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ABSTRACT 

In this paper, quantum tunneling phenomena is simulated in the neutron – Fe-56 interaction using a modified Woods-
Saxon potential. The one-dimensional Schrödinger equation is numerically solved using finite difference method 
implemented with Jacobi transformations in order to satisfy the boundary conditions. The standard Woods-Saxon 
potential parameters were kept constant at W0 = 50 MeV, a = 0.65 fm, V0 = 47.78 MeV and R0 = 4.9162 fm 
respectively. The wavefunctions and the transmission coefficients of the neutrons as it tunnels through the Fe-56 
nuclide with different angular momenta l = 0, 1, 2, 3, 4 and various energies of the projected neutron were obtained. 
The simulation algorithm is coded in MATLAB computer language. The results obtained show that the projected neutron 
can tunnel through the barrier even when the energies of the projected neutron are less than the energy of the barrier. 
For neutron with purely translational kinetic energy (l = 0), it is observed that after tunneling there is no attenuation or 
reduction in its intensity and amplitude after interacting with the Fe-56 nucleus, indicating perfect tunneling and 
transmission of the neutron through the Fe-56 barrier. At other angular momenta (i.e., l=1,2, 3…) the wavefunction of 
the transmitted neutron attenuates after tunneling, with a change in amplitude as it tunnels through the barrier. Further 
results show that the transmission coefficient attains saturation at an incident energy approximately equal to 
Es = −0.1309 eV. The Es  value may serve as an experimental guide (given the barrier parameters) in neutron-Fe-56 
scattering experiments particularly in elastic regime. It is recommended that further research be carried out using other 
target nuclei as this could significantly contribute to a better knowledge of tunneling probabilities for neutron-nucleus or 
nucleus-nucleus interactions. 
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I. Introduction 

Quantum tunneling refers to the transmission of microscopic particles through any arbitrary barrier with energy less than the barrier 

height. The tunneling effect is one of the most significant distinctions between classical and quantum mechanics. Classically, it is 

known that when a particle which has an energy 𝐸𝐸 (which is always non-negative), encounters a potential barrier, 𝑉𝑉(𝑟𝑟) then, the 

particle simply cannot be located at a point 𝑟𝑟 (𝑟𝑟 > 0) with the potential barrier greater than the energy of the particle (𝑉𝑉(𝑟𝑟)  > 𝐸𝐸). 

However, quantum mechanically, a particle which has a definite value of energy, 𝐸𝐸, on encountering a potential barrier has a non-

zero probability of being located in the classically forbidden region [6] [13] [23] [28] [30]. 

The study of radioactivity which was discovered in 1896 by Henri Becquerel ushered in the development of quantum tunneling. It 

was found that the emission of particles and energy from the unstable nucleus of an atom to form a stable product is as a result of 

tunneling of the particle out of the nucleus. Its first application was a mathematical explanation for alpha decay, which was 

developed in 1928 by George Gamow [20]. 

In recent years, tunneling has been a great breakthrough most especially in the demand in high-speed and new functional device 

applications. It is widely applied in modern devices and modern experimental techniques, such as the tunnel diode (in electrical 

semiconductor devices when heavily doped), the scanning tunneling microscope (in imagining the surface of a conductor), quantum 

biology (in many biochemical redox reactions such as photosynthesis, cellular respiration as well as enzymatic catalysis and in 

spontaneous DNA mutation), nuclear fusion (where tunneling increases the probability of atomic nuclei to overcome the coulomb 

barrier in stars’ core to achieve thermonuclear fusion) among others [11] [35]. 

The application of interest for this paper is to investigate quantum tunneling in the nuclear reaction of neutron-Fe-56 interaction. 

Neutrons by virtue of being neutral particles can approach a target nucleus without any interference from a Coulomb repulsive or 

attractive force. Once in close proximity to the target nucleus, neutrons can interact with the nucleus through the short range 

attractive nuclear potential and trigger various nuclear reactions. The study of the neutron-nucleus has motivated a lot of 

researchers for the fact that the neutron can represent a significant source of indirectly ionizing radiation along its path as it 

interacts with various nuclei. 

Furthermore, the neutron is quite sensitive to light atoms like hydrogen, Oxygen, etc. which have much higher interaction 

probability as compared to metals. Since the neutron is electrically neutral, it interacts only weakly with matter into which it can 

penetrate deeply. Metals comparatively show lower interaction probability with neutrons, thus allowing quite high penetration 

depth [9]. 

The interaction of neutron-Fe-56 is a nuclear process in which the neutron and Fe-56 collide to produce one or more nuclides 

(isotopes) with a release of an enormous amount of energy. This interaction results in so many processes depending on the energy 

possessed by the neutron and the nature of Fe-56 which can lead to either absorption or scattering of the neutron by Fe-56 [15] 

[16]. When the neutron is absorbed by Fe-56, the resulting isotope is in its excited state. At some point in time, the heavy isotope 

will split into two or smaller isotopes called the fission fragments mostly of unequal masses. This absorption could be 

electromagnetic absorption (involves photons or higher energy photons such as gamma rays being emitted), charged particle 

absorption (involves the iron-56 emitting different types of radiations, like ∝-particles orβ-particles), neutral absorption (involves the 

Fe-56 emitting another neutron from the Fe-56 nucleus) and fission. Scattering of the neutron as it collides with the Fe-56 could be 
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elastic or inelastic scattering. In elastic scattering, there is no transfer of energy between the neutron and the Fe-56. As the neutron 

collides with the Fe-56 and share part of its kinetic energy, they are then repelled with speeds different from the original speeds 

such that the total kinetic energy between the two particles is conserved. The collision emits an Fe-56 which is in its ground state 

and a single neutron. In the case of inelastic scattering, as the neutron interacts with the Fe-56, the Fe-56 goes into an excited state 

due to the momentum energy that the incoming neutron had and at later point in time, the Fe-56 will emit some radiation due to 

de-excitation. 

To describe neutron-nucleus interaction and nuclear reaction dynamics, the knowledge of the potential between the two colliding 

particles is of fundamental importance. Notable equations for radius-centered potentials in recent years has attracted many 

researchers, such as the Rosen-Morse potential, the Morse potential, the Yukawa potential, Woods-Saxon potential among others 

[27]. The Woods-Saxon potential has attracted a great deal of interest over the years and has been one of the most useful models 

for determining the single particle energy levels of nuclei and the nucleus-nucleus interactions. The Woods-Saxon potential was first 

proposed by R.D. Woods and D.S. Saxon in 1954 to describe the elastic scattering of 20 MeV protons on heavy nuclei [3] [4] [7] [21] 

[26] [27]. The Woods-Saxon potential is a well-known potential and one of the most realistic short-range potentials in physics which 

is considered in the present paper to describe the quantum tunneling behavior of the neutron as it interacts with the Fe-56.  Figure 2 

illustrates various possibility outcome of neutron- 𝐹𝐹𝐹𝐹 − 56 interactions. 

