GSJ: Volume 5, Issue 11, November 2017 112

\(:9 Global Scientific sournas

GSJ: Volume 5, Issue 11, November 2017, Online: ISSN 2320-9186

www.globalscientificjournal.com

SELECTIVE KDE AND TEMPORAL ANALYSIS FOR VERIFICATION OF
DIGITAL CHIPS

Bhushan S Vasisht,Mr Narayan T Deshpande

B.E, Dept. Of E&C, BMSCE, Bangalore
Abstract:

The demand for new and powerful electronic devices is increasing every day. These powerful devices
require complicated designs. The design engineers do their best to provide with good designs but still many
bugs may remain hidden in the design. These bugs may cause huge loss if they are found after the device is
sent to the market. Therefore it is necessary for the designs to be verified thoroughly.

The verification process is also a complicated process.Today around 70% of the product cycle is used up for
verification. Thus a method to hasten the verification while satisfying coverage is required. Due to complex
designs having complex behavioral pattern, the verification engineer needs to write many test scenarios
which is practically not possible. Thus they randomize the process at some level.

When a process is randomized, generally it still follows a set pattern as decided by the seed of the
pseudo-random algorithm. Even for a completely random pattern, it is difficult to hit wide range of
test-values. It will repeat some of the values before all values are hit.. This will result in both lesser coverage
and increased time for verification.

Machine Learning techniques like Kernel Density Estimation(KDE) and Temporal Analysis are used to
reduce the amount of time needed for verification.Temporal Analysis include Assertions,Properties and
Sequences which are inbuilt in SystemVerilog. Kernel density estimation is used to divide the range of bit
fields into many kernels and verify the resulting kernels in the descending order of the number of values in
each kernels.Left over kernels can be verified by directed testing.Thus the amount of time for verification is
reduced.

GSJO 2017
www.globalscientificjournal.com

GSJ: Volume 5, Issue 11, November 2017 113

1.0 Introduction

In recent years, most design starts have grown so large that it is not feasible to use functional vectors for
manufacturing tests, even if they provide high fault coverage, because it takes many vectors to test the
functional corners of the design that the cost of time is huge. Hence verification has become a major concern
in the industry.

Verification has evolved into a complex project that often spans internal and external teams, but the
discontinuity associated with multiple, incompatible methodologies among those teams has limited
productivity.

The Universal Verification Methodology (UVM) addresses verification complexity and inter-operability
within companies and throughout the electronics industry for both novice and advanced teams while also
providing consistency.Machine learning is the term used for processes that provide computers with the
ability to learn without being explicitly programmed. Machine learning focuses on the development of
computer programs that can change when exposed to new data.

1.1 Problem definition

Almost 70% of the design cycle of chips goes in verification.Verification is the most important step in the
design cycle and takes huge amounts of manpower and time to be completed.Verification also involves
complex processes both on the DUT side as well as utilization of software for coverage monitoring.This
increases the time to market by a huge margin.

Verification involves the verification engineer to closely monitor the interactions on the DUT side and
manipulate the signals being driven from the test environment to ensure all corners cases are driven to the
chip and corresponding proper outputs are seen.This is a very tedious process and something which is
unavoidable because the cost of each bug propagated to the customer is a huge loss to the manufacturer and
the cost for repairing the bug and fabricate the chip again is also a non productive use of manpower and
time.

1.2 Problem Solution/Block Diagram

System-Level Environment
MATLAB or Simulink

SystemVerilog UVM Environment

ML-UVM System Architecture

GSJO 2017
www.globalscientificjournal.com

GSJ: Volume 5, Issue 11, November 2017 114

1.3 Random Number Generator

Nothing in this world is purely random.Some extent of determinism can be seen in all random processes.As
for coming to random number generators, they are algorithms that take a pre-loaded large number and
multiply it with the current value of the random variable and then take the modulus of a similarly pre-loaded
large number called the seed value.The randomness of the algorithm is constrained by the seed value. For
verification,we use constrained random approach,i.e the range of values which are to generated are
constrained,and the seed value is calculated by the algorithm for that range.

X.. =[a*X,](mod m)
where: 71 = 16,807, and m= 23 -1

Pseudo Random Number Generation Equation
1.4 Verification Flow
« RTL is designed with HDL languages like Verilog or VHDL or SystemVerilog.
« The simulation of the RTL can be done with simple driver testbench.
« Verification is done with UVM environment for reusable sequence generation.

