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Abstract 

An Internet of Things (IoT) architecture generally consists of a wide range of Internet-connected 
devices or things such as Android devices, and devices that have more computational capabilities 
(e.g., storage capacities) are likely to be targeted by ransomware authors. In this work, we 
present a machine learning based approach to detect ransomware attacks by monitoring power 
consumption of Android devices. Specifically, our proposed method monitors the energy 
consumption patterns of different processes to classify ransomware from non-malicious 
applications. We then demonstrate that our proposed approach outperforms K-Nearest 
Neighbors, Neural Networks, Support Vector Machine and Random Forest, in terms of accuracy 
rate, recall rate, precision rate and F-measure 
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1.0 Introduction 

According to IBM, devices connected to the 
Internet are expected to exceed the number 
of human beings and the evolution of 
connectivity is expected to continue such 
that by 2020 the number of connected 
devices will be around 50 billion. This 
proliferation of connected devices in an 
actuating network has created what has 
become known as the Internet of Things 
(IoT). A platform in which sensors and 
actuators blend seamlessly with the 
environment to share information in order to 

develop a common operating picture (Gubbi 
et al., 2013). 

Pervasive growth of Internet of Things (IoT) 
is visible across the globe. The 2016 Dyn 
cyberattack exposed the critical fault-lines 
among smart networks. Security of Internet 
of Things (IoT) has become a critical 
concern. The danger exposed by infested 
Internet-connected things not only affects 
the security of IoT, but also threatens the 
complete Internet eco-system which can 
possibly exploit the vulnerable Things 
(smart devices) deployed as botnets. Mirai 
malware compromised the video 
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surveillance devices and paralyzed Internet 
via distributed denial of service (DDoS) 
attacks. In the recent past, security attack 
vectors have evolved bothways, in terms of 
complexity and diversity. Hence, to identify 
and prevent or detect novel attacks, it is 
important to analyze techniques in IoT 
context. This survey classifies the IoT 
security threats and challenges for IoT 
networks by evaluating existing defense 
techniques. 

An IoT system starts from the level where a 
single object is identified using a unique 
global identifier which is globally 
addressable. The level of information 
obtained by accessing the object, in this 
case, can be as low as static data that is 
stored on the radio frequency identification 
(RFID) tags. IoT is therefore described as 
objects with a unique identifier, having 
Internet connectivity; is (interactively) 
accessible by other objects herein referred to 
as the ‘‘things’’. IoT has stepped out of its 
infancy and is the next revolutionary 
technology in the transformation of Internet 
into a fully integrated future Internet (of 
things). This development is fuelled by the 
recent increase in adoption and integration 
of wireless network technologies, Wireless 
Sensor Networks (WSN), RFID tags, as well 
as actuating nodes. On this concept, Karimi 
and Atkinson claimed, expanding 
communication networks to include physical 
objects will further accelerate the number of 
connected devices, as well as the amount of 
information that can be shared through the 
Internet (Karimi and Atkinson, 2013). 

IoT presents ubiquitous connectivity for a 
wide range of devices, services, and 

applications. These include intelligent 
computers, smart-phones, office equipment, 
wireless enabled cars, lighting systems, 
heating, and ventilation and air-condition 
(HVAC), household appliances, and many 
others. To be IoT-enabled, a device (‘thing’) 
ought to be on a network and connected to a 
communicating node. Various 
communication network technologies 
(infrastructures) such as 3G, LTE, Wi-Fi, 
Bluetooth, ZigBee, Z-wave, Sigfox, etc. 
provide connectivity services for IoT 
deployment on many services platforms. 

2.0 Materials and Methods 

Thing, 2017: analyzed IEEE 802.11 network 
threats and proposed an anomaly network 
IDS to detect and classify attacks in IEEE 
802.11 networks. This work is considered as 
the first work that employ deep learning 
algorithms for IEEE802.11 standard. Thing 
experimented Stacked Auto-encoder (SAE) 
architecture with both two and three hidden 
layers. 

The author experienced different activation 
functions for the hidden neurons. To test his 
strategy, he used a dataset generated from a 
lab emulated Small Office Home Office 
(SOHO) infrastructure. He achieved an 
overall accuracy of 98.66% in a 4-class 
classification (legitimate traffic, flooding 
type attacks, injection type attacks and 
impersonation attacks). 