 

Figure 1: Schematic of various interactions of a neutron with Nucleus. 

In order to find out how a particle can tunnel through a physical system; a potential model is considered and then the Schrodinger 

equation is solved to find the appropriate wavefunctions [8] [18][33]. 

The radial part of Schrödinger equation numerically for the Woods-Saxon potential, the general Woods-Saxon potential, and D-

dimensional Woods-Saxon potential was solved in [24] by applying finite difference method and Jacobi method to investigate the 

interaction of neutron with Fe-56. The eigenvalues which are energies of the eigensystem and the eigenvectors which are related to 

the wave functions were obtained. 

Also, the angular distributions of the C-12 elastic scattering from K-39, Ca-40, Fe-56, Ni-64, Zr-90;91;92;94;96, In-115, Sn-

116;117;118;119;120;122;124, Tm-169 and Bi-209 with incident energies between 4.5 and 35 MeV was experimented in [21]. The 

optical potential parameters were analyzed. The systematic Woods-Saxon potential parameters were also presented and then 

tested by the comparison between the calculation results and the experimental angular distributions of the heavy-ion elastic 

scattering. 
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The likelihood of neutron-nucleus (Fe-56) interaction has been well covered in the literature over the decades in terms of its cross 

section [19] [21]. Also, the eigenvalues and the corresponding eigenfunctions have been solved for some neutron-nucleus and 

nucleus-nucleus interactions in the literature [2] [3] [4] [14] [17] [22] [24] [25] [29] [30]. However, transmission probability which 

shows the tendency of a neutron’s current flux penetrating the potential barrier in a Fe-56 nucleus has not been given adequate 

attention in the literature. Therefore, there is a great deal of analysis on transmission probability, which includes the ability of the 

neutron current flux to tunnel through the potential barrier in the Fe-56 nucleus along the boundaries. The theory developed in this 

paper takes a more general approach, which avoids many simplifications previously imposed to calculate the probability current 

density. Also, this paper evolves a computational approach previously used to calculate the eigenfunctions with the application of 

finite difference method and Jacobi transformation. 

Additionally, the theory of quantum tunneling has been so limited to problem which can be solved analytically. It becomes a simple 

procedure to match solutions at the boundary and extract the transmission coefficients as ratio of transmitted and incident 

probability currents. Where the potential barrier is such that analytic solutions are not possible as in the modified Woods-Saxon 

potential there is no simple way to extract transmission coefficients. The free particle region solution is assigned a wave function a 

priori and evaluated at the boundary. In this work, we employed a numerical technique that solves the problem in the potential 

region at the same time matching the solution at the boundary to the free particle solution to avoid discontinuity of the solutions. 

Figure 2 illustrates the scattering of the neutron wavefunction as it interacts with the potential barrier (𝐹𝐹𝐹𝐹 − 56). 

 

Figure 2: Neutron-Fe-56 interaction 

This paper is organized as follows: the finite difference method, the Jacobi method, the Woods-Saxon Potential are presented in 

section II. The radial part of the Schrodinger equation with the modified Woods-Saxon Potential and its solution are also presented 

in this section. Numerical results and detailed discussions are given in section III and IV respectively. Summary and conclusion are 

presented in section V. 

II. Theoretical Consideration 

A. Finite Difference Method 

The finite difference method is one of the methods used in discretization of differential equations. The FDM subdivides the 

simulation domain into small segments, called step size. Each step size boundary is called a node and the unknown variables are 

defined on these nodes. The derivatives in the differential equation to be solved are replaced by discretized finite difference 
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approximations at each one of the nodes. These approximations may be derived from a truncated Taylor series.  From Taylor series 

expansion, it is assumed that if a function 𝑓𝑓 (𝑥𝑥) is a continuous, single-valued function with continuous derivatives, then [5] [ [31]. 

                          𝑓𝑓 (𝑥𝑥 + ∆𝑥𝑥) = 𝑓𝑓 (𝑥𝑥) + ∆𝑥𝑥𝑓𝑓′  (𝑥𝑥) + ∆𝑥𝑥2

2!
𝑓𝑓′′  (𝑥𝑥) + ⋯,                (1) 

                          𝑓𝑓 (𝑥𝑥 − ∆𝑥𝑥) = 𝑓𝑓 (𝑥𝑥) − ∆𝑥𝑥𝑓𝑓′  (𝑥𝑥) + ∆𝑥𝑥2

2!
𝑓𝑓′′  (𝑥𝑥) −⋯,                (2) 

where ∆𝑥𝑥 is the step size. This discretization provides second-order accuracy with a local truncation of 𝜊𝜊(∆𝑥𝑥)2. The approximation is: 

                                              𝑓𝑓′  (𝑥𝑥) = 𝑓𝑓  (𝑥𝑥+∆𝑥𝑥)−𝑓𝑓(𝑥𝑥)
∆𝑥𝑥

                                                        (3) 

                       𝑓𝑓′′  (𝑥𝑥) =
𝑓𝑓  (𝑥𝑥+∆𝑥𝑥)−𝑓𝑓(𝑥𝑥)

∆𝑥𝑥 −𝑓𝑓  (𝑥𝑥−∆𝑥𝑥)−𝑓𝑓(𝑥𝑥)
∆𝑥𝑥

∆𝑥𝑥
= 𝑓𝑓  (𝑥𝑥+∆𝑥𝑥)−2𝑓𝑓(𝑥𝑥)+𝑓𝑓  (𝑥𝑥−∆𝑥𝑥)

(∆𝑥𝑥)2          (4) 

This type of approximation is called central finite difference approximation. Other methods include; Transfer Matrix method and 

transmission line method [1] [10] [32]. 

B. Jacobi Method 

This iterative method was first proposed by Carl Gustav Jacob Jacobi, in 1846, to calculate the eigenvalues and corresponding 

eigenvectors of a real symmetric matric or eigensystems of equations. The method uses similarity transformations on a given matrix. 

And after a sequence of these transformations, the matrix is converted into a diagonal matrix which corresponds to the eigenvalues. 

The sequence will also contain the information about the eigenvectors of the matrix. According to Carl Gustav Jacob Jacobi, if 𝐴𝐴 is an 

𝑛𝑛 ×  𝑛𝑛 coefficients matrix, the diagonalized matrix of 𝐴𝐴 is 𝐴𝐴′  given as [12]: 

                                                              𝐽𝐽𝑇𝑇𝐴𝐴𝐽𝐽 = 𝐴𝐴′                                             (5) 

Multiplying with 𝐽𝐽 on both sides gives: 

𝐴𝐴𝐽𝐽 = 𝐽𝐽𝐴𝐴′                                                              (6) 

𝐽𝐽 = 𝐽𝐽1. 𝐽𝐽2. … is an orthogonal matrix. 

𝐽𝐽 = �

𝑋𝑋1 𝑋𝑋2 . 𝑋𝑋𝑛𝑛
. . . .
. . . .
. . . .

