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Abstract: Cholera is a potentially life-threatening bacterial infection caused by the bacterium Vibrio cholerae, with 

the primary site of infection being the small intestine. The disease typically spreads through contaminated water and 

food and becomes more pronounced in areas with poor sanitation and inadequate access to clean drinking water. 

Cholera infection can lead to severe diarrhea, dehydration, and death if left untreated. Individuals with low personal 

hygiene have higher chances of spreading and/or contracting the disease. A nonlinear delayed mathematical model 

with environmental factor for the spread of cholera is proposed and analyzed. We prove that the delayed cholera model 

is biologically meaningful and analyze the local asymptotic stability of the equilibrium points for positive time delays. 

Both the disease-free (DFE) and endemic equilibria are found and their stability investigated using the Routh Hurwitz 

stability criterion method. Next Generation Matrix (NGM) method was used to get the basic reproductive number 𝑅0. 

The disease-free equilibrium point is locally asymptotically stable if 𝑅0 < 1, while the endemic equilibrium point is 

locally asymptotically stable if 𝑅0 > 1. Numerical simulations are also carried out to investigate the influence of 

certain parameters on the spread of disease, to support the analytical results of the model. 
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1.0 Introduction  

Mathematical models of disease transmission have provided researchers with critical insights into the progression, 

control and prevention of disease spread[31]. The most fundamental of these models is the SIR (Susceptible, 

Infectious and Recovered) differential equation model. Infectious disease can spread and turn into epidemics, taking 

thousands of lives within a matter of days and one of such diseases is cholera.  

Cholera is an acute diarrhea infection of the intestine caused by the ingestion of food or water contaminated with the 

toxigenic bacterium vibro cholera. Water-borne carriers or bacteria are responsible for the spread of this disease.  This 

disease is transmitted through drinking water which is contaminated from improper treatment of sewage, shaking 

hands with infected people and eating food cooked by infected people or with contaminated water. Its dynamics are 

complicated by the multiple interactions between the human host, the pathogen and the environment which contribute 

to both direct human-to-human and indirect environment-to-human transmission pathways[20,21]. Its symptom is 

severe acute watery diarrhea that last for three to seven days. Treatments are usually quite effective when administered 

promptly. 

According to [10], Once cholera arrives into a new region, either carried by an infected person or by contaminated 

water and food, we may expect one of three possible outcomes: no outbreak, an outbreak possibly followed by few 

waves; or a cholera outbreak followed by subsequent outbreaks that may assume a persistent seasonal pattern. Humans 

throughout the world can contract cholera. The majority has few or no symptoms but can still spread the disease.  

In Nigeria, outbreaks of the disease have been taking place with ever-increasing occurrence ever since the earliest 

outbreak in 1970  [15].  The United Nation (UN) unit reports: more than 70% of the country’s population live below 

the poverty line and cholera outbreaks are common in poor urban areas which lack proper sanitation and clean drinking 

water  [15].. 

In the fight against cholera, it is therefore necessary to design effective control strategies and doing this requires a 

better understanding of the dynamic of cholera in its initiation, spread and evolution. Preventative measures include 

vaccination, drinking clean water and washing hand well all of which assume that people have easy access to these 

resources [14]. According to [22], Developing Countries are most affected by cholera disease due to inadequate 

sanitation, improper treatment of reservoirs and lack of safe water supply. Many people across the globe live with 

inadequate sanitation and clean water. 71% or 5.2 billion people use a safely managed drinking water service, 263 

million people spent over 30 minutes per round trip to collect water from an improved source; 844 million people still 
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lack even a basic drinking water service. For sanitation, the situation is even worse; only 39%, or 2.9 billion people, 

used a safely managed sanitation service in which excreta are safely disposed of in treated off-site; 2.3 billion people 

still lacked even a basic sanitation service; 600 million people shared improved facilities with other households;  892 

million people worldwide still practiced open defecation; more than 2 billion drink water from sources that are faecally 

contaminated, and 2.4 billion are without basic sanitation facilities, exposing them to a range of water-related diseases 

including cholera [22]. 

Over the years, many researchers have widely studied the transmission dynamics of cholera. Mathematicians have 

developed tools known as model to understand the global dynamics of cholera epidemiology and analyze the complex 

epidemic and endemic behaviour of cholera disease. Some of the mathematical model of cholera can be found in the 

typical works of [11,17,18,23]. 

Recently [33] have analyzed a Cholera model by considering general incidence function for multiple transmissions 

and a general growth rate function for pathogens. 

This paper aims to explore a unified cholera model and conduct a careful mathematical study of the complex cholera 

dynamics for better understanding of the fundamental disease transmission mechanism using the Routh-Hurwitz 

criterion and the Rouche’s theorem to investigate its stability property. 

2.0 Model Assumptions and Formulation 

The assumptions used in the process of modeling the spread of cholera are as follows: 

a. The value of the birth rate equals Λ. 

b. The value of the death rate equals 𝜇. 

c. The two ways of transmission are from human to human and environment to human. 

d. The populations of susceptible individuals rise due to the natural birth at a constant rate of Λ. 

e. The susceptible individuals reduce due to interactions with vibrio cholera, the transmission rate is 𝛽𝑒 and the 

interactions with infected individuals, the transmission rate is 𝛽ℎ.  

f. Infected individuals rise due to contact between susceptible individual and vibrio cholera and as well as 

interactions with already infected individuals. 

g. Recoveries and natural deaths contribute to a declined in the number of Infected individuals. 

2.1 Model Parameters and Variables 
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The model considers a total human population size 𝑁(𝑡) and is sub-divided into three compartments of susceptible 

𝑆(𝑡) infected 𝐼(𝑡) and recovered 𝑅(𝑡).  Thus; 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

The concentration of vibrio cholerae in the environment (contaminated water reservoir) is denoted by 𝐵. 𝜇 denotes 

the natural death rate, 𝛽𝑒 is the rate of ingestion of vibrio cholerae from environment, while 𝛽ℎ is the rate of human to 

human transmission. 𝑘 is the pathogen concentration that yields 50% chance of contracting cholera, 𝛾 is the rate of 

recovery from cholera, 𝛿 is the rate of human contribution to vibrio cholerae and 𝜉 is the death rate of vibrio cholerae.    

