application gateways use 

special protocols to authorize connections that 

authenticate users (such as SOCKS [LGL+96]), 

but no existing network firewalls seem to make 

any checks on the applications making 

connections. 

Host firewalls, on the other hand, do have access 

to user and application information. Although the 

built-in firewalling systems on most operating 

systems don‘t support application filtering, most 

third party packages do. Judging by its 

behaviour, ZoneAlarm [Zon07] (a popular 

commercial firewalling package for Microsoft 

Windows) checks hashes of programs and shared 

libraries that attempt to make connections and 

performs some tracking of programs that make 

connections on behalf of others. By default, 

when it detects a connection attempt from an 

unknown program which is not otherwise 

explicitly allowed or denied by the current 

configuration, it prompts the user for a decision. 

Unfortunately, information about the algorithms 

used internally by this and other proprietary 

packages is not publicly available. Prior to 

August 2005, the netfilter firewalling system on 

Linux supported a form of application filtering 

through the owner match module. This support 

was removed in kernel 2.6.14 due to conflicts 

with kernel locking [HM05]; the owner match 

still supports user and group matching. 

Originally, this module attempted to match 

packets to specified program names or process 

IDs by iterating over the list of currently running 

processes, searching for one matching a given 

command name or process ID, and then iterating 

over all files held by that process to check if any 

of them matched the socket used by the packet 

being matched; there was no interactive 

component. TuxGuardian [dS06] provides 

application-filtering support to Linux using a 

different approach: rather than working through 

net filter, it uses the Linux Security Modules 

system [WCM+02] to hook into attempts to open 

sockets or listen for connections and call out to a 

user space program to ask for permission to 

allow the attempt. The user-space program 

checks both the program‘s name and the MD5 

hash of the executable file against its 

configuration, optionally prompts the local user 

if the program is not recognized, and allows or 

denies the request. 

 

5.2 Problems with Application Filtering 
Application filtering is a useful and powerful 

technique, but it cannot be trusted absolutely. It 

has many flaws, both in concept and in 

implementation, that restrict what application 

filters can feasibly do. 

5.3 Dealing with Unrecognized Applications 
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The most obvious problem is what to do when 

unrecognized applications attempt to make 

connections. There are three possible responses 

in this situation: 

1. always allow the request, 

2. always deny the request, or 

3. ask the user if the program should be allowed 

to use the network. 

The first option is dangerous: the firewalling 

software cannot be expected to have a 

comprehensive database of all untrustworthy 

software and will end up letting worms and 

spyware communicate with impunity. No 

firewall should accept by default; application 

filters are no different. 

The second requires that the firewall have a 

comprehensive database of all trusted software. 

This may be appropriate for professionally-

managed networks, where the set of allowed 

applications is well defined and relatively small, 

but is problematic in other situations where no 

such list is available. It is infeasible to require 

firewall vendors to ship lists of trusted software 

with their products and impractical to trust them 

if they do. It is equally infeasible to require end 

users to build such databases when installing the 

firewalling software. Applications themselves 

can obviously not be trusted to assert their own 

trustworthiness to the firewall. 

The third option is also troublesome. People will 

make mistakes and grant access to programs that 

they meant to deny. Many users are not 

sufficiently familiar with their computers to 

know what applications they should trust and 

under what circumstances they should trust them. 

Many will simply click ―accept‖ to any request 

for a connection, regardless of what is asking 

[Nor83]. Others will not know the names of all 

trusted programs, but will recognize that 

applications should only make connections in 

response to their requests and will only grant 

permission shortly after performing some action 

that could reasonably be expected to make a 

network connection. However, malware could 

abuse this trust by monitoring other software and 

attempting to make network accesses only when 

something else does. This is compounded by the 

fact that many network-using programs do not 

make connections themselves but pass requests 

to other processes via inter-process 

communications (IPC), resulting in the 

application names being presented to the user 

having little to do with what the user is running. 