� and 𝐴𝐴′ = �

𝜆𝜆1 0 . 0
0 𝜆𝜆2 . 0
0 0 . 0
0 0 . 𝜆𝜆𝑛𝑛

� 

The Jacobi matrix is: 

𝐴𝐴 �

𝑋𝑋𝑛𝑛
.
.
.

� = 𝜆𝜆𝑛𝑛 �

𝑋𝑋𝑛𝑛
.
.
.

�                                                      (7) 

The columns of the Jacobi matrix give the eigenvectors, 𝑋𝑋𝑛𝑛  of the matrix and the diagonal elements, 𝜆𝜆𝑛𝑛  are the eigenvalues. 

C. Woods-Saxon type potential 
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The Woods-Saxon type potential for the wave equations such as Schrodinger equation are of high scientific importance in the 

conceptual understanding of the interactions between the nucleon and the nucleus. The modified version of the Woods-Saxon 

potential consists of the volume (standard) Woods-Saxon and its derivative called the Woods-Saxon surface potential and is given by 

[4]. 

𝑉𝑉(𝑟𝑟) = − 𝑉𝑉0

1+𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎

− 𝑊𝑊0𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎

�1+𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎 �

2             (𝑎𝑎 ≪ 𝑅𝑅)                      (8) 

where 𝑉𝑉0 and 𝑊𝑊0 represent the depths of the potential well, 𝑅𝑅0 and 𝑎𝑎 are the radius of the potential and width of the surface 

diffuseness, respectively. The surface term in the generalized Woods-Saxon potential induces an extra potential pocket especially at 

the surface region of the potential and this pocket is so significant to explain the elastic scattering of some nuclear reactions. 𝑅𝑅, 𝑎𝑎 

and 𝑉𝑉0 are also expressed as: [20] 

𝑅𝑅𝑖𝑖 = 1.20𝐴𝐴𝑖𝑖1/3 − 0.9 𝑓𝑓𝑓𝑓               (𝑖𝑖 = 𝑃𝑃,𝑇𝑇)                 (9) 

1 𝑎𝑎� = �1 + 0.53�𝐴𝐴𝑃𝑃−1/3 + 𝐴𝐴𝑇𝑇−1/3�� 𝑓𝑓𝑓𝑓−1  and 

𝑉𝑉𝑜𝑜  =  (40.5 + 0.13𝐴𝐴𝑃𝑃) 𝑀𝑀𝐹𝐹𝑉𝑉  

where 𝐴𝐴𝑃𝑃  and 𝐴𝐴𝑇𝑇  are the mass numbers of the projected and target nucleus respectively. The sketch of general Woods-Saxon 

potential is given in figure 3. 

 

Figure 3: General Woods-Saxon potential for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑎𝑎 = 0.65𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162𝑓𝑓𝑓𝑓 [17] 

D. Modified Woods-Saxon Potential 

For the modified Woods-Saxon Potential, we define the potential well describing the neutron-Fe-56 interaction as: 

𝑉𝑉𝑓𝑓𝑊𝑊𝑚𝑚 (𝑟𝑟) = − 𝑉𝑉0

1+𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎

+ 𝑊𝑊0𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎

�1+𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎 �

2                           (10) 
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This modification will be used to describe the quasi-bound states in the nucleus, for 𝑊𝑊0 > 0 [24]. Also, show the ability of a neutron 

with a certain energy penetrating through the modified potential. 

where 𝐴𝐴𝑛𝑛 = 1.00866 𝑎𝑎.𝑓𝑓.𝑢𝑢 and 𝐴𝐴𝐹𝐹𝐹𝐹 = 56.0 𝑎𝑎.𝑓𝑓.𝑢𝑢 are the mass numbers of the neutron and 𝐹𝐹𝐹𝐹 − 56 nucleus. 

𝑎𝑎 ≈ 0.65𝑓𝑓𝑓𝑓 for mass number, 𝐴𝐴 ≥ 40. The sketch of the modified Woods-Saxon potential is shown in figure 4. It contrasts clearly 

with the general Woods-Saxon potential of figure 3. 

 

 

Figure 4: Modified Woods-Saxon potential for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓 

E. The radial part of Schrodinger Equation 

The radial part of the Schrodinger equation which contains the modified Woods-Saxon potential and the repulsive potential 

(centrifugal potential) is given by: 

� 𝑑𝑑
2

𝑑𝑑𝑟𝑟 2 + 2
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑟𝑟

+ 2𝜇𝜇
ℏ2 �𝐸𝐸𝑛𝑛 ,𝑙𝑙 + 𝑉𝑉𝑓𝑓𝑊𝑊𝑚𝑚 (𝑟𝑟)� − 𝑙𝑙(𝑙𝑙+1)

𝑟𝑟2 � 𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟) = 0       0 ≤ 𝑟𝑟 ≤ ∞        (11) 

where 𝜇𝜇 = 𝐴𝐴𝑛𝑛𝐴𝐴𝐹𝐹𝐹𝐹
𝐴𝐴𝑛𝑛+𝐴𝐴𝐹𝐹𝐹𝐹

 is the reduced mass, 𝐴𝐴𝑛𝑛  and 𝐴𝐴𝐹𝐹𝐹𝐹  are the masses of the neutron and the 𝐹𝐹𝐹𝐹 − 56, 𝐸𝐸𝑛𝑛 ,𝑙𝑙  is the energy, 𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟) is the 

wavefunction and 𝑛𝑛 = 0, 1, 2, 3, 4 and 𝑙𝑙 = 0, 1, 2, 3, 4 are the energy levels and angular quantum number respectively, 𝑟𝑟 is the 

distance from the center of the nucleus and ℏ is the reduced Planck’s constant. 

The term, 𝒍𝒍(𝒍𝒍+𝟏𝟏)
𝒓𝒓𝟐𝟐

, is known as the centrifugal potential. 

F. Solution to the radial part of the Schrodinger Equation 

𝑑𝑑2𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟)
𝑑𝑑𝑟𝑟 2 + 2

𝑟𝑟
𝑑𝑑𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟)

𝑑𝑑𝑟𝑟
+ 2𝜇𝜇

ℏ2 �𝐸𝐸𝑛𝑛 ,𝑙𝑙 + 𝑉𝑉𝑓𝑓𝑊𝑊𝑚𝑚 (𝑟𝑟) − ℏ2𝑙𝑙(𝑙𝑙+1)
2𝜇𝜇𝑟𝑟2 � 𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟) = 0    (12) 

Let 𝑉𝑉𝐹𝐹𝑓𝑓𝑓𝑓 (𝑟𝑟) be the effective potential defined by: 

𝑉𝑉𝐹𝐹𝑓𝑓𝑓𝑓 (𝑟𝑟) = 𝑉𝑉𝑓𝑓𝑊𝑊𝑚𝑚 (𝑟𝑟) + 𝑙𝑙(𝑙𝑙+1)
𝑟𝑟2 = − 𝑉𝑉0

1+𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎

− 𝑊𝑊0𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎

�1+𝐹𝐹
𝑟𝑟−𝑅𝑅0
𝑎𝑎 �

2 + 𝑙𝑙(𝑙𝑙+1)
𝑟𝑟2         (13) 