Table 1:   Variables of the Cholera Model 

Symbol Description 

𝑺(𝒕) Susceptible human population at time t. 

𝑰(𝒕) Infected human population at time t. 

𝑹(𝒕) Recovered human population at time t. 

𝑩(𝒕) Concentration of vibrio cholera in the population at time t. 

𝑵 Total human population. 

  

Table 2:   Parameters of Cholera Model 

Symbol Description 

𝚲 Human birth rate 

𝝁 Human death rate 

𝜷𝒆 Rate of exposure to contaminated water. 

𝜷𝒉 Rate of human to human transmission. 

𝒌 The concentration of pathogen that yields 50% chance of contracting cholera 

𝜸 Recovery rate from cholera. 

𝜹 Rate of contribution of each infected persons to the population of vibrio cholera in the 

aquatic environment. 

𝝃 

𝝎 

Growth rate of vibrio cholerae in the aquatic environment. 

Immunity waning rate 
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𝝉 Delay in the time in which a person is infected and when he gives off the pathogen 

bacteria of vibro cholerae to the acquatic environment. 

 

2.2 Model Equations 

The following differential equations for the cholera dynamics is based on the combination of a regular SIRB model 

and an environmental component. 

𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽𝑒𝑆(𝑡)

𝐵(𝑡)

𝑘 + 𝐵(𝑡)
− 𝛽ℎ𝑆(𝑡)𝐼(𝑡) + 𝜔𝑅(𝑡) − 𝜇𝑆(𝑡)                                               (1)  

𝑑𝐼

𝑑𝑡
= 𝛽𝑒𝑆(𝑡)

𝐵(𝑡)

𝑘 + 𝐵(𝑡)
+ 𝛽ℎ𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡) − 𝜇𝐼(𝑡)                                                            (2) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) − (𝜔 + 𝜇)𝑅(𝑡)                                                                                                           (3) 

𝑑𝐵

𝑑𝑡
= 𝛿𝐼(𝑡) − 𝜉𝐵(𝑡)                                                                                                                       (4) 

For simplicity, we let 𝑆(𝑡) = 𝑆, 𝐼(𝑡) = 𝐼, 𝑅(𝑡) = 𝑅 𝑎𝑛𝑑 𝐵(𝑡) = 𝐵, so that our new model system becomes: With 

Delay; 

𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽𝑒𝑆

𝐵

𝑘 + 𝐵
− 𝛽ℎ𝑆𝐼 + 𝜔𝑅 − 𝜇𝑆                                                                                (5)  

𝑑𝐼

𝑑𝑡
= 𝛽𝑒𝑆

𝐵

𝑘 + 𝐵
+ 𝛽ℎ𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼                                                                                            (6) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − (𝜔 + 𝜇)𝑅                                                                                                                     (7) 

𝑑𝐵

𝑑𝑡
= 𝛿𝐼(𝑡 − 𝜏) − 𝜉𝐵                                                                                                                    (8) 

2.3 Model Analysis 

We first establish the well-posedness of the model by showing that its solutions are positive and bounded. 

Well-posedness: in the following Lemma, we can show that the solutions are positive and bounded 
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Lemma 1: For all 𝑡 ≥ 0, the invariant region 𝛺 = {(𝑆, 𝐼, 𝑅, 𝐵) ∈ ℝ+
4 : 𝑆(0), 𝐼(0), 𝑅(0), 𝐵(0) > 0, 𝑆 + 𝐼 + 𝑅 = 𝑁} 

then the solutions of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝐵(𝑡)} of the system equations (1) – (4) exhibits positive invariance. 

Proof: Considering equation (5), 

𝑑𝑆

𝑑𝑡
= 𝛬 − 𝛽𝑒𝑆

𝐵

𝑘 + 𝐵
− 𝛽ℎ𝑆𝐼 + 𝜔𝑅 − 𝜇𝑆 

𝑑𝑆

𝑑𝑡
≥ −𝛽𝑒𝑆

𝐵

𝑘 + 𝐵
− 𝛽ℎ𝑆𝐼 − 𝜇𝑆 

𝑑𝑆

𝑑𝑡
≥ −(𝛽𝑒

𝐵

𝑘 + 𝐵
+ 𝛽ℎ𝐼 + 𝜇) 𝑆                                                                                                        (9) 

By separation of variables and integrating both sides of equation (9) we have; 

𝑑𝑆

𝑆
≥ −(𝛽𝑒

𝐵

𝑘 + 𝐵
+ 𝛽ℎ𝐼 + 𝜇)𝑑𝑡 

∫
𝑑𝑆

𝑆
≥ ∫−(𝛽𝑒

𝐵

𝑘 + 𝐵
+ 𝛽ℎ𝐼 + 𝜇)𝑑𝑡 

log𝑒 𝑆(𝑡) ≥ −(𝛽𝑒
𝐵

𝑘+𝐵
+ 𝛽ℎ𝐼 + 𝜇) 𝑡 + 𝑐1                                                                                      (10)    

Taking the exponential of both sides of equation (10) we get, 

𝑆(𝑡) ≥ 𝑒−(𝛽𝑒
𝐵

𝑘+𝐵
+𝛽ℎ𝐼+𝜇)𝑡 × 𝑒𝑐1 

𝑆(𝑡) ≥ 𝐴𝑒−(𝛽𝑒
𝐵

𝑘+𝐵
+𝛽ℎ𝐼+𝜇)𝑡

, where 𝐴 = 𝑒𝑐1       (11) 

Applying the initial condition at 𝑡 = 0 in equation (11) we have; 

𝑆(0) = 𝐴,  so that,  𝑆(𝑡) ≥ 𝑆(0)𝑒−(𝛽𝑒
𝐵

𝑘+𝐵
+𝛽ℎ𝐼+𝜇)𝑡

 

Therefore, 𝑆(𝑡) ≥ 0 for all 𝑡 ≥ 0. 