For instance, in some versions of Microsoft 

Windows, the Windows Update program‘s 

connection requests show up to many firewalls as 

originating in a program called wupdmgr.exe, 

despite being initiated by Microsoft Internet 

Explorer (iexplore.exe). Also, many components 

of Microsoft Windows (such as the DHCP client, 

network browser, time synchronizer, and 

messenger) make connections through a program 

called svchost.exe [Mic06], and some legitimate 

software (such as time synchronizers) runs 

automatically, rather than in response to user 

inputs; users who are unaware of this may deny 

network access to important software. Finally, 

malicious programs could explicitly instruct 

users to allow them access; suitably convincing 

messages would persuade many users to grant 

access when they otherwise would not [CBR03]. 

 

5.4 Application Spoofing 
It is not sufficient for application filters to 

identify trusted programs solely by executable 

file names. Anyone could give an arbitrary 

program the same name as a trusted program; 

without further checks, an application filter could 

be completely bypassed in this manner. Some 

existing malware attempts to use this approach 

by mimicking operating system components or 

other trusted software. For instance, the Welchia 

worm stores a copy of itself with the name 

svchost.exe under a different path than the 

legitimate program of this name on Microsoft 

Windows systems [Sym07d]. 

A slightly stronger approach is to identify trusted 

programs by the absolute paths of executable 

files. This would prevent the sort of file name 

spoofing used by Welchia but would not catch 

malware that modifies or overwrites trusted 

programs, such as some versions of the Spybot 

(which insert themselves into the command-line 

FTP client on Microsoft Windows systems) 

[Sym07c] or Erkez (which attempts to overwrite 

executable files belonging to Symantec products) 

[Sym07b] worms. This approach would also be 

ineffective if the firewall‘s view of the directory 

tree could be changed; on Unix-based systems 

this could be done by mounting a new filesystem 

on top of an existing one so that a new program 

occupies the path of the original. 

A stronger approach again is to identify trusted 

programs by cryptographic hashes of executable 

files. This would detect any attempts to modify 

or replace trusted programs and would defeat the 
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above worms. However, even this method can be 

attacked. Malware need not live in executable 

programs; it can live in shared libraries. 

Legitimate shared libraries could be modified to 

launch malware as a side-effect of a normal 

library call, or malicious plugins could be written 

to launch malware instead of their advertised 

functions. For example, the Fuwudoor back door 

takes advantage of svchost.exe‘s ability to run 

code from arbitrary shared libraries on Microsoft 

Windows systems to launch itself [Sym07a]. File 

hash checking may also be vulnerable to race 

conditions: malware could overwrite a legitimate 

file, launch, and overwrite itself with the 

original, legitimate file before attempting 

network access. An application firewall that 

checked file hashes would see only the legitimate 

trusted program, and grant access to the malware. 

The directory re-mapping trick suggested above 

could also be used to accomplish this. 

Attacks using plugins or shared libraries could be 

prevented by not only verifying the executable 

files making network requests, but also all shared 

libraries currently linked; however, malware 

could switch shared libraries just as easily as it 

could executables. Defeating the file-switching 

attack is more difficult; unless the operating 

system prevents modifications to currently-

loaded executable files and shared libraries, then 

no checks of these files can be trusted. Malcode 

inserted into a legitimate running process via a 

buffer overflow or other exploit also cannot be 

detected using checks against files. 

 
5.5 Interpreted Languages and Virtualization 

Application filtering relies on being able to 

uniquely identify the application that is 

requesting a connection. With traditional 

compiled programs, this is feasible; each instance 

of such an application is loaded and has its 

resources managed by the operating system, so it 

is possible to map packets to programs. 

Unfortunately, when programs written in 

interpreted languages load or request resources, 

the operating system sees the interpreter, not the 

program itself. To an application firewall, a news 

reader running in a Java virtual machine is 

indistinguishable from a backdoor running in a 

Java virtual machine. 

This could be fixed by requiring interpreters to 

pass information to operating systems about what 

program they are currently executing, but the 

diversity of interpreters makes this infeasible. 