Eq. 12 become 
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𝑑𝑑2𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟)
𝑑𝑑𝑟𝑟 2 + 2

𝑟𝑟
𝑑𝑑𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟)

𝑑𝑑𝑟𝑟
+ 2𝜇𝜇

ℏ2 �𝐸𝐸𝑛𝑛 ,𝑙𝑙 − 𝑉𝑉𝐹𝐹𝑓𝑓𝑓𝑓 (𝑟𝑟)� 𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟) = 0                    (14) 

Using the transformation 

𝑈𝑈𝑛𝑛 ,𝑙𝑙(𝑟𝑟) = 𝑟𝑟𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟)                                     

⇒ 𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟) = 𝑈𝑈𝑛𝑛 ,𝑙𝑙(𝑟𝑟)
𝑟𝑟

  

Differentiating twice, we get 

𝑑𝑑2𝑈𝑈𝑛𝑛 ,𝑙𝑙(𝑟𝑟)
𝑑𝑑𝑟𝑟 2 = 𝑑𝑑2𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟)

𝑑𝑑𝑟𝑟 2 + 2
𝑟𝑟
𝑑𝑑𝑅𝑅𝑛𝑛 ,𝑙𝑙(𝑟𝑟)

𝑑𝑑𝑟𝑟
                                    (15) 

Substituting into Eq. 14, we have 

ℏ2

2𝜇𝜇
�𝑑𝑑

2𝑈𝑈𝑛𝑛 ,𝑙𝑙(𝑟𝑟)
𝑑𝑑𝑟𝑟 2 � + �𝐸𝐸𝑛𝑛 ,𝑙𝑙 − 𝑉𝑉𝐹𝐹𝑓𝑓𝑓𝑓 (𝑟𝑟)�𝑈𝑈𝑛𝑛 ,𝑙𝑙(𝑟𝑟) = 0                       (16) 

Discretizing Eq. 16 using central finite approximation, we get 

ℏ2

2𝜇𝜇ℏ2 �
𝑈𝑈𝑖𝑖+1−2𝑈𝑈𝑖𝑖+𝑈𝑈𝑖𝑖−1

∆𝑟𝑟2 � + (𝐸𝐸 − 𝑉𝑉𝑖𝑖)𝑈𝑈𝑖𝑖 = 0            (17) 

where ∆𝑟𝑟 is the step size. 

Rearranging,  

ℏ2

2𝜇𝜇∆𝑟𝑟2 𝑈𝑈𝑖𝑖+1 −
ℏ2

2𝜇𝜇∆𝑟𝑟2 (2𝑈𝑈𝑖𝑖) +
ℏ2

2𝜇𝜇∆𝑟𝑟2 (𝑈𝑈𝑖𝑖−1) + (𝐸𝐸 − 𝑉𝑉𝑖𝑖𝑈𝑈𝑖𝑖) = 0 

Let 𝛼𝛼 = ℏ2

2𝜇𝜇∆𝑟𝑟2, we have 

𝛼𝛼𝑈𝑈𝑖𝑖−1 + (𝐸𝐸 − 𝑉𝑉𝑖𝑖 − 2𝛼𝛼)𝑈𝑈𝑖𝑖 + 𝛼𝛼𝑈𝑈𝑖𝑖+1 = 0                    (18) 

Boundary Conditions 

The wavefunction of the neutron at the left (L) and right (R) sides of the potential (Woods-Saxon potential), in the region 𝑟𝑟 ∈ [0, 𝑏𝑏]) 

(fig. 2) is given by: 

𝑈𝑈𝐿𝐿(𝑟𝑟) = 𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟 + 𝑓𝑓𝐹𝐹−𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟                                 (19a) 

𝑈𝑈𝑅𝑅(𝑟𝑟) = 𝑡𝑡𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑟𝑟                         (19b) 

where 

𝑘𝑘𝐿𝐿,𝑅𝑅 = �2𝜇𝜇(𝐸𝐸−𝑉𝑉𝑖𝑖)
ℏ

                                       (20a) 

𝑓𝑓 and 𝑡𝑡 are the amplitudes of the reflected and transmitted waves. At left side of the barrier, the projected neutron is considered as 

a free particle. Thus, 

𝑘𝑘𝐿𝐿 = �2𝜇𝜇𝐸𝐸
ℏ

                                      (20b) 

Applying boundary conditions at mesh 1 where 𝑟𝑟 = 0,−𝑎𝑎  

We have from Eq. 19a 

𝑈𝑈𝐿𝐿(0) = 𝑈𝑈1 = 1 + 𝑓𝑓                                  (21a) 

𝑈𝑈𝐿𝐿(−𝑎𝑎) = 𝑈𝑈0 = 𝐹𝐹−𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎 + 𝑓𝑓𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎             (21b) 

At mesh N where 𝑟𝑟 = 𝑏𝑏, 𝑏𝑏 + 𝑎𝑎  

Eq. 19b gives 

𝑈𝑈𝑅𝑅(𝑏𝑏) = 𝑈𝑈𝑁𝑁 = 𝑡𝑡𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑏𝑏                                     (22a) 

𝑈𝑈𝑅𝑅(𝑏𝑏 + 𝑎𝑎) = 𝑈𝑈𝑁𝑁+1 = 𝑡𝑡𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅(𝑏𝑏+𝑎𝑎)                               (22b) 

From Eq. 21a,  
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𝑓𝑓 = 𝑈𝑈1 − 1                        (23) 

Eq. 21b becomes 

𝑈𝑈0 = 𝐹𝐹−𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎 − 𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎 + 𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎𝑈𝑈1  

𝑈𝑈0 = 2𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿𝑎𝑎) + 𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎𝑈𝑈1                            (24) 

Also, from Eq. 22a 

𝑡𝑡 = 𝑈𝑈𝑁𝑁𝐹𝐹−𝑖𝑖𝑘𝑘𝑅𝑅𝑏𝑏                                       (25) 

And Eq. 22b becomes 

𝑈𝑈𝑁𝑁+1 = 𝑈𝑈𝑁𝑁𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑎𝑎                                          (26) 

Using Eq. 18, equations at mesh 1 and N can be written as: 

At mesh 1 

𝛼𝛼𝑈𝑈0 + (𝐸𝐸 − 𝑉𝑉1 − 2𝛼𝛼)𝑈𝑈1 + 𝛼𝛼𝑈𝑈2 = 0 

𝛼𝛼[2𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿𝑎𝑎) + 𝑈𝑈1] + (𝐸𝐸 − 𝑉𝑉1 − 2𝛼𝛼)𝑈𝑈1 + 𝛼𝛼𝑈𝑈2 = 0 

(𝐸𝐸 − 𝑉𝑉1 − 2𝛼𝛼 + 𝛼𝛼𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎)𝑈𝑈1 + 𝛼𝛼𝑈𝑈2 = −2𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿𝑎𝑎) 