Diro et al., 2017: recommended the use of 
the fog computing in IoT systems to detect 
intrusions. Fog computing is about 
equipping the fog layer (hubs, routers or 
gateways) with an intelligent data 
processing at an intermediate level in the 
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aim to improve efficiency and reduce the 
data transported to the cloud. Such a 
technology enables distributed attack 
detection which is more efficient in terms of 
scalability, autonomy in local attack 
detection, acceleration on data training near 
sources and neighbor’s parameters sharing. 
Authors proposed a deep learning approach 
to detect known and unseen intrusion 
attacks. Known attacks represent 99% which 
leads to affirm that zero-day attacks are 
crafted with small mutations in the old ones. 
Therefore, multi-layer deep networks 
enhance small changes awareness (in a self 
taught algorithm with compression 
capabilities) compared to shallow learning 
classifiers. Distributed deep learning 
approach is based on distributing the dataset 
to train each sub-dataset locally and rapidly 
than share and coordinate the learning 
parameters with neighbors. So the 
architecture ends with a master IDS which 
updates the parameters values of the down 
distributed IDSs and keeps synchronization. 
The studies show that the distributed parallel 
deep learning approach realize better results 
in accuracy than centralized deep learning 
NIDS and also than shallow machine 
learning algorithms. To train the models and 
evaluate the IDS, Diro et al. used NSL-KDD 
dataset after adding some modification on it 
to finish with 123 input features and 1 label. 
As results, they obtained multi-class 
detection consisting 4 labels (normal, DoS, 
Probe, R2L.U2R) to achieve 96.5% 
detection rate and 2.57% of false alarms for 
deep model in comparison to shallow 
classifier achieving 93.66% detection and 
4.97% false detection rate. They also noted 
an increase in the overall detection accuracy 

while adding the number of fog nodes from 
96% to 99%. The proposed approach taked 
longer training time; however, real detection 
was fast and accurate. 

Prabavathy et al. 2018:  proposed a novel 
fog computing based intrusion detection 
technique using Online Sequential Extreme 
Learning Machine (OS-ELM). The 
distributed security mechanism (guaranteed 
by the fog computing idea) respects 
interoperability, flexibility, scalability and 
heterogeneity aspects of IoT systems. The 
proposed system is composed of the 
following two major parts: 

1) Attack detection at fog nodes: Prabavathy 
et al. use OSELM algorithm to detect 
intrusions in fog nodes. The IoT network is 
divided into virtual clusters where each 
cluster corresponds to a group of IoT 
devices under a single fog node. The OS-
ELM classifies the incoming packets as 
normal or an attack. ELM is a single hidden 
layer feed forward neural network 
characterized by its fast learning phase. The 
input layer weights and hidden layer bias 
values are randomly selected to analytically 
deduce the output weights using simple 
matrix computations. However the online 
nature of OS-ELM favors a streaming 
detection of IoT attacks. 

2) Summarization at cloud server: to have a 
general idea about the global security state 
of the IoT system, detected intrusions are 
sent from the fog node to the cloud server. 
After the analysis and the visualization of 
the current state, Prabavathy et al. propose 
two actions;  
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i) predict next attacker action using the 
attacker plan recognition approach; or  

ii) identify fog node geographical position 
based multistage, and DDoS attacks. Hence, 
an intrusion response can be activated. 

He further proposed a proof of concept to 
evaluate their proposition on DUALCORE 
processor, 1 GB RAM and 200 GB HDD as 
fog nodes. Authors deployed Azure cloud 
service (4 X Dual-Core AMD Opteron 2218 
@2.6 GHz, 8 core, 32 GB RAM, 6146 GB 
HDD) for experimental setup. They 
implemented OS-ELM using MATLAB and 
NSL-KDD as benchmark dataset. Authors 
claimed high accuracy and response time. 
They achieve 97.36% accuracy with reduced 
false alarm rate 0.37%. The detection rate 
with the fog node strategy was 25% faster 
when compared with cloud based 
implementation. An important advantage is 
that new online data can be incorporated in 
the learning process, which is not the case 
for ANN and NB. 

3.0 Methods 

To develop a fingerprint of ransomware’s 
energy consumption, initially, we need to 
record the power usage of targeted 
applications. Similar to the approaches in 
previous studies (Yang 2012; Merlo et al. 
2015) we used Power-Tutor to monitor and 
sample power usage of all running processes 
in 500 ms intervals. PowerTutor creates log-
files containing sequence of energy usage of 
each process at given sampling interval. We 
conducted our experiments on three 
different Android devices, namely: a 
Samsung Galaxy SIII (CPU: 1.4 GHz, 