Growing numbers of applications have built-in 

Turing-complete scripting languages capable of 

making network connections, and there is no 

feasible way for operating systems to check if a 

given program can execute arbitrary code within 

its execution context. Even if there was, this 

moves critical firewalling functionality to 

untrusted user-space programs; there is no way to 

prevent interpreters from lying to the operating 

systems about what they are running. Finally, the 

name of a script is largely meaningless to a 

firewall; an application filter must make some 

check against the script‘s codebase. But 

interpreted languages may not have code that 

exists on disk; it might exist solely in a memory 

buffer or even be retrieved on demand from an 

external source. In other words, application 

filtering is mostly useless against interpreted 

programs. 

The same problem applies to programs running 

in virtualized environments. No program running 

in a virtualized environment, compiled or 

interpreted, can be accurately identified by the 

host operating system unless the virtualized 

environment is trusted to the same degree as the 

host OS and can supply information about 

internal processes to the host. Although the 

relatively small numbers of virtualization 

platforms available makes adding such support 

feasible, many existing virtualization packages 

(such as VMware [VMw07]) are designed to run 

operating systems that were not specifically 

designed for virtualization, and may not even be 

aware that they are running in virtualized 

environments. Thus, proper support for 

application filtering virtualized environments 

would be at cross-purposes with many existing 

tools and is not likely to be available any time 

soon. 

 

Connections by Proxy 
Programs that use network resources do not 

necessarily make network connections 

themselves. They can instead start different 

programs or pass requests to existing processes 

to perform actions on their behalf [CBR03]. An 

application firewall will see connections 

originating in the processes that attempt to open 

them, not the processes that requested them. This 

flaw can be abused both ways: legitimate 

programs that pass network connections to 

others, such as inetd, may be fooled into passing 

connections to malicious software, and malware 
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could use legitimate software, such as web 

browsers, FTP clients or the ping command, to 

do its dirty work. 

Detecting the true originator of network 

connections requires tracking process parent-

child relationships and IPC. Some commercial 

application firewalls, including ZoneAlarm, 

appear to use some form of this, but information 

on the algorithms involved is not publicly 

available. 

 

5.6 Attacks Against Firewalling Software 
Instead of attempting to exploit weaknesses in 

how application firewalls verify that applications 

are trusted, malware could attack the application 

firewalls directly. Malware that attempts to shut 

down security software is known to exist in the 

wild [Sym07b]; user-space application filters 

may have no effective defense against this sort of 

attack. Malware running at sufficiently high 

privilege levels may be able to bypass firewalls 

and send or receive packets without firewall 

checks. Malware may even be able to interfere 

with firewalls‘ perceptions of file contents or 

paths by intercepting system calls; rootkit 

software frequently uses this technique to hide 

itself from IDSs. This is not a likely attack 

against host firewalls — any malware that has 

compromised a host to the point that it can do 

this is more likely to simply disable, cripple, or 

circumvent the firewall — but could be used 

against application filters on network firewalls. 

For these reasons, host firewalls should never be 

trusted to the same degree as network firewalls, 

and even network firewalls should not fully trust 

packet metadata that they cannot independently 

verify. 

 
5.7 An Improved Architecture for Application 

Filtering 
As pointed out above, application filtering has 

many flaws. In this section, I present an 

architecture for application filtering that 

addresses many of them. It is possible that some 

or all of these techniques are used by existing 

proprietary software, but to the best of my 

knowledge, none of these have appeared in 

published literature. 

 

Application Filtering by Network Firewalls 
Since user and application information is 

normally not available to network firewalls, 

application filtering is normally only done by 

host firewalls. However, there is no reason why 

it can‘t be done at network firewalls. Protocols 

like SOCKS, TAP [Ber92] and Ident [Joh93] can 

be used to pass information about users to 

network firewalls; these could be extended to 

supply application information as well. There are 

disadvantages to such a system, the most notable 

being the overhead required for passing user and 

application information and the possibility of 

forgery, but there are also a number of 

advantages. Since there are few avenues to 

execute arbitrary code on network firewalls (as 

compared to hosts employing host firewalls), it is 

more difficult for malware to attack and 

circumvent network firewalls. Also, network 

firewalls allow centralized policy management 

without needing to distribute policy to hosts, thus 

avoiding the problems that policy distribution 

entails (see Section 2.4.1). 

