Global Scientific Journals

Soil Gas Radon Monitoring in Odo Ona as an Indirect Probe for Location of Geological Fault Zones

Adesunloro, Gbenga M1. and Ojo, Taiwo J2
1,2Physics Unit,
Department of Science Technology,
Federal Polytechnic, Ado-Ekiti
adesunloro_gm@fedpolyado.edu.ng, gadesunloro@yahoo.com
$+2348063041951$

Abstract

Radon (Rn-222) gas, a leading cause of lung cancer, second only to cigarette smoking was investigated in Odo Ona, Ibadan, (which lies within Latitude $3^{\circ} 50^{\prime} 0^{\prime}$ to Latitude $3^{\circ} 55^{\prime} 0$ ', and Longitude $7^{\circ} 15^{\prime} 0^{\prime}$ to Longitude $7^{\circ} 25^{\prime} 0^{\prime}$) a population of about 741405 people. Four monitoring stations were randomly selected where soil gas radon were monitored using CR 39 detectors for about four months. Average soil gas radon exhalation from these sites which ranged from 531.85 $\mathrm{Bq} / \mathrm{m}^{3}$ to $970.35 \mathrm{~Bq} / \mathrm{m}^{3}$ were significantly higher the USEPA recommended action level which was adopted by the Standard Organisation of Nigeria. The paper concludes with the health risks associated with these facts about radon exhalation in the area and concludes with useful recommendations.

1.0 Introduction

Radon (Rn) is a radioactive gas (Lewis 2001) that naturally occurs in different forms known as isotopes. Radon is a chemically and biologically inert noble gas. Its nucleus is heavily neutronrich, making it radioactive. Radon's half-life is 3.8 days. Radon is present in air, water, and soil. Radon will undergo radioactive decay in the environment. Each parent atom (thorium-234 or uranium-238) decays several times to become a radium atom (Ra-224 or Ra-226), then radon (Rn-220 or $\mathrm{Rn}-222$), and several more times through a series, creating radioactive substances known as radon daughters or progeny. The atom finally decays into a stable lead atom. As radon progeny undergo radioactive decay, radiation is released in forms that include high-energy alpha particles, Beta particles, and Gamma radiation. Once formed, radon's noble gas nature releases it from chemical bonds in rock, soil, water, and building materials. Radon's half-life provides sufficient time for it to diffuse from its origin and into the atmosphere. This allows for entry into buildings and homes, where further disintegration produces radon progeny. These progeny tend to be electrically charged and tend to attach to dust particles. Radon progeny include four isotopes with half-lives of fewer than 30 minutes. These are the major source of human exposure to alpha radiation (high-energy, highmass particles, each consisting of two protons and two neutrons). Alpha radiation may-directly or indirectly-damage DNA and other cell components, which could result in radon-induced lung diseases or cancer.

Radon and its progeny are measured in different terms for environmental /residential and occupational exposures. Environmental/residential radon is usually measured in terms of its quantity of radioactive material, or activity (in units of curies or becquerels). A curie (Ci) is the amount of air, soil, or other material in which 37 billion atoms transform each second, and $1 \mathrm{Ci}=$ $3.7 \times 10^{10} \mathrm{~Bq}$. A Becquerel (Bq) is the amount of material in which 1 atom transforms each second. Prefixes are often used with these units, [e.g., pCi or picocurie (10^{-12} curie)].

Occupational radon is measured in terms of "working levels" or the total amount of energy imparted to tissue from radon progeny. EPA recommends limiting indoor residential radon concentrations to $4 \mathrm{pCi} / \mathrm{L}$, which is generally about a 0.016 working level.

Radon gas has been identified as a leading cause of lung cancer, second only to cigarette smoking (ACS 2006; EPA 2013a). Radon gas is responsible for an estimated 21,000 deaths from lung cancer annually (NCI 2004; EPA 2013b). The risk of cancer due to radon exposure is increased for smokers, as the radiation emitted by tobacco synergizes when in the presence of radon gas.

2.0 Materials and Methods

2.1 Research Procedure

The systematic approach to this research involves the following:
2.1.1 Field Work: The field work involves:
(i) Mapping out of the study area: The study area (Odo Ona region) lies within Latitude $3^{0} 50^{\prime} 0^{\prime}$ to Latitude $3^{\circ} 55^{\prime} 0^{\prime}$, and Longitude $7^{0} 15^{\prime} 0$ ' to Longitude $7^{0} 25^{\prime} 0$ ' and spans four Local Governments regions namely- Ibadan North West, Ibadan South

West, Ido and Oluyole Local Government Areas of Oyo State. The population distribution of the area of research is as follow :

Local Govt.	Population	male	female
Ibadan North West	152834	75311	77523
Ibadan South West	282585	139515	143070
Ido	103261	51750	51511
Oluyole	202725	102220	100505

The area account for about 13.259% (741405 inhabitants) of the total population.