(𝐸𝐸 − 𝑉𝑉1 − 2𝛼𝛼 + 𝛼𝛼𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑎𝑎)𝑈𝑈1 + 𝛼𝛼𝑈𝑈2 = 𝜎𝜎                   (27) 

where 

𝜎𝜎 = −2𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿𝑎𝑎)                          (28) 

At mesh N, 

𝛼𝛼𝑈𝑈𝑁𝑁−1 + (𝐸𝐸 − 𝑉𝑉𝑁𝑁 − 2𝛼𝛼)𝑈𝑈𝑁𝑁 + 𝛼𝛼𝑈𝑈𝑁𝑁+1 = 0 

𝛼𝛼𝑈𝑈𝑁𝑁−1 + (𝐸𝐸 − 𝑉𝑉𝑁𝑁 − 2𝛼𝛼)𝑈𝑈𝑁𝑁 + 𝛼𝛼[𝑈𝑈𝑁𝑁𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑎𝑎] = 0 

𝛼𝛼𝑈𝑈𝑁𝑁−1 + (𝐸𝐸 − 𝑉𝑉𝑁𝑁 − 2𝛼𝛼 + 𝛼𝛼𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑎𝑎)𝑈𝑈𝑁𝑁 = 0 

𝛼𝛼𝑈𝑈𝑁𝑁−1 + 𝛽𝛽𝑁𝑁𝑈𝑈𝑁𝑁 = 0                            (29) 

where 

𝛽𝛽𝑁𝑁 = (𝐸𝐸 − 𝑉𝑉𝑁𝑁 − 2𝛼𝛼 + 𝛼𝛼𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑎𝑎)                                 (30) 

Substituting 𝑖𝑖 = 1, 2, 3, 4, … ,𝑁𝑁 − 1,𝑁𝑁 successively into Eq. 18, we obtain the following linear system of equations in matrix form: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛽𝛽1 𝛼𝛼 0 0 0 0 . .
𝛼𝛼 𝛽𝛽2 𝛼𝛼 0 0 0 . .
0 𝛼𝛼 𝛽𝛽3 𝛼𝛼 0 0 . .
0 0 𝛼𝛼 𝛽𝛽4 𝛼𝛼 0 . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . 𝛼𝛼 𝛽𝛽𝑁𝑁⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑈𝑈1
𝑈𝑈2
𝑈𝑈3
𝑈𝑈4
.
.

𝑈𝑈𝑁𝑁−1
𝑈𝑈𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜎𝜎
0
0
0
.
.
.
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

               (31) 

𝐻𝐻𝑈𝑈 = 𝐵𝐵                                                    (32) 

where 𝐻𝐻 is an 𝑛𝑛 ×  𝑛𝑛 tridiagonal matrix. 

Eq. 32 will give the eigenfunctions of the system of equations with a help of a MATLAB computer code at different energy values of 

the neutron (guessed values, with an idea of the values from the plot of the Woods-Saxon potential). 

G. Probability Current Density 

The probability of a neutron to transmit through the Fe-56 after interaction is given by [34] [36] 

 𝐽𝐽 ̅ = 𝑖𝑖ℏ
2𝑓𝑓
�𝑈𝑈𝑈𝑈𝑈𝑈

∗

𝑈𝑈𝑟𝑟
− 𝑈𝑈∗𝑈𝑈𝑈𝑈

𝑈𝑈𝑟𝑟
�                                  (33) 

Incident current density,  
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𝐽𝐽�̅�𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝐹𝐹𝑛𝑛𝑡𝑡 =
𝑖𝑖ℏ

2𝑓𝑓
�
𝑈𝑈𝐼𝐼𝑈𝑈𝑈𝑈𝐼𝐼∗

𝑈𝑈𝑟𝑟
−
𝑈𝑈𝐼𝐼∗𝑈𝑈𝑈𝑈𝐼𝐼
𝑈𝑈𝑟𝑟

� 

𝐽𝐽�̅�𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝐹𝐹𝑛𝑛𝑡𝑡 =
𝑖𝑖ℏ

2𝑓𝑓
[(𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟 . (−𝑖𝑖𝑘𝑘𝐿𝐿). 𝐹𝐹−𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟) − (𝐹𝐹−𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟 . (𝑖𝑖𝑘𝑘𝐿𝐿). 𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟)] 

 𝐽𝐽�̅�𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝐹𝐹𝑛𝑛𝑡𝑡 = 𝑖𝑖ℏ
2𝑓𝑓

(−2𝑖𝑖𝑘𝑘𝐿𝐿) = ℏ𝑘𝑘𝐿𝐿                       (34) 

Reflected current density,  

𝐽𝐽�̅�𝑟𝐹𝐹𝑓𝑓𝑙𝑙𝐹𝐹𝑖𝑖𝑡𝑡𝐹𝐹𝑑𝑑 =
𝑖𝑖ℏ

2𝑓𝑓
�
𝑈𝑈𝐼𝐼𝑈𝑈𝑈𝑈𝐼𝐼∗

𝑈𝑈𝑟𝑟
−
𝑈𝑈𝐼𝐼∗𝑈𝑈𝑈𝑈𝐼𝐼
𝑈𝑈𝑟𝑟

� 

𝐽𝐽�̅�𝑟𝐹𝐹𝑓𝑓𝑙𝑙𝐹𝐹𝑖𝑖𝑡𝑡𝐹𝐹𝑑𝑑 =
𝑖𝑖ℏ

2𝑓𝑓
[(𝑓𝑓𝐹𝐹−𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟 . (𝑖𝑖𝑘𝑘𝐿𝐿). 𝑓𝑓𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟) − (𝑓𝑓𝐹𝐹𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟 . (−𝑖𝑖𝑘𝑘𝐿𝐿). 𝑓𝑓𝐹𝐹−𝑖𝑖𝑘𝑘𝐿𝐿𝑟𝑟)] 

𝐽𝐽�̅�𝑟𝐹𝐹𝑓𝑓𝑙𝑙𝐹𝐹𝑖𝑖𝑡𝑡𝐹𝐹𝑑𝑑 = 𝑖𝑖ℏ
2𝑓𝑓

(2𝑖𝑖𝑓𝑓2𝑘𝑘𝐿𝐿) = −𝑓𝑓2ℏ𝑘𝑘𝐿𝐿              (35) 

Transmitted current density,  

𝐽𝐽�̅�𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑖𝑖𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝐹𝐹𝑑𝑑 =
𝑖𝑖ℏ

2𝑓𝑓
�
𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼 ∗

𝑈𝑈𝑟𝑟
−
𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼∗𝑈𝑈𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼

𝑈𝑈𝑟𝑟
� 

𝐽𝐽�̅�𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑖𝑖𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝐹𝐹𝑑𝑑 =
𝑖𝑖ℏ