RAM: 2GB, OS: Android 4.4), a Samsung 
Galaxy S Duos (CPU: 1.0 GHz, RAM: 768 
MB, OS: Android 4.0.1), and an Asus 
Padfone Infinity (CPU: 1.7 GHz, RAM: 2 
GB, OS: Android 4.4). To collect energy 
consumption logs of both ransomware and 
goodware, we installed the most popular 
Android applications, namely: 

Gmail (version 9.6.83), Facebook (version 
99.0.0.26.69), 

Google Chrome (version 53.0.2785.124), 
Youtube (version 11.39.56), Whatsapp 
(version 2.16.306), Skype (version 
7.20.0.411), AngryBrids (version 6.1.5), 
Google Maps (version 9.39.2), Music Player 
(version 4.2.52), Twitter (version 6.19.0), 
Instagram (version 9.6.0) and Guardian 
(version 3.13.107) and six active and recent 
ransomware samples on all devices. All 
ransomware were downloaded via 
VirusTotal 1 Intelligence API, and these 
ransomware have active Command and 
Control (C2) servers. 

We then use PowerTutor to monitor and 
record the device processes’ power usage 
(while running the applications and 
ransomware, separately) for 5 min. While 
running the applications (also referred to as 
goodware), the user interactions mirrored a 
real world usage. This procedure was 
repeated five times per device; thus, we 
obtained 

5repeation × 3device = 15 power usage 
samples for each and every application and 
ransomware. 
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As each device’s CPU has its own power 
usage specification, the energy consumption 
of all devices were mapped to a specific 
range in order to have a meaningful 
evaluation. So, we normalised the CPU 
power consumption for all monitored 
processes on the devices to [0, 1], where 0 
indicates no power usage and 1 presents the 
maximum CPU power utilisation. Scripts 
were written to process log-files, extract and 
normalize power usage values, and generate 
a row-normalized dataset. Each row includes 
a label (i.e., goodware or ransomware) and a 
normalized sequence of energy consumption 
for five minutes of activity. 

3.1 Classification of the Algorithm Used  

Assigning correct label to a sample based on 
previous observations is a key element of 
Supervised Learning and Classification 
(Michalski et al. 2013). We applied four 
state-of-the-art classifiers, namely: k-
Nearest Neighbor (KNN), 

Neural Network (NN), Support Vector 
Machine (SVM) and Random Forest (RF), 
on the power usage samples to recognise the 
class of each sequence of power 
consumption. KNN is a simple and powerful 
classifier which seeks K nearest sample(s) 
and assigns the majority of neighbor’s label 
to the given samples. NN (Haykin 1998) is 
an implementation of human brain networks 
and mostly used to approximate the function 
between inputs and output. 

Another popular technique for supervised 
learning is SVM, which is based on the 
concept of decision planes that define 
decision boundaries. A decision plane 

differentiates a set of objects based on their 
class memberships. 

Ensemble learning has been the motivation 
of developing RF (Verikas et al. 2011) that 
operates by constructing a multitude of 
decision trees at training time and generating 
the class label. 

Power usage sequence of each process can 
be considered as time-series data. A wide 
range of methods have been proposed to 
classify time-series data (Xing et al. 2010). 
In this study, a distance based time-series 
classification approach based on Dynamic 
Time Warping (DTW) (Müller et al., 2017) 
is used for distance measure, and KNN is 
used as a classifier. Similarity distance is a 
key element in KNN classification and we 
apply two different distances to find the 
closest neighbor as follows: 

• Euclidean distance: Euclidean distance or 
Euclidean metric is the intuitive distance 
between two vectors in Euclidean space and 
calculated as follow: 

• Dynamic time warping (DTW): DTW is a 
recognized technique for finding an optimal 
alignment between two time-dependent 
sequences (see Fig.  1). According to 
DTW’s ability to deal with time 
deformations and issues associated with 
speed differences in time-dependent data, it 
is also employed to calculate distance or 
similarity between time series (Müller et al., 
2017). Let us denote two sequences that 
display two discrete subsamples as  

                  X = (x1, ... , xn) and Y = (y1, ... , 
ym) of length m, n 𝜖𝜖 ℕ. 
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DTW uses a Cost Matrix C𝜖𝜖ℝn×m. Each 
cell Ci,j indicates the distance between xi 
and yj (see Fig. 2). DTW’s purpose is to 
discover an optimal alignment between X 
and Y having a minimal entirely distance. 
As an intuitive explanation, an optimal 
alignment traverse across a valley of low 
cost cells within the cost matrix C. A 
warping path is specified as a sequence p = 
{p1, ... , pL} with pl = (nl, ml)𝜖𝜖[1:N] × 
[1:M], l𝜖𝜖[1:L] satisfying the following 
conditions: 

– Boundary condition: p1 = (1, 1) and pL = 
(N, M). 