Two basic methods can be used for application 

filtering; either can be extended to enable 

application filtering by network firewalls. One 

way is to look for packets that open connections 

and then look up the users and applications that 

sent or will receive them. This is the approach 

taken by the pre-2.6.14 Linux owner match, and 

is necessarily inefficient since the application 

must be identified by matching the properties of 

the packet to a socket in kernel data structures, 

an operation which requires at least O(n) 

operations (where n is the number of currently-

executing processes) an requires locking. 

However, if this is done inside a stateful packet 

filter, which already has the ability to detect new 

connections, then it is trivial to combine 

application and packet filtering. The other way is 

to hook into appropriate system calls (such as 

connect() and accept()) to intercept applications‘ 

attempts to open connections. Since this must be 

done on the hosts running the applications and 

occurs within the applications‘ execution 

contexts, it is trivial to identify the applications 

involved using this method. However, packet 

filtering is not normally done inside system calls, 

so it may be difficult to perform both packet and 

application filtering using this method. 

Either design may be extended to support 

application firewalling at network firewalls. 

Again, two basic approaches are possible: hosts 

wishing to open connections can pre-approve 

them with firewalls, or firewalls can detect 

attempts to open connections and ask hosts for 

application information. Network firewalls can 
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only detect new connections by packet analysis, 

so the obvious place to implement application 

filters is inside stateful packet filters or circuit 

gateways. Hosts using the pre-approval strategy 

could detect new connections using either 

method (although system call hooking is more 

efficient) and send information about the user 

and application to the firewall before sending the 

connection-opening packet. Inbound connections 

can be handled in the same way: a host that 

detects an application attempting to listen for 

connections can inform the firewall of this and 

let the firewall decide what to do when an 

attempt to connect arrives. Pre-approval requires 

a minimum of only one extra message (for 

outbound connections, pre-approval messages 

could be attacked to connection establishment 

packets, but this may interfere with some 

existing protocols), sent from the host to the 

firewall, making it relatively fast, but does have a 

few drawbacks. Since pre-approval messages can 

be generated at any time, malicious hosts could 

attempt to flood firewalls with pre-approval 

messages for connections that they have no 

intention of establishing. Pre-approval messages 

must expire after some period of time in order to 

prevent firewalls from accumulating too many 

valid pre-approval messages for programs that 

have exited or will otherwise never follow 

through. Short lifetimes will require hosts 

listening for connections to periodically send 

new pre-approval messages as long as they 

continue to listen; long lifetimes may make 

forgery easier. When using the call-back 

strategy, hosts could either look up processes via 

socket addresses on demand or build a list of 

processes that are attempting to open connections 

via system call hooking, then look up requesting 

processes there. Either method is slower than the 

pre-approval strategy, especially since this 

approach requires a minimum of two messages: a 

request from a firewall to the host and a 

response. However, approval lifetimes and DoS 

attacks against the firewall are no longer an 

issue. 

In order to make forgery of pre-approval 

messages more difficult, pre-approval messages 

for outgoing packets should include a hash of the 

packet to be sent. Since the contents of 

connection-establishing packets may be 

predictable, it may be preferable to use a MAC 

that covers both the packet and a nonce or 

timestamp instead. The contents of packets won‘t 

be known when pre-approval messages are 

created for hosts that want to receive 

connections, but MACs covering the hosts‘ 

addresses could be used in this case. Similarly, 

information requests for outgoing messages 

under the call-back strategy should contain a 

hash or MAC covering the packet being sent; the 

originating host can then verify that it actually 

sent that packet. 

In order for any form of application filtering at 

network firewalls to work, the operating systems 

(although not the user-space processes) of all 

protected hosts must be trusted; malicious 

operating systems (such as those infected with 

rootkits) could lie to the firewall about what 

processes are running or any other requested 

information. However, if application filtering is 

combined with some other form of firewalling on 

a network firewall, then traffic from hosts with 

malicious operating systems is still subject to 

some form of filtering, whereas such traffic can 

bypass any form of host firewall. 
 