« Machine Learning Algorithms are used to get optimized sequence generation for faster verification.

RTL Design

RTL Simulation

l

Verification with UVM

l

Machine Learning Algorithm

Verfication Flow Diagram
2.0 Implementation
2.1 UVM(Universal Verification Methodology)

Verification has evolved into a complex project that often spans internal and external teams, but the
discontinuity associated with multiple, incompatible methodologies among those teams has limited the
productivity. The Universal Verification Methodology (UVM) 1.2 Class Reference addresses verification
complexity and inter-operability within companies and throughout the electronics industry for both novice
and advanced teams while also providing consistency.

The UVM application programming interface (API) defines a standard for the creation, integration, and
extension of UVM Verification Components (UVCs) and verification environments that scale from block to
system. The UVM 1.2 Class Reference is independent of any specific design processes and is complete for
the construction of verification environments.

GSJO 2017
www.globalscientificjournal.com

GSJ: Volume 5, Issue 11, November 2017 115

TOP_ENV

e scnreboaartt

uwn_mune

UVM Test Example
2.2 DPI(Direct Programming Interface)

SystemVerilog DPI (Direct Programming Interface) is an interface which can be used to interface
SystemVerilog with foreign languages. These Foreign languages can be C, C++, System C or others as well.
DPIs consist of two layers: A SystemVerilog Layer and a Foreign language layer. Both the layers are
isolated from each other.

The programming languages actually used as the foreign language are transparent and is indepedent of the
SystemVerilog side of this interface. Neither the SystemVerilog compiler nor the foreign language compiler
is required to analyze the source code that is interfaced. Different programming languages can be used and
supported with the same intact SystemVerilog layer.

2.3 MLA(Machine Learning Algorithms)

Machine learning is the term used for processes that provide computers with the ability to learn without
being explicitly programmed. Machine learning focuses on the development of computer programs that can
change when exposed to new data.

There are three types of learning in MLA.They are:

« Supervised Learning: Supervised learning is the machine learning task of inferring a function from
labeled training data. The training data consist of a set of training examples. In supervised learning, each
example is a pair consisting of an input object (typically a vector) and a desired output value (also called
the supervisory signal).

+ Asupervised learning algorithm analyzes the training data and produces an inferred function, which
can be used for mapping new examples. An optimal scenario will allow for the algorithm to
correctly determine the class labels for unseen instances.

« Unsupervised Learning: Unsupervised learning is a type of machine learning algorithm used to draw
inferences from data sets consisting of input data without labeled responses.

+ The most common unsupervised learning method is cluster analysis, which is used for exploratory
data analysis to find hidden patterns or grouping in data. The clusters are modeled using a measure
of similarity which is defined upon metrics such as Euclidean or probabilistic distance.

« Reinforced Learning: Reinforcement Learning or Reinforced learning is an area of machine learning
inspired by behaviorist psychology, concerned with how software agents ought to take actions in an
environment so as to maximize some notion of cumulative reward. The problem, due to its generality, is
studied in many other disciplines, such as game theory, control theory, operations research, information
theory, simulation-based optimization, multi-agent systems, swarm intelligence, statistics, and genetic

GSJO 2017
www.globalscientificjournal.com

GSJ: Volume 5, Issue 11, November 2017 116
algorithms. In the operations research and control literature, the field where reinforcement learning
methods are studied is called approximate dynamic programming. The problem has been studied in the
theory of optimal control, though most studies are concerned with the existence of optimal solutions and
their characterization, and not with the learning or approximation aspects. In economics and game
theory, reinforcement learning may be used to explain how equilibrium may arise under bounded
rationality.

2.31 Selective KDE(Kernel Density Estimation)

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density
function of a random variable. Kernel density estimation is a fundamental data smoothing problem where
inferences about the population are made, based on a finite data sample.

In standard KDE,a range is divided into many parts called kernels and data points are populated into the
range.The inter kernel Gaussian curves are calculated and the overall curve for the range is obtained by
curve smoothing techniques.Here we are using a slightly modified KDE.Here we take the range and divide it
into many kernels and populate the data.After populating,we identify and select the kernel with highest
number of data points and start constrained random verification for that kernel.After completion,the next
highest kernel is verified and so on.The kernels with very less data points can be verified in directed testing.