– Monotonicity condition: n1 ≤ n2 ≤ ⋯ ≤ nL 
and m1 ≤ m2 ≤ ⋯ ≤ mL. 

– Step size condition: pl+1 − pl = {(1, 0), (0, 
1), (1, 1)} for l[1:L1]. 

The summation of all local distances of a 
warping path’s elements outcomes the total 
cost of path and in order to find optimal 
warping path p∗, the path having minimum 
total cost among all possible paths is 
selected. Finally, to measure similarity or 
distance between two sequences X and Y, 
their total cost of optimal warping path are 
evaluated. The total cost cp(X, Y) of a 
warping path p between X and Y with 
respect to the local cost measure c is defined 
as: 

(2)cp(X, Y) =Ll=1 

c(xnl, yml). 

The DTW distance DTW (X, Y) between X 
and Y is then defined as the total cost of p∗: 

Figure 3 illustrates how DTW aligns two 
power usage subsamples in order to find 
optimal path between them for distance 
calculation. 

 

3.2 Metrics and Cross‑Validation 

Similar to the approach in (Buczak and 
Guven 2016), we use the following four 
common performance indicators for 
malware detection: 

• True positive (TP): indicates that a 
ransomware is correctly predicted as a 
malicious application. 

• True negative (TN): indicates that a 
goodware is detected as a non-malicious 
application correctly. 

• False positive (FP): indicates that a 
goodware is mistakenly detected as a 
malicious application. 

• False negative (FN): indicates that a 
ransomware is not detected and labelled as a 
non-malicious application. 

To evaluate the effectiveness of our 
proposed method, we used machine learning 
performance evaluation metrics that are 
commonly used in the literature, namely: 
Accuracy, Recall, Precision and F-Measure. 

Accuracy is the number of samples that a 
classifier correctly detects, divided by the 
number of all ransomware and goodware 
applications: 

Accuracy =          TP + TN 

               TP + TN + FP + FN. 
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Precision is the ratio of predicted 
ransomware that are correctly labelled a 
malware. Thus, Precision is defined as 
follows: 

   Precision = TP 

                    TP + FP 

Recall or detection rate is the ratio of 
ransomware samples that are correctly 
predicted, and is defined as follows: 

Recall = TP 

            TP + FN. 

F-Measure is the harmonic mean of 
precision and recall, and is defined as 
follows: 

F − Measure =       2 ∗ TP 

                  2 ∗ TP + FP + FN 
Cross-validation (Kohavi et  al. 1995) is a 
fundamental technique in machine learning 
to assess the extent that the findings of an 
experiment can be generalized into an 
independent dataset. In order to evaluate the 
performance of the proposed method, we 
used the leave-one-out cross validation. We 
are aware that in order to implement this 
validation method, all subsamples of a 
sample need to be excluded from the 
classifier training phase. All evaluations 
were conducted using MATLAB R2015a 
running on a Microsoft Windows 10 Pro 
personal computer powered by Intel Core i7 
2.67 GHz and 8 GB RAM. 

 

 

4.0 Performance Evaluation 

Table 2 displays the findings of applying 
classification algorithms on our dataset. 
However, as patterns of power 
consumptions are not predictable and 
depend on many factors such as files 
content, encryption algorithm etc. samples 
are highly distributed in the feature space. 

It appears that direct application of 
conventional classification algorithms 
namely NN, KNN and SVM, is not 
promising. For example, the KNN classifier 
that uses DTW as a similarity measure 
outperformed other techniques while 
conventional KNN (with parameter setting 
of K = 1, 5, 10) is ranked lowest among the 
classification approaches. 

Since Euclidean method calculates similarity 
by summing distances between 
corresponding points of samples, the 
calculated distance could be far when the 
position of occurring power usage patterns 
varies (even if samples are visually 
cognate). On the other hand, DTW attempts 
to align samples based on the distance 
between pieces of samples that are more 
similar regardless of the position of similar 
energy usage pattern. Consequently, the 
performance of KNN classifier is 
significantly influenced by the distance 
criteria. The second place belongs to RF that 
selects subset of features and works in 
splitted feature spaces instead of using a 
complete feature space. These observations 
led us to hypothesis that a subset of features 
(i.e., a specific interval within Ransomware 
infection period) may improve performance 
of the classification techniques. 
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Table 2: performance Evaluation of the 

Ransomware using different algorithms 

Algorith
ms 

Accura
cy (%) 