Preventing Application Spoofing 
Since attempts to verify that connections come 

from legitimate applications by checking files on 

demand suffer from race conditions and are 

prone to abuse, an alternate method must be 

found. One possibility is to verify programs and 

libraries when loaded, as done by integrity shells 

[Coh89], and cache the hashes of each file until 

needed. This scheme will generally require that 

all programs and libraries, not only those 

involved in making network connections, be 

verified; if this overhead is too high, then 

programs expected to make network connections 

could be flagged for load-time verification, and 

connection attempts from all others could be 

summarily refused. Applications will take longer 

to load when using this method, but there will be 

less overhead when opening connections at run-

time. If the operating system can load and verify 

files atomically, this should not suffer from race 

conditions. Even if a race condition still exists, it 

should only be exploitable in a much smaller 

time window (no more than a few milliseconds) 

than the race condition with on-demand 

checking. 

However, this approach is not without flaws. As 

with on-demand file checks, it is ineffective 

against interpreted programs or those running in 

virtual machines. Hostile operating systems 

could substitute hash values for legitimate 

programs to disguise malware. If a collision can 



GSJ: VOLUME 6, ISSUE 5, May 2018   34 

GSJ© 2018 
www.globalscientificjournal.com 

be found in the hash function used, then a 

malicious program could be substituted for a 

legitimate one even on a computer with a trusted 

operating system. A network firewall could foil 

this last attack by requesting a hash or MAC 

covering both the program and a nonce, but this 

requires that hashing be done on demand and that 

the firewall store copies of all relevant files. An 

alternative possibility is to eschew files 

altogether and hash processes‘ memory images 

instead. Obviously, writable memory pages must 

be excluded from such a hash. Unfortunately, 

this will not work on systems that perform any 

sort of relocation at load time (including most 

modern operating systems), since memory 

addresses inside the code in processes‘ memory 

images may differ between executions [Lev00]. 

Even if all memory addresses were constant 

between executions, a hostile operating system 

could still substitute the memory image of a 

legitimate program in the hashing algorithm or 

could allow another process to launch a page-

replication attack along the lines of Wurster et 

al.‘s [WvOS05]. Finally, this method can‘t 

effectively verify programs that execute code 

from writable pages in memory (although 

operating systems can prevent this by preventing 

code execution from writable memory pages, as 

in PaX [the05]). 

Neither method presented here will detect 

processes that are executing code injected by 

malware (through buffer overflows or other 

exploits) rather than their own original code. 

Other countermeasures (such as non-executable 

writable memory and address space 

randomization [dR07, the05, BDS03]) must be 

taken against these threats. 

 

5.8 Detecting Connections by Proxy 
Detecting libraries linked to a process, malicious 

or otherwise, can be done by simply monitoring 

what it loads or analyzing its memory space 

(assuming that processes cannot execute code 

from writable memory). However, detecting 

actions taken on behalf of other processes is 

more difficult. In this section, I present an 

algorithm that will detect many situations where 

a process could be opening connections on behalf 

of others. 

A process will be considered to be opening a 

connection on behalf of another if there is a 

possible causal relationship between an action of 

another process and the connection 

establishment. A causal relationship exists 

whenever a process receives information from 

another process before opening a connection. For 

example, a process could read from shared 

memory or a socket, pipe or other IPC 

mechanism to which another process had written. 

Alternately, a process could have been started, 

directly or indirectly, by another process. Files 

could also be used for IPC, but, since files are 

persistent, tracking reads and writes to files over 

long periods of time may not be practical; for this 

reason, a configurable limit of n seconds is 

placed on how long records of file writes are 

kept. Using these rules, a directed graph of 

process interactions can be constructed as 

follows: 

• When a process starts another, a link is added 

from the new process to the old one. 

• When a process writes to shared memory or to 

a pipe, socket, or other object that is shared 

between processes, its identity is added to a list 

associated with that object. 

• When a process receives a signal from another 

process or reads from shared memory, a pipe, 

socket, or other object that is shared between 

processes, a link is added from the reader to all 

processes that have written to it. 