2.1.2 Location of Monitoring Stations:

Based on consultation with the dwellers in the region, four monitoring stations were randomly selected and their location noted using the GPS device
a. Station 1- Odo Ona Elewe river with

GPS Location.
b. Station 2- with

GPS Location N 7.39930, E3.87086.
c. Station 3- with

GPS Location N 7.33160, E 3.84679.
d. Station 4- with

GPS Location N 7.28410, E 3.85009.

Station Name	GPS Coordinate	male	female
Odo Ona Elewe	152834	75311	77523
Orita/ Odo Ona Junction	282585	139515	
Asipa Telecommunication	103261	51750	
Ratcon Quarry area	202725	102220	

GSJ© 2017
www.globalscientificjournal.com

Fig 2.1. The Geographical Map of The Study Area Showing Measuring Stations

3.0 Experimental method

The method that has been applied here is track etch technique using CR-39 detectors. The choice of CR-39 as the Solid State Nuclear Tract Detectors (SSNTD) used for this research is its excellent sensitivity over a wide range of particle energies, and its good chemical and electrochemical properties. For α-particle measurement, CR-39 detectors are sensitive over the range $0.1-40 \mathrm{MeV}$ which makes them an excellent choice for these types of measurements. The CR-39 detectors and cups used for this research work were donated by I.N.F.N., Italy. The detectors of $1 \mathrm{~cm}^{2}$ area were already fixed in the cups and the cups were sealed in a radon tight foil. The foils were only removed at the sites and consequently, for the CR-39 detectors to be exposed to radon. The cups were 4.7 cm in height and 6.3 cm in diameter.

A P.V.C. pipe with upper and lower sides open was placed inside the hole of 70 cm deep below the earth surface. The cup was placed within the P.V.C. pipe in the hole. Silica gel was placed in the hole surrounding the cup to absorb moisture there. This is showed in Fig. 3. 6. The upper end of the P.V.C. pipe that was almost in the level of the upper ground surface was covered with a lid. The arrangement reduced the effect of external meteorological effect on radon flow.

Each CR-39 plate was exposed for 4days (96h) in such an undisturbed condition. On completion of the exposure time, the detector was removed and another detector was placed in the same manner. After exposing, chemical etching of the detectors was done.

3.1 Chemical Etching

In this process, the plates were etched in 6.25 M NaOH solution for 2 hrs at $90^{\circ} \mathrm{C}$. The temperature was carefully maintained at constant value. The detectors were first washed under running water and left in distilled water. This was done to stop the activity of the etchant.

3.2 Method of Analysis

The CR 39 slides after being etched were analysed using the Image J software. The tracks in the plates formed due to alpha particles were counted under an optical microscope with x 40 magnification. The digital camera attached to the Microscope captures the images on a screen through the USB Cord connected to the Laptop with the aid of VIMICRO USB PC Camera (ZC0301PL) software. Image J software deduces the number of holes from each image 38 detectors were exposed and removed at the four Monitoring stations from $27^{\text {th }}$ March to $10^{\text {th }}$ May, 2013 and etched; from which their respective radon concentrations were determined.

Ground surface

Fig. 3.1. The experimental set-up during the measurement of radon concentration.

4.1 Results

At the start of the experiment there was a problem of moisture accumulation over the membrane.
This was overcome by placing silica gel in the shallow borehole and the problem was greatly reduced. There was no significant change in the atmospheric pressure ($753 \pm 1 \mathrm{~mm}$ of Hg) during the period of investigation. The radon concentration was measured in $\mathrm{Bq} / \mathrm{m}^{3}$ using Image J software and a designed Spreadsheet. The result of the monitoring stations is detailed below:

Table 4.1 : The result of the monitored stations

Table 4.2: The result of the monitored stations

ID Dosemeter [number]	Rn Conc, $\left[\mathrm{Bq} / \mathrm{m}^{3}\right]$	$\begin{aligned} & \text { Error }(\pm) \\ & \quad\left[\mathrm{Bq} / \mathrm{m}^{3}\right] \end{aligned}$	$\begin{gathered} \text { Error }(\pm) \\ {\left[\mathrm{Bq} / \mathrm{m}^{3}\right]} \end{gathered}$	$\begin{aligned} & \text { Error } \\ & (\pm) \\ & {\left[\mathrm{Bq} / \mathrm{m}^{3}\right]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Error }(\pm) \\ {\left[\mathrm{Bq} / \mathrm{m}^{3}\right]} \end{gathered}$
Radon Concentration for Detectors at Exposed At Asipa Monitoring Station (S3)			Radon Concentration for Detectors at Exposed At Ratcon Quarry Monitoring Station (S4)		
I95016	678	136	I95069	678	136
195037	848	170	195082	424	85
195037	848	170	195088	1696	339
I95648	848	170	195675	424	85
I 96684	424	85	195676	424	85
I 96900	1272	254	I96622	848	170
I 99385	20	424	I 96837	424	85
I 95017	424	85	J 54976	848	170
J 54858	678	136	J 55101	1272	254
195016	678	136	I95069	678	136
195037	848	170	195082	424	85