Reca
ll 
(%) 

Precisi
on (%) 

F-
measu
re (%) 

KNN (k 
= 1) 

71.85 71.1
1 

56.14 62.75 

KNN (k 
= 5) 

72.59 72.2
2 

57.02 63.73 

KNN (k 
= 10) 

83.79 71.1
1 

56.64 63.05 

KNN (k 
= 1 and 
DTW) 

83.79 78.8
9 

73.96 76.34 

Neural 
network 

75.93 73.3
3 

61.68 67.01 

Random 
forest 

80.74 76.6
7 

69.00 72.63 

SVM 78.52 74.4
4 

65.69 69.79 

 

Table 3: Evaluation metrics for different 

window sizes and SVM: a comparative 

summary 

Dat
a  

Accurac
y (%) 

Recal
l (%) 

Precisio
n (%) 

F-
measur
e (%) 

5 77.72 59.42 73.21 65.60 
10 88.60 85.51 83.10 84.29 
15 91.19 94.20 83.33 88.44 
20 89.64 82.61 87.69 85.07 
25 87.56 75.36 88.14 81.25 

30 81.35 55.07 88.37 67.86 
35 78.24 47.83 84.62 61.11 
40 78.24 47.83 84.62 61.11 
45 76.17 42.03 82.86 55.77 
50 76.68 42.03 85.29 56.31 
 

Best (optimal) values are highlighted in bold 

Table 3: Evaluation metrics for different 

window sizes and neural network: a 

comparative summary 

Dat
a  

Accurac
y (%) 

Recal
l (%) 

Precisio
n (%) 

F-
measur
e (%) 

5 88.08 82.61 83.82 83.21 
10 88.08 84.06 82.86 83.45 
15 89.64 88.41 83.56 85.92 
20 90.67 86.96 86.96 86.96 
25 89.64 85.51 85.51 85.51 
30 89.12 85.51 84.29 84.89 
35 88.08 82.61 83.82 83.21 
40 86.01 81.16 80.00 80.58 
45 85.49 82.61 78.08 80.28 
50 86.01 82.61 79.17 80.85 
 

 Best (optimal) values are highlighted in 

bold 

As shown in Table 3, the KNN classifier 

that uses DTW distance with a subsample 
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size of 7.5 s outperformed all other methods 

in terms of detection rate95.65% and 

performance of 94.27%. Although KNN is 

the least sophisticated classification 

approach, it outperformed other rival 

classification techniques since it only relies 

on the formation and distribution of 

goodware’s and ransomware’s subsamples. 

The performance of KNN using DTW for all 

evaluation metrics peaks at window size = 

15. However, the remaining classifiers were 

not able to achieve an optimal performance 

at the specified window size. For example, 

NN’s best accuracy, precision and F-

measure occurred at w = 20, while highest 

recall was achieved at w = 15. The 

numerical results indicate that subsamples 

are not from specified and exact data 

distribution and classes have overlap 

sample(s) in feature 

space. Therefore, KNN that seeks for most 

similar subsample to input data outperform 

other classification approaches. 

Moreover, according to ability to align 

subsamples, DTW can find closer energy 

consumption pattern and consequently 

provide more accurate classification results 

than euclidean. 

Furthermore and in practice, KNN’s 

requirement for concurrent distance 

calculations between training and testing 

objects can be implemented using parallel 

processing (so distances can be 

independently computed). Subsamples 

dictionary can be partitioned into sperate 

IoT nodes and each subsample is sent to 

nodes. They return a label and a similarity 

value and the label having less similarity 

value is final subsample’s label. This 

approach reduces the classification time and 

mitigates the need for storage capacity in 

every node. 

5.0 Conclusion  

With increasing prevalence of Internet-

connected devices and things in our data-
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centric society, ensuring the security of IoT 

networks is vital. Successfully compromised 

IoT nodes could hold the network to ransom 

adversely affect the operation of an 

organisation and result in significant 

financial loss and reputation damage. 

In this paper, we presented an approach to 

detect ransomware, using their power 

consumption. Specifically, we utilise the 

unique local fingerprint of ransomware’s 

energy consumption to distinguish 

ransomware from non-malicious 

applications. The sequence of applications’ 

energy consumption is splitted into several 

sequences of power usage subsamples, 

which are then classified to build aggregated 

subsample’s class labels. Our set of 

experiments demonstrated that our approach 

achieved a detection rate of95.65% and a 

precision rate of 89.19%. 

Future works include prototyping the 

proposed approach for deploying in a real-

world IoT network, with the aims of 

evaluation and refinement. 
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