Applying the same method, it is verifiably that 𝐼(0) > 0, 𝑅(0) > 0, 𝐵(0) > 0. 

It is therefore proven that all state variables are positive for all time 𝑡. The solutions are therefore non-negative for 

𝑡 >  0. 
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Next, we show that the system of equation (1) – (4) has solutions which are bounded in the invariant region Ω as 

contained in the feasible region: 𝛺 =  {(𝑆, 𝐼, 𝑅, 𝐵): 𝑁 <  
𝛬

𝜇
 }  

Lemma 2: The solutions of the model are contained in the feasible region 

𝛺 =  {(𝑆, 𝐼, 𝑅, 𝐵) ∈ ℝ+
4 : 0 ≤ 𝑆, 0 ≤ 𝐼, 0 ≤ 𝑅, 0 ≤ 𝐵; 𝑆 + 𝐼 + 𝑅 ≤

𝛬

𝜇
 }  

Proof: 

Consider the total population at a time 𝑡 given by 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). 

Then, taking the time derivative of 𝑁(𝑡) from equation (5) – (8), we have; 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
                                                                                                                    (12) 

From equation (5); 

𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑆 − 𝛾𝐼 − 𝜇𝐼 + 𝛾𝐼 + 𝜔𝑅 − (𝜔 + 𝜇)𝑅 

𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇𝑆 − 𝜇𝐼 − 𝜇𝑅 

𝑑𝑁

𝑑𝑡
≤ 𝛬 − (𝑆 − 𝐼 − 𝑅)𝜇 

𝑑𝑁

𝑑𝑡
≤ 𝛬 − 𝜇𝑁 

𝑑𝑁

𝑑𝑡
+ 𝜇𝑁 ≤ 𝛬 

By using integrating factor method, 

𝐼. 𝐹 = 𝑒∫ 𝜇𝑑𝑡 = 𝑒𝜇𝑡  

𝑑

𝑑𝑡
(𝑒𝜇𝑡𝑁) ≤ 𝑒𝜇𝑡𝛬                                                                                                                         (13) 

Integrate both sides of equation (13) we get; 

∫
𝑑

𝑑𝑡
𝑒𝜇𝑡𝑁𝑑𝑡 ≤ ∫𝑒𝜇𝑡𝛬𝑑𝑡 
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𝑒𝜇𝑡𝑁(𝑡) ≤
𝑒𝜇𝑡𝛬

𝜇
+ 𝑐5 

𝑁(𝑡) ≤
𝛬

𝜇
+ 𝑐5𝑒

−𝜇𝑡                                                                                                                          (14) 

Taking the initial condition at 𝑡 =  0 in equation (14) we get, 

𝑁(0) −
𝛬

𝜇
≤ 𝑐5, 

Thus, 

𝑁(𝑡) ≤
𝛬

𝜇
+ (𝑁(0) −

𝛬

𝜇
)𝑒−𝜇𝑡 

Where 𝑁(0) is the initial population, 

As 𝑡 → ∞ and taking  

lim
𝑡→∞

𝑁(𝑡) ≤
𝛬

𝜇
+ (𝑁(0) −

𝛬

𝜇
)𝑒−𝜇𝑡 

Thus; 0 ≤ 𝑁 <
𝛬

𝜇
 

The solutions are therefore bounded in the invariant region Ω. 

3.1 Stability Analysis of Equilibrium Points 

Equilibrium is defined as a constant solution of a model system. The equilibrium point is a condition where there are 

no changes in each population over time.  Epidemiological models are made up of two equilibrium points namely, the 

Disease-Free Equilibrium and the Endemic Equilibrium. 

3.1.1. Disease free Equilibrium point (DFE) 

The Disease-Free Equilibrium (DFE) point of a model system is a point where the disease is not present in the 

population.  This means that cholera is absent in the human population and the environment. To find the DFE of the 

given system (5)-(8), we need to determine the steady-state solution where the infected compartments (𝐼, 𝐵) are zero.  

This is obtained by setting the model equation to zero since there are no infectious individuals in the population and 

therefore no disease to recover from.  This means that; 
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𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
= 0                                                                                                                (15) 

So that, 

𝛬 − 𝛽𝑒𝑆
𝐵

𝑘 + 𝐵
− 𝛽ℎ𝑆𝐼 + 𝜔𝑅 − 𝜇𝑆 = 0                                                                                          (16)  

𝛽𝑒𝑆
𝐵

𝑘 + 𝐵
+ 𝛽ℎ𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼 = 0                                                                                          (17) 

𝛾𝐼 − (𝜔 + 𝜇)𝑅 = 0                                                                                                                               (18) 

𝛿𝐼 − 𝜉𝐵 = 0                                                                                                                                (19) 

Since there are no infections at the Disease-Free equilibrium hence, 𝐼 = 0 and substituting this into equation (19) 

yields; 

𝛿(0) − 𝜉𝐵 = 0 

Therefore,  𝐵 = 0 

Also, we see from equation (18) that: 

(0)𝐼 − (𝜔 + 𝜇)𝑅 = 0 

Which implies that; 𝑅 =  0 

Furthermore, from equation (17), 

𝐼 = 0 

Similarly, from equation (16) we get; 

𝛬 − 0 − 0 − 𝜇𝑆 = 0 

Therefore, 𝑆 =
𝛬

𝜇
 

Hence, there exists a Disease-Free Equilibrium point given as; 

(𝑆0, 𝐼0, 𝑅0, 𝐵0) = (
𝛬

𝜇
, 0, 0, 0)                                                                                                                  (20)  

3.1.2    Basic Reproduction Number 
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The basic reproduction number denoted by 𝑅0 is the average number of secondary infections caused by an infectious 

individual during his/her entire period of infectiousness. 