Fig. 4.1 Overview of radon undulation observed in all the Monitoring Stations

4.2 Discussions

(i) Odo Ona Monitoring Station

The deduced Radon concentration ranges from 0 to $848 \mathrm{~Bq} / \mathrm{m}^{3}$.
The average Radon concentration for the monitoring Station within the period of investigation is $531.85 \mathrm{~Bq} / \mathrm{m}^{3}$

The standard deviation is $278.86 \mathrm{~Bq} / \mathrm{m}^{3}$

$$
\mathrm{X}_{\mathrm{radon}}>\mathrm{n} \mathrm{\sigma}
$$

Where $\mathrm{n}=1,2,3 \ldots \ldots$.
$\mathrm{X}_{\text {radon }}=$ mean Radon concentration

$$
\sigma=\text { standard deviation }
$$

For station $1, \quad X_{\text {radon }}>1.5 \sigma$

Peak radon anomaly $848 \mathrm{~Bq} / \mathrm{m}^{3}>3 \sigma$ was recorded on $21^{\text {st }}$ day of investigation. (13/4/2013)

(ii) Orita Challenge Monitoring Station

The deduced Radon concentration ranges from 424 to $2120 \mathrm{~Bq} / \mathrm{m}^{3}$.

The average Radon concentration for the monitoring Station within the period of investigation is 970.35 Bq/m ${ }^{3}$

The standard deviation is $677.12 \mathrm{~Bq} / \mathrm{m}^{3}$.

For station $2, \quad X_{\text {radon }}>1.4 \sigma$

Peak radon anomaly $2120 \mathrm{~Bq} / \mathrm{m}^{3}>2.5 \sigma$ was recorded on the $9^{\text {th }}$ day of investigation (5/4/2013)
(iii) Asipa Monitoring Station

The deduced Radon concentration ranges from 424 to $2120 \mathrm{~Bq} / \mathrm{m}^{3}$.

The average Radon concentration for the monitoring Station within the period of investigation is 904.40 Bq/m ${ }^{3}$

The standard deviation is $522.67 \mathrm{~Bq} / \mathrm{m}^{3}$.

For station 3, $\mathrm{X}_{\text {radon }}>1.7 \sigma$

Peak radon anomaly $2120 \mathrm{~Bq} / \mathrm{m}^{3}>4 \sigma$ was recorded on $29^{\text {th }}$ day of investigation (25/4/2013)
(iv) Ratcon Quarry Monitoring Station

The deduced Radon concentration ranges from 424 to $1696 \mathrm{~Bq} / \mathrm{m}^{3}$.

The average Radon concentration for the monitoring Station within the period of investigation is $781.93 \mathrm{~Bq} / \mathrm{m}^{3}$

The standard deviation is $448.209 \mathrm{~Bq} / \mathrm{m}^{3}$

For station 4, $\mathrm{X}_{\text {radon }}>1.7 \sigma$
Peak radon anomaly $1696 \mathrm{~Bq} / \mathrm{m}^{3}>3.5 \sigma$ was recorded on $13^{\text {th }}$ day of Investigation (9/4/2013)

From the result of the data shown above, it can be clearly seen that Radon concentration is significant in each of the regions under investigation with the following ranking:

Orita Monitoring station
Highest (970.35 Bq/m ${ }^{3}$)

Asipa Monitoring station

Ratcon Quarry Monitoring station

Odo Ona Monitoring station

Very High (904.40 Bq/m ${ }^{3}$)
High (781.93 Bq/m ${ }^{3}$)
Fairly High (531.85 Bq/m ${ }^{3}$)

The discovery confirms that Radon concentration levels are based not on artificial activities of Quarries that periodically but regularly blasts causing ground vibrations but are rather caused by the tectonic nature of the lithosphere regions under investigation. It therefore, shows a correlation between the seismicity which is a product of earthquakes and radon exhalation.

Radon Safe limit

In the UK, there are action levels $\left(200 \mathrm{~Bq} / \mathrm{m}^{3}\right)$ and target levels $\left(100 \mathrm{~Bq} / \mathrm{m}^{3}\right)$ set for the average radon concentration in homes (over a 3 month period for detectors in a bed room and a living room). I don't know the details of the derivation of these levels, but they relate to dose to residents.