• When a process writes to a file or other 

persistent object, its identity is added to a list 

associated with that file, which may only be 

removed after at least n seconds have passed. 

• When a process reads from a file, a link is 

added from the reader to all processes that have 

written to it within the past n seconds. 

Note that the process relationship graph must 

include processes that have terminated but which 

still have causal relationships to existing 

processes. Processes‘ identities must include all 

information that the application filter uses to 

identify processes, such as executable file names, 

shared library names, and file hashes. Using this 

graph, all processes having causal relationships 

to a process that is attempting to open a 

connection can be identified by performing a 

traversal of the weakly connected component of 

the graph rooted at the process that is attempting 

to open the connection; this set of processes will 

be known as a process group. 

As an example, consider the following 

interactions: 

1. Process A starts process B 

2. Process B starts processes C and D 
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3. Process E writes to a pipe which is read by 

process C 

4. Process D writes to a multicast socket, which 

is read by processes E, B, and F 

The graph generated for these interactions will 

then be that shown in Figure 5.8. The groups for 

all processes are as shown in Table 5.8. 

 

 
Figure 5.8: Graph of causal relationships 

between processes. 

Process  Process group 

A  {A} 

B  {A, B, D} 

C  {A, B, C, D, E} 

D  {A, B, D} 

E  {A, B, D, E} 

F  {A, B, D, F} 

 

Table 5.8: Process groups for all processes in  

A firewall that attempts to detect connections by 

proxy in this manner would need to be 

configured with not only the set of programs 

allowed to make connections, but also all other 

programs allowed to be in the process groups of 

a program that is attempting to make a 

connection. Using the above example, a firewall 

could only allow connections from process D if it 

both recognizes processes A, B and D, and it was 

configured to allow connections from D while it 

has causal relationships from A and B. If, for 

instance, D was a web browser and A and B were 

recognized operating system components, then 

connections would be allowed. On the other 

hand, if A was not recognized by the firewall, 

then all connections from B would be rejected. 

Unfortunately, this form of IPC tracking cannot 

detect all forms of interaction between processes. 

For example, the inetd program on Unix-based 

systems receives connections from remote 

processes and then executes arbitrary commands 

to handle them. There is no way to detect this 

interaction when the connection is opened, since 

the process interaction hasn‘t occurred yet. 

Programs may be able to use covert channels, 

such as those described by Lampson [Lam73] to 

pass commands in manners 

undetectable to this algorithm. This algorithm 

also can‘t detect any communication that is 

persistent across reboots, reads from files that 

were written to by processes that have timed out 

of the graph, or anything that involves processes 

on more than one computer. However, it can be 

used to track most common forms of inter-

process communication and will be effective 

against most attempts to use another program as 

a network client. 

 

Further Research in Application Firewalling 

• The application firewalling techniques 

described in Chapter 5 have not been 

implemented and tested. While I believe them to 

be practical, I have no figures on the overhead 

imposed by such a system or the effect of this 

overhead on network communications. A 

complete implementation would require 

significant amounts of work, but would be 

necessary for a thorough analysis of the 

efficiency and effectiveness of such an 

application firewalling system. 

• In Section 5.3.2, I identified several ways that 

my techniques for identifying legitimate 

applications could be fooled or bypassed using 

virtual machines, interpreters, or malicious 

operating systems. I do not believe that these can 

be solved without making unrealistic 

assumptions about the trustworthiness of 

software, but I have no proof of this. 

• The process graph mechanism described in 

Section 5.3.3 should detect causal relationships 

between process established via communication 

over normal IPC channels, but does not take into 

account inter-process covert channels [Lam73]. 

It also does not take into account programs like 

inetd that accept connections and then execute 

arbitrary programs to handle them. It may be 

possible to devise another mechanism that can 

more accurately identify connections by proxy. 

 

Even without these enhancements, application 

firewalls and covert authentication systems such 

as port knocking and SPA, as presented in this 

thesis, are useful tools that can significantly 

enhance existing firewall systems by providing 

them with additional information about who and 

what is attempting to communicate through 

them. 
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