Hence, we calculate the basic reproduction number using the Next Generation Matrix approach. 

Let’s consider the matrix 𝐻 

Consisting of two 𝑛 × 𝑛 matrices 𝐹 and 𝑉 such that; 

𝐻 = 𝐹𝑉−1 

And 

𝐹 = [
𝜕ℱ𝑖(𝐸0)

𝜕𝑥𝑗
] ,            𝑎𝑛𝑑       𝑉 = [

𝜕𝒱𝑖(𝐸0)

𝜕𝑥𝑗
]         

Here, 𝐹 is defined as the Jacobian of ℱ𝑖 such that, 𝑓𝑖 is the rate of appearance of new infections in compartment 𝑖. 𝑉 

is the Jacobian of 𝒱𝑖 such that, 𝑣𝑖 is the rate of transfer of individuals from compartment 𝑖 by all other means and 𝐸0 

is the disease free equilibrium. The basic reproduction number 𝑅0 is therefore, given as the dominant Eigen-value or 

the spectral radius of matrix 𝐻. 

Thus, 𝑅0 = ϸ𝐹𝑉−1                                                                                                                        (21) 

Using the system of equations in equation (5 – 8), by considering the infectious compartment to be I and B, identifying 

the infectious compartment as equation (5) and (6) of the mathematical model. 

𝑑𝐼

𝑑𝑡
= 𝛽𝑒𝑆

𝐵

𝑘 + 𝐵
+ 𝛽ℎ𝑆𝐼 − (𝛾 + 𝜇)𝐼                                                                                          (22) 

𝑑𝐵

𝑑𝑡
= 𝛿𝐼(𝑡 − 𝜏) − 𝜉𝐵                                                                                                                    (23) 

The linearized system of the equations (22) and (23) about the DFE is given by 

𝐹 = [
𝛽𝑒𝑆

𝐵

𝑘+𝐵
+ 𝛽ℎ𝑆𝐼

𝛿𝐼(𝑡 − 𝜏)
] and  𝑉 = [

(𝛾 + 𝜇)𝐼
𝜉𝐵

] 

By computing the Jacobian matrices and evaluating at DFE, we get 

𝐹 = [
𝛽ℎ

𝛬

𝜇
𝛽𝑒

𝛬

𝜇𝑘

𝛿 0
]                                                                                                                                (24)    
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𝑉 = [
𝛾 + 𝜇 0

0 𝜉
]                                                                                                                                    (25) 

𝐹𝑉−1 = 

[
 
 
 (

𝛽ℎ𝛬

𝜇(𝛾 + 𝜇)
) (

𝛽𝑒𝛬

𝜇𝑘𝜉
)

𝛿

𝛾 + 𝜇
0

]
 
 
 

                                                                                                     (26) 

The characteristics equation is, 

𝜆2 − (
𝛽ℎ𝛬

𝜇(𝛾 + 𝜇)
) 𝜆 − (

𝛽𝑒𝛬𝛿

𝜇𝑘𝜉(𝛾 + 𝜇)
) = 0 

But by the Next Generation Matrix principle, the largest or dominant Eigen value is the Basic Reproduction Number 

(𝑅0 = ϸ𝐹𝑉−1). Therefore, the Basic Reproduction Number becomes; 

𝑅0 =
1

2
[

𝛽ℎ𝛬

𝜇(𝛾 + 𝜇)
+ √(

𝛽ℎ𝛬

𝜇(𝛾 + 𝜇)
)

2

+
4𝛽𝑒𝛬𝛿

𝜇𝑘𝜉(𝛾 + 𝜇)
 ]                                                                        (27) 

3.2. Local Stability of the Disease-Free Equilibrium 

Theorem 3.1: The Disease-Free Equilibrium, 𝐸0 of the model is locally asymptotically stable if 𝑅0 < 1 and is 

unstable if 𝑅0 > 1. 

Proof: 

The system is linearized by computing the Jacobian matrix of the system at the DFE. The dynamical system’s Jacobian 

matrix J becomes 

Let 𝑎1, 𝑎2, 𝑎3, 𝑎4  ∈ 𝐴 and 

𝑎1(𝑠, 𝑖, 𝑟, 𝑏) = 𝛬 − 𝛽𝑒𝑆
𝐵

𝑘 + 𝐵
− 𝛽ℎ𝑆𝐼 + 𝜔𝑅 − 𝜇𝑆 

𝑎2(𝑠, 𝑖, 𝑟, 𝑏) = 𝛽𝑒𝑆
𝐵

𝑘 + 𝐵
+ 𝛽ℎ𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼 

𝑎3(𝑠, 𝑖, 𝑟, 𝑏) = 𝛾𝐼 − (𝜔 + 𝜇)𝑅 

𝑎4(𝑠, 𝑖, 𝑟, 𝑏) = 𝛿𝐼(𝑡 − 𝜏) − 𝜉𝐵 

So that the Jacobian Matrix becomes 

GSJ: Volume 13, Issue 2, February 2025 
ISSN 2320-9186 1489

GSJ© 2025 
www.globalscientificjournal.com



𝐴 =

[
 
 
 
 
 
 −𝜇 𝛽ℎ

𝛬

𝜇
       𝜔    −𝛽𝑒

𝛬

𝜇𝑘

0 𝛽ℎ

𝛬

𝜇
− 𝛾 − 𝜇       0       𝛽𝑒

𝛬

𝜇𝑘

0
0

𝛾

𝛿𝑒−𝜆𝜏

−(𝜔 + 𝜇)       0    
0      −𝜉 ]

 
 
 
 
 
 

 

This is a transcendental equation due to the delay term 𝑒−𝜆𝜏. Solving it analytically is challenging, but we can analyze 

the stability by considering the no-delay case (𝜏 = 0) and using the Routh-Hurwitz criterion. 