As for whether these levels are "safe", that rather depends on what you mean by "safe". There is a probability of radon exposure causing health effects that increases with increased radon concentration (with various adjustments for lifestyle, age etc). There is no scientific basis for a safe/unsafe threshold. There is a threshold between acceptable and unacceptable probability of health effects, which is derived as much from political considerations as it is from hard science.

5.1 CONCLUSION

The following conclusion could be made from this research work:
(i) The study offers an overview of radon anomaly in the region of study using the CR 39 Solid State Nuclear Tract Detector (SSNTD) for about two months.
(ii) The average radon measurement in soil gas at Orita Monitoring station ranked highest as $970.35 \mathrm{~Bq} / \mathrm{m}^{3}$ while the peak radon anomaly $2120 \mathrm{~Bq} / \mathrm{m}^{3}$ was recorded on the $9^{\text {th }}$ day of investigation. (5/4/2013).
(iii) The average radon concentration for Asipa monitoring Station within the period of investigation is $904.40 \mathrm{~Bq} / \mathrm{m}^{3}$, while the peak radon anomaly $2120 \mathrm{~Bq} / \mathrm{m}^{3}$ was recorded on the $29^{\text {th }}$ day of investigation (25/4/2013)
(iv) The average Radon concentration for Ratcon Quarry monitoring Station within the period of investigation is $781.93 \mathrm{~Bq} / \mathrm{m}^{3}$, while the peak radon anomaly $1696 \mathrm{~Bq} / \mathrm{m}^{3}$ was recorded on the $13^{\text {th }}$ day of Investigation (9/4/2013).
(v) The average Radon concentration for the monitoring Station within the period of investigation is $531.85 \mathrm{~Bq} / \mathrm{m}^{3}$, while the peak radon anomaly $848 \mathrm{~Bq} / \mathrm{m}^{3}$ was recorded on the $21^{\text {st }}$ day of investigation. (13/4/2013).

References

Abdul Ahad (2004) Measureent Of Natural Radioactivity In Soil, Indoor Radon Level And
Excess Cancer In Bahwalpur Division Islamia University,Bahwalpur Pakistan
Publication Pages 98-107
Amrani D., Cherouati D.E., Cherchali M.E.H., (2000). Groundwater radon measurements in Algeria. J. Environ. Radioact. 51 (2), 173-180.

Brecque J.J.L., Cordoves P.R.,(2004).Short-and long-term monitoring of radon, thoron and carbondioxide in soil-gas at altos de pipe, Venezuela. J. Radioanal. Nucl.Chem.260, 255-264.

Chyi L.L., Chou C.Y., Yang, T.F., Chen, C.-H.,(2002). Automated radon monitoring of seismicity in a fault zone. Geofisica Internacional 41, 507-511.

Chyi L.L., Quick, T.J., Yang, T.F., Chen, C.H.,(2005).Soil gas radon spectra and earthquakes. Terr. Atom. Ocean. Sci. 16, in press.

Das N.K.,Choudhury H.,Bhandari R.,Ghose D.,Sen P.,Sinha B.,(2006).Continuous monitoring of 222 Rn and its progeny at a remote station for seismic hazard surveillance.Radiat.Meas. 1,634-637.

Denagbe S.J., (2000). Radon-222 concentration in subsoils and its exhalation rate from a soil sample. Rad. Meas. 32, 27-34.

Elmaghraby E.K., Lotfy Y.A., (2009) Differentiation between earthquake radon anomalies and those arising from nuclear activities. J. ScienceDirect Applied Radiation and Isotopes vol. 67, pages 208-211

Ghosh D., Deb A., Sengupta R., Patra K.K., Bera S., (2007) Pronounced soil radon anomalyPrecursor of recent earthquakes in India. ScienceDirect Radition Measurements 42, pages 466-471.

IAEA Vienna, pp.38-62. Morales, D.A. C., La Brecque, J. J.,(1999). Determination of radon-222 in a natural thermal water spring shortly before and after the July 9, 1997 earthquake $\partial \mathrm{Ms} 1 / 4 \quad 6: 8 \mathrm{D}$ in the state of Sucre, Venezuela.J.Radioanal.Nucl.Chem.242, 115-118

Italiano F., Martinelli G., Nuccio P.M., (2001). Anomalies of mantle-derived helium during 1997-1998 seismic swarm of Umbria-Marche, Italy. Geophys. Res. Lett. 28, 839842.

LaBrecque J.J.,Cordoves P.R.,Rosales P.A.,Audemard F.,Romero G.,(2001). Monitoring of radon anomalies in the Rio Casanay and a thermal spring near the El Pillar fault shortly after the July 9, 1997 earthquake $ð \mathrm{Mw}^{1 ⁄ 146: 9 \mathrm{P}}$ in the state of

United States Environmental Protection Agency, (2013) Basic facts about Radon. EPA/F-12/005. Pages1-2.