2𝑓𝑓
[(𝑡𝑡𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑟𝑟 . (−𝑖𝑖𝑘𝑘𝑅𝑅). 𝑡𝑡𝐹𝐹−𝑖𝑖𝑘𝑘𝑅𝑅𝑟𝑟) − (𝑡𝑡𝐹𝐹−𝑖𝑖𝑘𝑘𝑅𝑅𝑟𝑟 . (𝑖𝑖𝑘𝑘𝑅𝑅). 𝑡𝑡𝐹𝐹𝑖𝑖𝑘𝑘𝑅𝑅𝑟𝑟)] 

𝐽𝐽�̅�𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑖𝑖𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝐹𝐹𝑑𝑑 = 𝑖𝑖ℏ
2𝑓𝑓

(−2𝑖𝑖𝑡𝑡2𝑘𝑘𝑅𝑅) = 𝑡𝑡2ℏ𝑘𝑘𝑅𝑅                       (36) 

Transmission coefficient, 

𝜏𝜏(𝐸𝐸) =
|𝐽𝐽�̅�𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑖𝑖𝑓𝑓𝑖𝑖𝑡𝑡𝑡𝑡𝐹𝐹𝑑𝑑 |

|𝐽𝐽�̅�𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑 𝐹𝐹𝑛𝑛𝑡𝑡 |
=

|𝑡𝑡2|𝑘𝑘𝑅𝑅
𝑘𝑘𝐿𝐿

=
�(𝑈𝑈𝑁𝑁𝐹𝐹−𝑖𝑖𝑘𝑘𝑅𝑅𝑏𝑏)2�𝑘𝑘𝑅𝑅

𝑘𝑘𝐿𝐿
 

𝜏𝜏(𝐸𝐸) =
��𝑈𝑈𝑁𝑁𝐹𝐹−𝑖𝑖𝑘𝑘𝑅𝑅𝑏𝑏�

2
�𝑘𝑘𝑅𝑅

𝑘𝑘𝐿𝐿
                      (37) 

Reflection coefficient 

𝑅𝑅(𝐸𝐸) = 1 − 𝜏𝜏(𝐸𝐸) 

𝑅𝑅(𝐸𝐸) = 1 −
��𝑈𝑈𝑁𝑁𝐹𝐹−𝑖𝑖𝑘𝑘𝑅𝑅𝑏𝑏�

2
�𝑘𝑘𝑅𝑅

𝑘𝑘𝐿𝐿
                                         (38) 

Eq. 37 and Eq. 38 give the transmission and reflection coefficients of the neutron incident on 𝐹𝐹𝐹𝐹 − 56 with respect to the energy of 

the neutron. 

III. RESULTS 

The results obtained from the simulation are presented below; 

A. Wavefunction of the neutron - Fe-56 Interaction for modified Woods-Saxon Potential 
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Figure 5: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.20 𝐹𝐹𝑉𝑉 

 

Figure 6: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.20 𝐹𝐹𝑉𝑉 
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Figure 7: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.20 𝐹𝐹𝑉𝑉 

 

 

Figure 8: R vs r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.20 𝐹𝐹𝑉𝑉 
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Figure 9: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.20 𝐹𝐹𝑉𝑉  

 

 

 

Figure 10: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.18 𝐹𝐹𝑉𝑉 
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Figure 11: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.18 𝐹𝐹𝑉𝑉 

 

 

Figure 12: R vs r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.18 𝐹𝐹𝑉𝑉 
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Figure 13: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.18 𝐹𝐹𝑉𝑉 

 

 

 

Figure 14: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.18 𝐹𝐹𝑉𝑉 
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Figure 15: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.16 𝐹𝐹𝑉𝑉 

 

 

 

Figure 16: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.16 𝐹𝐹𝑉𝑉 
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Figure 17: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.16 𝐹𝐹𝑉𝑉  

 

 

Figure 18: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.16 𝐹𝐹𝑉𝑉 
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Figure 19: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.16 𝐹𝐹𝑉𝑉 

 

 

Figure 20: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.14 𝐹𝐹𝑉𝑉 
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Figure 21: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.14 𝐹𝐹𝑉𝑉 

 

 

Figure 22: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.14 𝐹𝐹𝑉𝑉 
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Figure 23: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.14 𝐹𝐹𝑉𝑉 

 

 

Figure 24: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.14 𝐹𝐹𝑉𝑉 
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Figure 25: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.12 𝐹𝐹𝑉𝑉 

 

 

Figure 26: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.12 𝐹𝐹𝑉𝑉 
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Figure 27: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.12 𝐹𝐹𝑉𝑉 

 

 

Figure 28: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.12 𝐹𝐹𝑉𝑉 
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Figure 29: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.12 𝐹𝐹𝑉𝑉 

 

 

Figure 30: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.10 𝐹𝐹𝑉𝑉  
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Figure 31: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.10 𝐹𝐹𝑉𝑉 

 

 

Figure 32: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.10 𝐹𝐹𝑉𝑉 
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Figure 33: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.10 𝐹𝐹𝑉𝑉 

 

 

Figure 34: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.10 𝐹𝐹𝑉𝑉 
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Figure 35: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.08 𝐹𝐹𝑉𝑉 

 

 

Figure 36: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.08 𝐹𝐹𝑉𝑉 
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Figure 37: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.08 𝐹𝐹𝑉𝑉 

 

 

Figure 38: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.08 𝐹𝐹𝑉𝑉 
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Figure 39: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.08 𝐹𝐹𝑉𝑉 

 

 

Figure 40: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.06 𝐹𝐹𝑉𝑉 
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Figure 41: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.06 𝐹𝐹𝑉𝑉 

 

Figure 42: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.06 𝐹𝐹𝑉𝑉 
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Figure 43: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.06 𝐹𝐹𝑉𝑉 

 

 

Figure 44: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.06 𝐹𝐹𝑉𝑉 
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Figure 45: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.04 𝐹𝐹𝑉𝑉 

 

 

Figure 46: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.04 𝐹𝐹𝑉𝑉 
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Figure 47: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.04 𝐹𝐹𝑉𝑉 

 

 

Figure 48: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.04 𝐹𝐹𝑉𝑉 
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Figure 49: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.04 𝐹𝐹𝑉𝑉 

 

 

Figure 50: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.02 𝐹𝐹𝑉𝑉 
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Figure 51: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.02 𝐹𝐹𝑉𝑉 

 

Figure 52: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.02 𝐹𝐹𝑉𝑉 
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Figure 53: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.02 𝐹𝐹𝑉𝑉 

 

 

Figure 54: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.02 𝐹𝐹𝑉𝑉 
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Figure 55: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.005 𝐹𝐹𝑉𝑉 

 

 

Figure 56: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.005 𝐹𝐹𝑉𝑉 
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Figure 57: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.005 𝐹𝐹𝑉𝑉 

 

 

Figure 58: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.005 𝐹𝐹𝑉𝑉 
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Figure 59: Wave function vs. r(fm) for 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝐸𝐸 = −0.005 𝐹𝐹𝑉𝑉 

B. Transmission Coefficient for neutron-Fe-56 interaction 

 

Figure 60: Transmission coefficient vs. E(eV) for energies of the incident neutron from −0.2 𝑡𝑡𝑜𝑜 − 0.02 𝐹𝐹𝑉𝑉, 𝑙𝑙 = 0. 
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Figure 61: Transmission coefficient vs. E(eV) for energies of the incident neutron from −0.2 𝑡𝑡𝑜𝑜 − 0.02 𝐹𝐹𝑉𝑉, 𝑙𝑙 = 1. 

