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1. INTRODUCTION. 
 
Pharmacokinetics describes how the body affects specific drugs after 
administration through the processes of absorption, distribution, metabolism 
and elimination from the body , .The primary goal of clinical pharmacokinetics 
includes enhancing efficiency and decreasing toxicity of drug therapy.  The 
development of strong correlations between drug concentrations and their 
pharmacokinetic responses has enabled clinicians to apply pharmacokinetic 
principles to actual patient situations. Kinetic homogeneity describes the 
predictable relationship between plasma drug concentration and concentration 
at the receptor site where a drug produces its therapeutic effect. A change in the 
plasma drug concentration reflects the changes in drug concentrations at the 
receptor site, as well as in other tissues. When studying concentrations of a drug 
in plasma, we assume that these plasma concentrations directly relate to 
concentrations in tissues where the disease process is to be modified by the 
drug. Simplifications of body processes are necessary to predict a drug’s 
behavior in the body. A possible way to make these simplifications is to apply 
mathematical principles, such as the compartmental model which is composed of 
a number of compartments needed to describe the drug’s behavior in the body. 
Compartmental models are termed deterministic because the observed drug 
concentrations determine the type of compartmental model required to describe 
the pharmacokinetics of the drug. On the other hand, pharmacodynamics refers 
to the relationship between drug concentration at the site of action, and the 
resulting effect, including the time course of the intensity of therapeutic and 
adverse effects. The relationship between the concentration of a drug and its 
effect at the receptor site is a monotonic function; the concentration of a drug at 
the site of the receptor determines the intensity of its effect, even though, other 
factors such as density of receptors on the cell surface, the mechanism of  
transmission of signals by second messengers into the cell, or regulatory factors 
that control gene translation and protein synthesis also govern the effect of a 
drug. This multilevel regulation results in variation of sensitivity to drug effect 
from one individual to another. Drug potency is the concentration at which 50% 
of the maximum effect is achieved and is referred to as 50% effective 
concentration or EC50. 
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2. THE BINDING of PrP WITH DRUG CANDIDATES. 

 

The human prion protein (PrP) is attached to the selectively permeable plasma 
membrane of all cells at the C-terminal by a glycosylphosphatidylinositol (GP)4 It 
comprises a folded C-terminal, also called the Globular Domain (GD), and a 
naturally disordered N-terminal with transient secondary structures.5 The N-
terminal binds the amyloid- β protein and this progresses to Alzheimer’s 
disease.6 The inhibition of the interaction between the prion and amyloid- β is a 
valuable strategy against Alzheimer’s disease.7 However, the compounds that 
bind the N-term_HuPrP such as the porphyrins (see figure 1 ) have poor blood-
brain barrier permeability.8  Porphyrins bind specific residues at the 
Octapeptide-Repeat (OR) region of the N-terminal. Compounds similar to the 
porphyrins, with good blood—brain barrier permeability might be ideal drug 
candidates against Alzheimer’s disease. 
 
  

 

 

Figure1.The simplest porphyrin or porphine. Substituted porphyrins might be good drug candidates 
against Alzheimer's disease. (Adapted from Zinc.docking.org) 

 

3. THE PORPHYRIN STRUCTURE AND AROMATICITY. 

The ancestor of porphyrins is the porphine macrocyclic ring; it is a heterocyclic 
organic compound with a certain degree of aromaticity, and its chemical 
structure consist of four pyrole rings connected by methine groups to form a 
larger macrocycle composed of Sp2 hybridised carbon atoms in a conjugated 
double bond system. The aromatic character in porphyrins might not be a 
directly measurable quantity and is universally understood by convention. 
Aromaticity was described in the following ways: (I) A system more stable than 
its acyclic or cyclic conjugated unsaturated analogues, quantified as resonance 
energy, or better still aromatic stabilization energy (ASE) 9.(II) The cyclic carbon-
carbon bond lengths tend to be intermediate between those typical of single and 
double bonds, and the quantitative descriptors are the geometrical indices.(III) 
An external magnetic field induces a diatropic π-ring current, historically an 
exaltation of magnetic susceptibility(∧),  characteristic of proton NMR chemical 
shifts.  
 