Evaluating the Eigen values of 𝐴 to obtained 

|𝐴 − 𝜆𝐼| =

[
 
 
 
 
 
 −𝜇 𝛽ℎ

𝛬

𝜇
𝜔     −𝛽𝑒

𝛬

𝜇𝑘

0 𝛽ℎ

𝛬

𝜇
− 𝛾 − 𝜇 0       𝛽𝑒

𝛬

𝜇𝑘

0
0

𝛾

𝛿𝑒−𝜆𝜏

−(𝜔 + 𝜇) 0    
0         −𝜉 ]

 
 
 
 
 
 

− 𝜆 [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] 

=

[
 
 
 
 
 
 −(𝜇 + 𝜆) 𝛽ℎ

𝛬

𝜇
𝜔              −𝛽𝑒

𝛬

𝜇𝑘
      

0 𝛽ℎ

𝛬

𝜇
− 𝛾 − 𝜇 − 𝜆 0                𝛽𝑒

𝛬

𝜇𝑘
       

0
0

𝛾

𝛿𝑒−𝜆𝜏

−(𝜇 + 𝜔) − 𝜆               0                   

0              −(𝜉 + 𝜆) ]
 
 
 
 
 
 

 

= −(𝜇 + 𝜆)

[
 
 
 𝛽ℎ

𝛬

𝜇
− 𝛾 − 𝜇 − 𝜆 0 𝛽𝑒

𝛬

𝜇𝑘

𝛾 −(𝜇 + 𝜔 + 𝜆) 0

𝛿𝑒−𝜆𝜏 0 −(𝜉 + 𝜆)]
 
 
 

 

|𝐴 − 𝜆𝐼| = (𝜇 + 𝜆)(𝜇 + 𝜔 + 𝜆) [
−𝛽ℎ

𝛬

𝜇
+ 𝛾 + 𝜇 + 𝜆 −𝛽𝑒

𝛬

𝜇𝑘

−𝛿𝑒−𝜆𝜏 (𝜉 + 𝜆)

]                                          (28) 

From equation (24), we see that 𝜆1 = −𝜇, 𝜆2 = −(𝜇 + 𝜔 + 𝜆). We then proceed to find the other Eigen values of the 

reduced block matrix given by; 

𝐴 = [
−𝛽ℎ

𝛬

𝜇
+ 𝛾 + 𝜇 −𝛽𝑒

𝛬

𝜇𝑘

−𝛿𝑒−𝜆𝜏 𝜉

]                                                                                                      (29) 

Let 𝑇𝑟 be the Trace of A and 𝛼 be the determinant of A and considering the linear system 𝑥′(𝑡) = 𝐴𝑥(𝑡), the following 

conditions can be shown; 

a) If 𝛼 < 0, the characteristic roots of A will have opposite signs. 
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b) If 𝛼 > 0 and ∆= 𝑇𝑟2 − 4𝛼 ≥ 0, the characteristic roots of matrix A will have the same sign. The roots will 

be negative if 𝑇𝑟 < 0 and positive if 𝑇𝑟 > 0. 

c) If 𝛼 > 0, ∆< 0 and 𝑇𝑟 ≠ 0 then, the characteristic roots of matrix A will be imaginary with negative real 

part if 𝑇𝑟 < 0 and a positive real part if 𝑇𝑟 > 0. 

d) If 𝛼 > 0 and 𝑇𝑟 = 0 then, matrix A will have purely imaginary roots. 

The Eigen values of matrix A are obtained from the characteristic equation; 

𝜆2 − (𝑎 + 𝑑)λ + (ad + bc) = 0                                                                                               (30) 

𝜆2 − 𝑇𝑟λ + α = 0 

𝜆 =
𝑇𝑟 ± √𝑇𝑟2 − 4α

2
                                                                                                                   (31) 

Thus, 

 a*) If 𝛼 < 0, there exist two real Eigen values of opposite signs. 

b*) If 𝛼 > 0 and ∆≥ 0, there exist two real Eigen values of the same sign as the Trace. 

c*) If 𝛼 > 0, ∆< 0 and 𝑇𝑟 ≠ 0, there exist two complex conjugate Eigen values 𝜆 = 𝑝 ± 𝑖𝑟. 

d*) If 𝛼 > 0 and 𝑇𝑟 = 0, there exist two purely imaginary complex conjugate Eigen values. 

Now considering condition (b), we can therefore determine the signs of the other Eigen values. For the remaining two 

Eigen values to be negative then, 𝛼 > 0 and 𝑇𝑟 < 0. We now proceed to find the conditions that makes the determinant 

positive and the Trace negative. From the reduced block matrix, the determinant is given by; 

𝛼 = 𝜉 (−𝛽ℎ

𝛬

𝜇
+ 𝛾 + 𝜇) − 𝛿𝑒−𝜆𝜏 (𝛽𝑒

𝛬

𝜇𝑘
)                                                                                        (32) 

Let 𝑎 = 𝛽ℎ
𝛬

𝜇
− 𝛾 − 𝜇 

When 𝜏 = 0, equation (30) becomes, 

𝜆2 + (𝜉 − 𝑎)λ − 𝑎𝜉 − 𝛽𝑒

𝛬𝛿

𝜇𝑘
= 0                                                                                                       (33) 

The dominant eigenvalue of equation (33) can be shown to be positive if and only if, 
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𝑅0 =
1

2
[

𝛽ℎ𝛬

𝜇(𝛾 + 𝜇)
+ √(

𝛽ℎ𝛬

𝜇(𝛾 + 𝜇)
)

2

+
4𝛽𝑒𝛬𝛿

𝜇𝑘𝜉(𝛾 + 𝜇)
 ] > 1                                                            (34) 