This method just so happens to be suitable for DUT’s which have gaps in the functional range of values,i.e
some values are undefined in the range of functioning of the DUT.In such cases,the kernels will have zero or
in extreme cases small number of data points.These can be ignored in constrained random verification and
left for directed testing.

Examples for such DUT are memory fields,special registers, protocol testers, etc.

n

1 - 3 K((t-x;)/h)

Normal
Kernels

% 06" K((t-x.)/h)
3 Ng
a 04 -
0.2 -
0 -
0 1 2 3 4 5
% - Data points X; X

KDE Representation

2.32 Temporal Analysis

Temporal statistical analysis enables you to examine and model the behavior of a variable in a data set over
time (e.g., to determine whether and how concentrations are changing over time. The behavior of a variable
in a data set over time can be modeled as a function of previous data points of the same series, with or
without extraneous, random influences.

GSJO 2017
www.globalscientificjournal.com

GSJ: Volume 5, Issue 11, November 2017

There are built in temporal analysis components in SystemVerilog which help us to model the characteristics
and changes in the concentration of a variable in a data set.These components are named Assertion,
Sequence and Property.This method is useful with DUTs which have data variables which can vary oover
large ranges and behavior of the DUT changes with the data value.Examples are Counters,Shift

Registers,etc.

Assertion:

Assertions are primarily used to validate the behaviour of a design. ("Is it working correctly?") They may
also be used to provide functional coverage information for a design ("How good is the test?"). Assertions
can be checked dynamically by simulation, or statically by a separate property checker tool — i.e. a formal
verification tool that proves whether or not a design meets its specification. Such tools may require certain

Temporal Analysis of a motherboard chip

assumptions about the design’s behaviour to be specified.

Property:

Property is used to check whether the design is producing these kind of sequential behavior in the way it is

supposed to generate or not.

Block
A

Int

It

Assert Assume

Int spacing > 3 clocks Int spacing > 5 clocks

-
%

=3

It | | ' M
5 VS [I o

Assertion Example

¥ ¢ B YRR VU 05 I

a

endproperty :

property p_with_var_delay;
int v_cnt;
start_sig, v_cnt = var_del + 1'bl)
v_ecnt > @, v_ent = v_cnt - 1)[*1:%]
##1 (end_sig && v_cnt >= @}) ;
p_with_var_delay

| =>

Property Example

GSJO 2017
www.globalscientificjournal.com

117

GSJ: Volume 5, Issue 11, November 2017 118
Sequences:

A sequence is a list of boolean expressions in a linear order of increasing time. The sequence is true over
time if the boolean expressions are true at the specific clock ticks. The expressions used in sequences are
interpreted in the same way as the condition of a procedural if statement.

sequence sl

a ##[3:5] b;
endsequence
sequence s2

1 #2[3:7] i(c ##3 d):
endsequence

properiy pl
gl |[—= s82:

endproperty
assert al

assert pl else
endassert

Sequence Example
3.0 Conclusion
RTL Used for Testing : AMBA-APB Bridge Converter
« Without the use of MLA, after 10000 clock cycles, only 71% of verification was over.

« With the addition of the MLA, after 10000 clock cycles, 85% of verification was over. By optimizing
the MLA we can expect a much better result than constrained random test bench.

4.0 References
1) UVM Class Reference Manual 1.2.pdf

2) https://verificationacademy.com/verification-horizons/june-2014-volume-10-issue-2/UVM-Testbench-S
tructure-and-Coverage-Improvement-in-a-Mixed-Signal-Verification-Environment

3) http://infocenter.arm.com/help/topic/com.arm.doc.ddi0367b/Jgbiaici.html
4) https://en.wikipedia.org/wiki/Supervised_learning

5) https://www.mathworks.com/discovery/unsupervised-learning.html

6) https://www.bdti.com/InsideDSP/2012/09/05/MathWorks

7) https://www.mathworks.com/examples/matlab-computer-vision/mw/vision_product-VisionRecovertfor
mCodeGenerationExample-introduction-to-code-generation-with-feature-matching-and-registration

8) Dr. Damodharan V. S., Mr. Rengarajan.V, “Innovative Methods of Testing and Verification”

9) https://www.mathworks.com/examples/matlab-coder/mw/coder_product-coderdemo_hello_world-hello-
world

10) System Verilog for Verification by Chris Spear

GSJO 2017
www.globalscientificjournal.com