The recent analysis of porphyrin structure does not use the popular depiction of 
the porphyrin skeleton as a bridged 18 π-annulene derivative10. Instead, the 
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porphyrin moiety is subdivided into the macrocyclic “internal cross” (an 18 π-
electron system of 16 atoms), and the four peripheral pyrole rings, see figure 2. 
 

 
 
Figure 2. Two models of the electron system of porphyrin. Left: as bridged [18] annulene derivative: 
right: as macrocyclic internal cross (in bold), and four pyrole rings (1-4). Adapted from chemical 
Rev. 2001, 101, 1385-1419. 

 
The C-C and C-N bond lengths in the porphyrin macrocycle can be influenced by 
exocyclic substitution and by coordination with metal cations. The analyses 
based on the harmonic oscillator model of aromaticity (HOMA) 11 consist of two 
components, EN and GEO. 
 

…………14 
 
The model makes it possible to separate the two terms describing different 
contributions to a decrease in aromaticity. The EN term describes changes in 
aromatic character due to deviation of the average bond length from the optimal 
value, while the GEO term reflects the consequences of bond length alternation12. 
Here, n is the number of bonds in the summation,  an empirical constant fixed 
to give HOMA = 0 for a hypothetical Kekule structure of aromatic systems, and 
the value 1 is a representative of a system with all bonds equal to the optimal 
value Ropt13, Rav represents the average bond length, while the individual bond 
lengths Ri are obtained12 from the Pauli definition of bond number14. In free base 
porphyrin, rings (1 & 3) are protonated, see figure 2. The positions of these 
protons were assigned on the pyrole rings by means of the harmonic 
stabilization energy (HOSE) model15. N-H tautomerism16 tends to reduce the 
difference between the pyrole rings.  
The pyrole rings with NH groups (1 & 3) are more aromatic18, than the other 
five-membered rings (2 & 4). This can be ascribed to the HOMA values of 0.666 
and 0.452 respectively; on the pyrole rings (2 & 4), the nitrogen is Sp2 
hybridised with the lone pair of electrons in a π-orbital parallel to the plane of 
the ring, and consequently, the lone pairs of electrons are not available for 
delocalization. The NICS values computed in the ring centers show the difference 
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more clearly; the NICS (-15.2) for rings (1 & 3) is similar to the pyrole value (-15. 
1) 19, but rings (2 &4) have much lower values (-4.5), implying that the C2H2 
groups function as exocyclic bridges. 
Metal complexation reduces the difference between the two types of pyrole 
rings, but the porphyrin skeleton does not lead fully to D4h symmetry. Computed 
NICS values at various points on the macrocyclic ring reveal that the porphyrin 
free base is more aromatic than the porphyrin metal complex, and in turn, the 
porphyrin metal complex is more aromatic than the porphyrin dianion. The 
results of this computation are summarised in figure 3. 
 

 
Figure 3 .Computed NICS values for free porphyrin base, its dianion, and the Mg complex. The dashed 
lines indicate the delocalized π electrons deduced from the NICS and HOMA analysis. Adapted from 
chemical Rev. 2001, 101, 1385-1419. 

 

 
 
 
 
 
 

4. BLOOD-BRAIN BARRIER PERMEABILITY. 

 

One of the most important features of the brain and spinal cord is their complete 
separation from the blood by the blood-brain barrier (BBB), and the blood-spinal 
cord barrier respectively. A complex network of epithelial cells, astroglia, 
pericytes, perivascular macrophages, and basal lamina forms the BBB.20, 21 Clear 
evidence for the existence of this permeability barrier emerged in 1909 with the 
demonstration by Erwin Goldman that a dye injected into the blood stream of a 
rat stained the whole body except the brain and spinal cord. On the contrary, the 
injection of the dye into the cerebral ventricles, stained the brain and spinal cord 
but not the rest of the body.22 Consequently, the blood-brain barrier significantly 
impedes entry from blood to brain of virtually all molecules, except those that 
are small and lipophilic, or those that enter the brain through an active transport 
mechanism.23 It is not sufficient for neurotherapeutic agents to move across the 
blood-brain barrier; they also have to stay in the brain long enough to exert their 
desired action. For CNS drug discovery, it is clearly essential to establish whether 
a compound will penetrate and distribute within the CNS because efficacy is 
largely dependent on sufficient exposure within the CNS.24 The number and 
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strength of intermolecular forces between a drug and the surrounding water 
molecules determine the ease with which any particular drug diffuses across the 
blood-brain barrier.25, 26. By quantifying the molecular features that contribute to 
these forces, it should be possible to predict the in vivo blood-brain barrier 
permeability.27 