Next, the Trace of the reduced block matrix is given by; 

𝑇𝑟 = 𝛽ℎ

𝛬

𝜇
− 𝛾 − 𝜇 − 𝜉 

𝑇𝑟 = 𝛽ℎ

𝛬

𝜇
− 𝜉 − (𝛾 + 𝜇)                                                                                                                    (35) 

Making (𝛾 + 𝜇) the subject of formula from equation (27) we get; 

(𝛾 + 𝜇) =
𝛬

𝜇𝑅0
(𝛽ℎ +

𝛽𝑒𝛿

𝜉𝑘
)                                                                                                             (36) 

On substituting equation (36) into equation (35), we have; 

𝑇𝑟 = 𝛽ℎ

𝛬

𝜇
− 𝜉 −

𝛬

𝜇𝑅0
(𝛽ℎ +

𝛽𝑒𝛿

𝜉𝑘
)                                                                                                (36) 

Since the Trace of the reduced matrix needs to have negative Eigen values, we look for condition under which 𝛽ℎ
𝛬

𝜇
 is 

negative. 

𝛽ℎ

𝛬

𝜇
−

𝛬

𝜇𝑅0
𝛽ℎ = 0                                                                                                                           (37) 

Simplifying equation (37) gives; 

𝛽ℎ

𝛬

𝜇
(1 −

1

𝑅0
) < 0                                                                                                                            (38) 

From equation (38) we see that if 𝑅0 < 1 then, the equation becomes negative. Therefore, the Jacobian matrix of the 

disease-free equilibrium has negative eigen values only when 𝑅0 < 1 which implies that the disease-free equilibrium 

is locally asymptotically stable. The result of the theorem also confirms the conditions for local stability as outlined 

in [35] 

Even when 𝜏 > 0 one may show that the delay does not change the threshold, the DFE is locally asymptotically stable 

if and only if all characteristic roots have negative real part, and this is equivalent to 𝑅0 < 1. 

3.3 Stability Analysis of the Endemic Equilibrium 
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Theorem 3.2: Suppose that 𝑅0 > 1, then ∃ an Endemic Equilibrium (EE) of the model that is globally stable and 

is unstable if 𝑅0 < 1. 

Proof: 

The EE (𝑆∗, 𝐼∗, 𝑅∗, 𝐵∗) satisfies: 

𝛬 − 𝛽𝑒𝑆
∗

𝐵∗

𝑘 + 𝐵∗
− 𝛽ℎ𝑆

∗𝐼∗ + 𝜔𝑅∗ − 𝜇𝑆∗ = 0 

𝛽𝑒𝑆
∗

𝐵∗

𝑘 + 𝐵∗
+ 𝛽ℎ𝑆

∗𝐼∗ − 𝛾𝐼∗ − 𝜇𝐼∗ = 0 

𝛾𝐼∗ − (𝜔 + 𝜇)𝑅∗ = 0 

𝛿𝐼∗ − 𝜉𝐵∗ = 0 

Thus, we obtain 

𝐵∗ =
𝛿

𝜉
𝐼∗, and 𝑅∗ =

𝛾

𝜔+𝜇
𝐼∗ 

Because the model has a discrete time delay, the linearization about the endemic equilibrium is a delay-differential 

equation. Since the delay is only in the term 𝛿𝐼(𝑡 − 𝜏) then, only the environmental equation is non-instantaneous. 

Consider the following co-ordinate transformation; 𝑥1(𝑡) = 𝑆(𝑡), 𝑥2(𝑡) = 𝐼(𝑡), 𝑥3(𝑡) = 𝑅(𝑡), 𝑥4(𝑡) = 𝐵(𝑡) where 

(𝑆, 𝐼, 𝑅, 𝐵) denotes the equilibrium points of equations (5) – (8) then; 

𝑥̇(𝑡) = 𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡 − 𝜏)                                                                      (39) 

Where, 

𝐴0 =

[
 
 
 
 
 −𝛽𝑒

𝐵∗

𝑘+𝐵∗ − 𝛽ℎ𝐼
∗ − 𝜇 −𝛽ℎ𝑆

∗ ω −𝛽𝑒
𝑆∗𝑘

(𝑘+𝐵∗)2

𝛽𝑒
𝐵∗

𝑘+𝐵∗ + 𝛽ℎ𝐼
∗ 𝛽ℎ𝑆

∗ − (𝛾 + 𝜇) 0   𝛽𝑒
𝑆∗𝑘

(𝑘+𝐵∗)2

0
0

𝛾
𝛿

−(𝜇 + ω)             0    
0         −𝜉 ]

 
 
 
 
 

  

𝐴1 = [

0 0 0 0
0 0 0 0
0
0

0
𝛿

0 0
0 0

]  

The characteristic equation becomes 

∆(𝑦) = |𝑦𝐼4×4 − 𝐴0 − 𝐴1𝑒
−𝜏𝑦|  
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Since the recovered variable 𝑅 is decoupled, we may concentrate on the three-dimensional subsystem in the variables 

𝑆, 𝐼, 𝐵, 

𝑥(𝑡) = (

𝑠(𝑡)
𝑖(𝑡)
𝑏(𝑡)

) 

We have, 

𝑥̇(𝑡) = 𝐴0
∗𝑥(𝑡) + 𝐴1

∗𝑥(𝑡 − 𝜏) 

With, 

𝐴0
∗ = (

𝐽11 𝐽12 𝐽14

𝐽21 𝐽22 𝐽24

0 0 −𝜉
)  and   𝐴1

∗ = (
0 0 0
0 0 0
0 𝛿 0

) 

The characteristic equation becomes 

∆(𝑦) = |𝑦𝐼4×4 − 𝐴0
∗ − 𝐴1

∗𝑒−𝜏𝑦|  

The characteristics equation of the above can be written as, 

𝛿𝐽14𝑒
−𝜏𝑦[(𝑦 − 𝐽11) − 𝐽21] + (𝑦 + 𝜉)[(𝑦 − 𝐽11)(𝑦 − 𝐽22) − 𝐽12𝐽21] = 0                            (40) 