 
Figure 62: Transmission coefficient vs. E(eV) for energies of the incident neutron from −0.2 𝑡𝑡𝑜𝑜 − 0.02 𝐹𝐹𝑉𝑉, 𝑙𝑙 = 2. 
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Figure 63: Transmission coefficient vs. E(eV) for energies of the incident neutron from −0.2 𝑡𝑡𝑜𝑜 − 0.02 𝐹𝐹𝑉𝑉, 𝑙𝑙 = 3. 

 
Figure 64: Transmission coefficient vs. E(eV) for energies of the incident neutron from −0.2 𝑡𝑡𝑜𝑜 − 0.02 𝐹𝐹𝑉𝑉, 𝑙𝑙 = 4. 

IV. DISCUSSION 

The results from the plots in figure: 6-59 shows the typical simulation of Schrodinger equation with modified Woods-Saxon potential 

for, 𝑊𝑊0 = 50 𝑀𝑀𝐹𝐹𝑉𝑉,𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓,𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉,𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓 where 𝑉𝑉0 and 𝑊𝑊0 represent the depths of the potential well, 𝑅𝑅0 

and 𝑎𝑎 are the radius of the potential and width of the surface diffuseness respectively. The results show the behavior of the 

wavefunction of the projected neutron as it tunnels through the barrier at different angular momenta 𝑙𝑙 = 0, 1, 2, 3, 4 with various 

energies of the projected neutron. 

Figure: 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50; shows that for angular momentum 𝑙𝑙 = 0, corresponding to the ground state of a 

standing half-wavefunction, the transmitted wave of the projected neutron penetrates the potential barrier after tunneling and does 

not attenuate or reduce in intensity. It is evident that for 𝑙𝑙 = 0, the wave does not lose its energy after interacting with the Fe-56 

nucleus and tunneling through it.  
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Figure: 6 and 21 show that the amplitude of the projected neutron increases as it tunnels through the barrier for 𝑙𝑙 = 1. This is due to 

the difference in wave speed and particle (neutron) speed [23]. When the particle speed is small as compare to wave speed, the 

transmitted amplitude can be larger than the incident amplitude.  Thus, it appears that the transmitted wave has larger amplitude 

and is moving faster, obscuring the correct explanation, that it has a smaller particle speed to compensate for the larger amplitude. 

The results from figures: 11, 16, 26, 31, 41, 46, 51 and 56 show that for 𝑙𝑙 = 1, the wave of the projected neutron in region I, there 

exists a maxima and minima due to the interference between incident and reflected waves of equal amplitude. At the boundary,𝑟𝑟 =

0 𝑓𝑓𝑓𝑓, the wave attenuates within the barrier and joins smoothly to its constant value in region III. That is, when the projected 

neutron undergoes elastic collisions, energy is lost to the target and the neutron slows down. The energy losses are a relatively large 

fraction of the initial energy. 

The results from figures: 7, 12, 17, 22, 27, 32, 37, 42, 47 and 52 show that the wave function of the projected neutron loses its 

energy at the potential barrier wall; 𝑟𝑟 = 0 𝑓𝑓𝑓𝑓 for 𝑙𝑙 = 2. This shows that at higher angular quantum numbers, there is more 

rotational motion in the form of transverse vibrations of the projected neutron and hence its energy is distorted and so its wave 

function attenuates. 

Results from figures: 8, 13, 18, 23, 28, 33, 38, 43, 48 and 53 show that the wave function of the projected neutron loses its energy 

drastically at the potential barrier wall; 𝑟𝑟 = 0 𝑓𝑓𝑓𝑓 for 𝑙𝑙 = 3. This also, means that at higher angular quantum numbers, there is more 

rotational motion in the form of transverse vibrations of the projected neutron and hence its kinetic energy is distorted and so its 

wave function attenuates. 

The results in Figure: 9, 14, 19, 24, 29, 34, 39, 44, 49 and 54 are similar to the results for 𝑙𝑙 = 3. The results show that the wave 

function of the projected neutron loses its energy drastically at the potential barrier wall; 𝑟𝑟 = 0 𝑓𝑓𝑓𝑓 for 𝑙𝑙 = 4. This show that at 

higher angular quantum numbers, there is more rotational motion in the form of transverse vibrations of the projected neutron and 

hence its energy is distorted and so its wave function attenuates and, in most cases, the wave dies off due to the presence of the 

potential barrier. 

The results of the eigenfunctions for angular quantum number 𝑙𝑙 = 0 obtained, is in agreement with the work by [24]. However, in 

their method, the boundary conditions were set at zero and the transmitted wave was not taken into consideration. The parameters 

used were also similar for a neutron-Fe-56 interaction (𝑉𝑉0 = 47.78 𝑀𝑀𝐹𝐹𝑉𝑉, 𝑊𝑊0 = −100 𝑡𝑡𝑜𝑜 100𝑀𝑀𝐹𝐹𝑉𝑉, 𝑅𝑅0 = 4.9162 𝑓𝑓𝑓𝑓, 𝑎𝑎 = 0.65 𝑓𝑓𝑓𝑓, 

and 𝑟𝑟0 = 1.285 𝑓𝑓𝑓𝑓). 

The tendency of the projected neutron, upon interaction with the Fe-56 nucleus to penetrate or tunnel through the barrier is given 

in Eq. 27. The results of figures: 60, 61, 62, 63 and 64 show the variation in energies of the projected neutron as it encounters the Fe-

56. The results show that the projected neutron can tunnel through the barrier even with energies of the projected neutron being 

less than the energy of the barrier contrary to the classical expectation. In each of the figures, the transmission coefficient attains 

saturation at an energy approximately equal to 𝐸𝐸𝑖𝑖 = −0.1309 𝐹𝐹𝑉𝑉. This implies that no projected neutron energy greater than 𝐸𝐸𝑖𝑖  

will, hence the transmission. The 𝐸𝐸𝑖𝑖  value may serve as an experimental guide (given the barrier parameters as shown in the figures) 

in neutron- 𝐹𝐹𝐹𝐹 − 56 scattering experiments particularly in elastic regime. 

The transmission coefficient is significantly small. This is as a result of the potential (Woods-Saxon potential l) within the 𝐹𝐹𝐹𝐹 − 56. 