Where,     𝐽11 = −𝛽𝑒
𝐵∗

𝑘+𝐵∗ − 𝛽ℎ𝐼
∗ − 𝜇,    𝐽12 = −𝛽ℎ𝑆

∗,  𝐽14 = −𝛽𝑒
𝑆∗𝑘

(𝑘+𝐵∗)2
,     𝐽21 = 𝛽𝑒

𝐵∗

𝑘+𝐵∗ + 𝛽ℎ𝐼
∗,            𝐽22 =

𝛽ℎ𝑆
∗ − (𝛾 + 𝜇) 

Theorem 3.3: if 𝑅0 > 1, then the endemic equilibrium is stable for any time-delay 𝜏 ≥ 0. If 𝑅0 < 1, then the endemic 

equilibrium is unstable for any time-delay 𝜏 ≥ 0. 

Proof:  

The characteristic equation is given by; 

𝑃(𝑦, 𝜏) = (𝑦 + 𝜇 + ω)(𝑦 + 𝜇) (𝑦2 + (𝛾 + 𝜇 + 𝜉 − 𝛽ℎ

𝛬

𝜇
)𝑦 + ┌1 + ┌2) = 0                           (41) 

Where ┌1 = 𝛿𝛽𝑒
𝛬

𝜇
𝑒−𝜏𝑦,    ┌2 = 𝜉(𝛾 + 𝜇) − 𝜉𝛽ℎ

𝛬

𝜇
− 𝛿𝛽𝑒

𝛬

𝜇𝑘
 

Case 1: Let 𝝉 = 𝟎 

Then, equation (41) becomes; 
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𝑃(𝑦, 0) = (𝑦 + 𝜇 + ω)(𝑦 + 𝜇) (𝑦2 + (𝛾 + 𝜇 + 𝜉 − 𝛽ℎ

𝛬

𝜇
)𝑦 + 𝛿𝛽𝑒

𝛬

𝜇
+ ┌2) = 0                    (42) 

We need to prove that all roots of the characteristic equation have negative real parts. It is quite easy to see from (42) 

that 𝑦1 = −𝜇, 𝑦2 = −ω − 𝜇 are roots of (42) and are all negative. Thus, we just need to analyze the third term of (42), 

here denoted by 𝑃1. 

Thus, 

𝑃1(𝑦, 0) = (𝑦2 + (𝛾 + 𝜇 + 𝜉 − 𝛽ℎ

𝛬

𝜇
)𝑦 + 𝛿𝛽𝑒

𝛬

𝜇
+ ┌2) = 0 

Using the Routh-Hurwitz criterion, we know that all roots of 𝑃1(𝑦, 0) have negative real parts if and only if the co-

efficient of 𝑃1(𝑦, 0) are strictly positive. In this case, we have (𝛾 + 𝜇 + 𝜉 − 𝛽ℎ
𝛬

𝜇
) > 0 if and only if 𝛾 + 𝜇 + 𝜉 > 𝛽ℎ

𝛬

𝜇
 

and ┌2 = 𝜉(𝛾 + 𝜇) − 𝜉𝛽ℎ
𝛬

𝜇
− 𝛿𝛽𝑒

𝛬

𝜇𝑘
> 0 if and only if 𝑅0 < 1, since; 

𝜉𝛽ℎ

𝛬

𝜇
− 𝛿𝛽𝑒

𝛬

𝜇𝑘
=

𝛬

𝜇(𝛾 + 𝜇)
(𝛽ℎ − 𝛽𝑒

𝛿

𝜉𝑘
) 𝜉(𝛾 + 𝜇) = 𝑅0(𝜉(𝛾 + 𝜇)) 

This implies that; 

┌2 = 𝜉(𝛾 + 𝜇) − 𝜉𝛽ℎ

𝛬

𝜇
− 𝛿𝛽𝑒

𝛬

𝜇𝑘
= 𝜉(𝛾 + 𝜇) − 𝑅0(𝜉(𝛾 + 𝜇)) 

= 𝜉(𝛾 + 𝜇)(1 − 𝑅0) 

Clearly, ┌2 is positive only if 𝑅0 < 1. 

Case II: Let 𝝉 > 𝟎 

We use Rouche’s theorem to prove that all roots of the characteristic equation (41) cannot intersect the imaginary axis 

i.e the characteristics equation cannot have pure imaginary roots. Suppose the contrary, that is, suppose there exist 

𝜔 ∈ ℝ such that 𝑦 = 𝜔𝑖 is a solution of equation (42). Replacing 𝑦 = 𝜔𝑖 in the second term of equation (41), we get; 

−𝜔2 + (𝛾 + 𝜇 + 𝜉 − 𝛽ℎ

𝛬

𝜇
)𝜔𝑖 + (𝜉(𝛾 + 𝜇) − (𝜉𝛽ℎ

𝛬

𝜇
+ 𝛿𝛽𝑒

𝛬

𝜇𝑘
)) + 𝛿𝛽𝑒

𝛬

𝜇𝑘
(cos(𝜏𝜔) − 𝑖𝑠𝑖𝑛(𝜏𝜔)) = 0 

Let   ┌1 = 𝛿𝛽𝑒
𝛬

𝜇
𝑒−𝜏𝑦,   ┌2 = 𝜉(𝛾 + 𝜇) − (𝜉𝛽ℎ

𝛬

𝜇
+ 𝛿𝛽𝑒

𝛬

𝜇𝑘
),┌0 = (𝛾 + 𝜇 + 𝜉 − 𝛽ℎ

𝛬

𝜇
) 

So that we get; 
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−𝜔2 + ┌0𝜔𝑖 + ┌2 + ┌1(cos(𝜏𝜔) − 𝑖𝑠𝑖𝑛(𝜏𝜔)) = 0 

Separating the real and imaginary parts gives; 

{
−𝜔2 + ┌2 = −┌1 cos(𝜏𝜔)

−┌0𝜔 = −┌1 sin(𝜏𝜔)
 

By adding up the squares of both equations and using the fundamental trigonometric formula, we obtain; 

𝜔4 + (┌0
2 − 2┌2)𝜔

2 + ┌2
2 − ┌1

2 = 0                                                                            (43) 

Then, 

𝜔2 =
1

2
[−(┌0

2 − 2┌2) ± √(┌0
2 − 2┌2)

2 − 4(┌2
2 − ┌1

2)] 

This implies that equation (43) has no positive roots when 𝑅0 > 1 which shows that equation (41) has no imaginary 

roots for all 𝜏 > 0. Therefore, the endemic equilibrium is locally stable for any 𝜏 > 0. 

4.1 Model parameters and values 

Some of the parameters which are compatible with cholera have been obtained from literature while others have been 

estimated. The parameter values are shown in Table 3. 

Table 3:   Parameters of Cholera Model 

Symbol Value Source 

𝚲 4.109 x 103 People/day Omondi et al., 2015 

𝝁 2.537 x 10-5 People/day Omondi et al., 2015 

𝜷𝒆 Varied day-1 Varied 

𝜷𝒉 Varied day-1 Varied 

𝒌 9.5 x 10-4 day-1 Estimated 

𝜸 1.884 x 10-3 day-1 Tate et al., 2009 

𝜹 1.0 x 10-3 day-1 Assumed 

𝝃 

𝝎 

2.3 x 10-1 day-1 

2.778 x 10-3 day-1 

Mari et al., 2011 

Vesikari et al., 2006 
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𝝉 Varied day-1 Parashar et al., 2003 

 

4.1 Numerical Simulation  

 

Figure 4.1: Dynamics of Susceptible and Infected Population with Delay 
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Figure 4.2: Dynamics of Recovered Population with Delay 
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Figure 4.3: Plot of the Sensitivity of Delay in the Infected Population 
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Figure 4.4: Dynamics of Infected Population with and without Delay 
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Figure 4.5: Dynamics of Recovered Population with and without Delay 
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Figure 4.6: Dynamics of Pathogen Concentration with and without Delay 
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Figure 4.7: Dynamics of Susceptible Population with and without Delay 

In this section, we present the numerical simulation of the proposed model (5-8). The given system is solved 

numerically by using MATLAB. The parameter value and their description has been presented in Table 4.3. 

To be able to illustrate the behaviour of solutions with time, there must be a susceptible human population and Vibrios 

in the environment therefore, 𝑆(𝑡)  >  0, 𝐵(𝑡)  >  0, 𝐼(𝑡)  ≥  0 and 𝑅(𝑡)  ≥  0. With these conditions in mind, we 

consider the following initial values 𝑆(𝑡)  =  100, 𝐼(𝑡)  =  1, 𝑅(𝑡)  =  1 𝑎𝑛𝑑 𝐵(𝑡)  =  8. When we calculate 𝑅0 from 

the values shown in Table 4.3, we get its value to be 0.8329 <  1. A numerical simulation of the cholera model using 

the original system variables before normalization was conducted using MATLAB’s ode45. 

Figure 4.1 and figure 4.2 shows that when 𝑅0 < 1 all the trajectories of infectives and recovered converge to zero 

regardless of the parameter values. Also, the susceptible population remain stable in the DFE. Consequently, our 

cholera free state can only be asymptotically stable. 
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Using the values in Table 4.3 and varying some parameter values, to get 𝑅0 > 1, we compute the value of 𝑅0 =

3.214 > 1. When 𝑅0 > 1, the cholera free equilibrium becomes unstable and the endemic equilibrium becomes stable. 

Consequently, the endemic equilibrium is asymptotically stable.  

Comparing the system with and without delay, it can be seen that there is a significant difference in the susceptible 

infected, recovered and pathogen population with and without delay. The analysis of figure 4 – figure 7 clearly shows 

stability at 𝑅0 > 1 for this combined human-environment epidemiological model.  We also see from figure 4.3, 

varying the value of the delay term significantly affects the growth rate of the infectives. The higher the delay term, 

the more infected individuals are increased in the system, while a lower delay term also reduces the number of infected 

individuals in the environment. 

5.0 Conclusion 

This paper is devoted to the formulation and analysis of a time-delayed mathematical model for cholera. We also 

added time delay, which represents the time between the instant at which an individual becomes infected and the 

instant at which he begins to have symptoms of cholera infection by the bacterium Vibrio cholerae. The considered 

model is a 𝑆𝐼𝑅𝐵 (Susceptible, Infectious, Recovered, Bacteria Concentration) system, where an additional class 𝐵 (a 

class of bacterial concentration in the dynamics of cholera) is considered. The formulated model is analyzed, providing 

the non-negativity of the solutions for non-negative initial conditions, as well as the disease-free equilibrium, basic 

reproduction number, and endemic equilibrium. Through the analysis of the model, it has been found that in the 

absence of delay, the disease-free equilibrium 𝐸0 is unstable whenever the endemic equilibrium 𝐸𝐸 exists. However, 

the endemic equilibrium is locally stable and remains stable for all 𝑡 > 0 each time under 𝑅0 > 0. Our analysis shows 

that the ingestion rate of the bacteria through contaminated sources β has an important influence on the stability of the 

endemic equilibrium. Finally, the main contributions and novelties of this paper are, (i) a more realistic cholera model 

with time delay; (ii) inclusion of pathogen concentration compartment (iii) considering multiple transmission 

pathways. For future work, we suggest that an investigation of how inclusion of a control measure in terms of vaccine 

will affect this model should be done. We also propose that future researchers should try and implement this model in 

a multi-group framework with multiple delay. 
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