The neutron on interacting with Fe-56 can be absorbed or reflected by Fe-56 [4]. 
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Also, the results of figures: 60, 61, 62, 63 and 64 show the effects of angular momentum quantum numbers 𝑙𝑙 on transmission 

coefficient for the neutron-Fe-56 interaction. The results indicate that as the angular mom entum quantum number 𝑙𝑙 increases, the 

transmission coefficient decreases. This means that at higher angular momentum quantum numbers, there is more rotational 

energy 𝐸𝐸𝑟𝑟 ≈ �𝑙𝑙(𝑙𝑙 + 1)ℏ in the form of transverse vibrations of the projected neutron which is at the expense of the neutron kinetic 

energy hence the neutron wave functions attenuate increasingly. 

V. SUMMARY AND CONCLUSSION 

The numerical solution of the problem was implemented by the discretization of the radial part of the Schrödinger equation using 

central finite difference method. This discretization method was used to discretize the radial part of the Schrodinger equation with 

modified Woods-Saxon potential. In order to demonstrate a propagating particle (the projected neutron) through a potential 

barrier, boundary conditions were assumed. The boundary conditions at the left and right-side boundaries were assumed for a 

projected neutron, to be at equilibrium with uniform potential energy. The solution starts with assuming a plane wave. The potential 

barrier for the neutron-Fe-56 interaction was in the region 𝑟𝑟 ∈ [0, 10]fm). The plane wave of the projected neutron from the left 

was considered in the region, 𝑟𝑟 ∈ [−10, 0]fm) while at the right it was considered to be in the region, 𝑟𝑟 ∈ [10, 15]fm). These 

conditions were matched at the two boundaries and the resulting eigensystems of equations were presented in matrix form. In 

solving these eigensystems, the Jacobi method was applied to transform the eigensystems to a diagonalize coefficients matrix. 

A Matrix Laboratory (MATLAB) computer code (shown in Appendix A) was used to solve for the eigenfunctions using guessed 

energies of the projected neutron. The guessed energy values for the projected neutron were considered based on the nature of the 

modified Woods-Saxon Potential. 

For angular quantum number 𝑙𝑙 = 0, the transmitted wave of the projected neutron, after tunneling does not attenuate. It is evident 

that for 𝑙𝑙 = 0, the wave does not lose its energy after interacting with the Fe-56 nucleus. For 𝑙𝑙 = 1, the wave of the projected 

neutron in region I, shows that there exists a maxima and minima due to the interference between incident and reflected waves of 

equal amplitude. At the boundary,𝑟𝑟 = 0 𝑓𝑓𝑓𝑓, the wave attenuates within the barrier and joins smoothly to its constant value in 

region III. That is, when the projected neutron undergoes elastic collisions, energy is lost to the target and the neutron slows down. 

The energy losses are a relatively large fraction of the initial energy. Also, some eigenfunctions shows that amplitude of the 

projected neutron increases as it tunnels through the barrier for 𝑙𝑙 = 1. This may be attributed to the difference in wave speed and 

particle (neutron) speed. When the particle speed is small as compared to wave speed, the transmitted amplitude is larger than the 

incident amplitude.  Thus, it appears that the transmitted wave has larger amplitude and is moving faster, obscuring the correct 

explanation, that it has a smaller particle speed to compensate for the larger amplitude. The wave function of the projected neutron 

loses its energy drastically at 𝑟𝑟 = 0 𝑓𝑓𝑓𝑓 for 𝑙𝑙 = 2, 𝑙𝑙 = 3 and 𝑙𝑙 = 4. This shows that at higher angular quantum numbers, there are 

high circular vibrations of the projected neutron and its wave function attenuates and, in most cases, the wave dies off due to the 

presence of the potential barrier. 

To demonstrate quantum tunneling, current conservation was applied. The relationship between the transmission coefficient and 

energy of the projected neutron was solved and simulated using MATLAB computer code (shown in appendix B). 

The results from the plot of the transmission coefficient and energies of the projected neutron show that the projected neutron can 

tunnel through the barrier even with energies of the projected neutron is less than the energy of the barrier.  

GSJ: Volume 10, Issue 5, May 2022 
ISSN 2320-9186 2081

GSJ© 2022 
www.globalscientificjournal.com



In conclusion, the eigenfunctions and the transmission coefficient for a neutron-Fe-56 were simulated and the results are in 

agreement with a tunneling probability of a particle incident on a potential barrier even though the energy of the particle is less than 

the energy of the barrier. Also, it was found that the transmission coefficient attains saturation at an incident energy of about 

−0.1309 𝐹𝐹𝑉𝑉. 
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APPENDIX A: MATLAB code for solution of Radial Schrodinger Equation 

clc;clf;clear all; 
a=0.65;V0=47.78;R0=4.9162;W0=50;l=0; 
m=940.35; a1=-10;a2=10;hbar=197.3; E=-0.16; 
rmin=-10;rmax=15;n=100; 
r=linspace(rmin,rmax,n); 
dr=r(2)-r(1); 
%effective potential 
V=(-(V0*(1+exp(r-R0)/a).^-1))+(W0*(1+exp(r-R0)/a).^-2)+(l*(l+1)*r.^-2); 
%wavenumber within the potential barrier 
k=(sqrt(2*m*(E)))/hbar; 
%alfa  
t=hbar^2/(2*m*dr); 
d=-2.0795; 
z=E-V-2*t+t*exp(1i*k*a1); 
%Building up the matrix 
A=zeros(n,n); 
A(1:1+n:n*n)=z; 
A(n+1:1+n:n*n)=t; 
A(2:1+n:n*n-n)=t; 
%RHS 
B=zeros(n,1); 
B(1)=d; 
B(2:n-1)=0; 
B(n)=0; 
%Solving the system 
U=A\B; 
plot(r,(U),'-*','linewidth',2); 
xlabel('r(fm)','fontsize',20); 
ylabel('wavefunction','fontsize',20) 
grid off; 
legend('fdm'); 

APPENDIX B: MATLAB code for transmission coefficient 

clc;clf;clear all; 
a=0.65;V0=47.78;R0=4.9162;W0=50;l=0; 
m=940.35; a1=-10;a2=10;hbar=197.3; 
n=100; 
rmin=-10;rmax=10; 
r=linspace(rmin,rmax,n); 
dr=r(2)-r(1); 
Emin=-0.2;Emax=-0.02; 
E=linspace(Emin,Emax,n); 
dE=E(2)-E(1); 
%value of Un 
U(n)=-0.025; 
V=(-(V0*(1+exp(r-R0)/a).^-1))+(W0*(1+exp(r-R0)/a).^-2)+(l*(l+1)*r.^-2); 
%wavenumber to the right 
k_R=(sqrt(2*m*(E-V)))/hbar; 
%wavenumber to the left 
k_L=(sqrt(2*m*(E)))/hbar; 
%T is the transmission probability 
T=(k_R/k_L)*((U(n)).^2)*exp((2*k_R*1i*a2)); 
t=abs(T); 
plot(E,t,'-*','linewidth',2); 
xlabel('E(eV)','fontsize',20); 
ylabel('Transmission coefficient','fontsize',20) 
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