Molecular lipophilicity, usually quantified as LogP, and aqueous solubility 
represented as LogS are important molecular descriptors in medicinal 
Chemistry. 28 Physiochemical features of CNS drugs are related to their ability to 
penetrate the blood-brain barrier and exhibit CNS activity. The bioavailability of 
a drug and its access to therapeutic targets are important considerations in 
rational drug design. Partition coefficients are useful in the estimation of drug 
distribution within an organism. The hydrophobic drugs with high partition 
coefficients are preferentially distributed to hydrophobic compartments such as 
lipid bilayers of cells, while hydrophilic drugs with low partition coefficients are 
preferentially localised in hydrophilic compartments such as blood serum.29 The 
LogP coefficient is well known as one of the principal parameters which 
estimates lipophilicity or solubility in lipids, and to a large degree, determine 
their pharmacokinetic properties. According to Lipinski rule of 5, a drug with a 
LogP coefficient greater than 5, would not have good absorption properties. Most 
CNS active drugs have LogP coefficient less than 5, for it to be easily absorbed 
into the blood-brain barrier, where active diffusion of drugs is likely to have 
most lipophilic areas such as lipid bilayers of membranes, and if the LogP value is 
less than 0, it will move towards hydrophilic compartments. The LogP value is a 
measure of the distribution of the ligand between an organic phase (octanol) and 
an aqueous phase (water). Very low LogP values result in poor lipid bilayer 
permeability, and very high values cause poor aqueous solubility, consequently, 
the compromising LogP value should be between 0 and 5.30 The LogS coefficient 
is a measure of the concentration of a drug in aqueous solution. Drugs with LogS 
coefficients less than 0 and greater than -4 are easily absorbed in the blood and 
tissues.31 

 

5. THE MOLECULAR DESCRIPTORS. 

 
 Molecular descriptors are numerical values that characterise the chemical and 
physical properties of a molecule. The descriptor might be structure-based or 
experimentally derived, and it varies in complexity of encoded information and 
in compute time. Quantitative Structure-activity Relationship (QSAR) or 
Quantitative Property-activity relationship (QPAR) studies require numerical 
molecular descriptors associated with the structural formulas, which are 
discrete entities.32 Hydrophobic, steric or electronic descriptors associated with 
molecules or substituents are invaluable in QSAR studies. Topological indices 
alone or in combination with physicochemical descriptors have also proved their 
usefulness; they could be associated to molecular structure, and are simple and 
easily computed for large numbers of structures.33 This is particularly valuable, 
especially with the fast development of combinatorial libraries, which require 
one to explore millions of structures for QSAR studies, prior to high-throughput 
synthesis and testing. Numerous activities and properties of molecules depend 
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on the presence of specific atoms or functional groups in their structures. These 
features can be used in deriving QSAR models via regression analysis or artificial 
neural networks. In QSAR or QPAR studies, an attempt is made to relate the 
structure of a molecule to a biological activity by means of a statistical tool. Such 
a relationship is codified in expression 1:34 
 
QSAR or QPAR = F(molecular structure) = F( molecular 
descriptor)……………………1 
 
Where F represents a mathematical function. 
 
The Gaussian process (GP) is a newly introduced method in QSAR for the 
modeling of nonlinear relationships. It has a built in tool to prevent overtraining 
and does not require cross-validation, and was particularly used to construct 
solubility models35. In GP, the property Y to be modeled is described by a family 
of Gaussian processes priors F (X), where X is a vector of descriptors, Y a vector 
of the observations and F is a random functional value for any finite set of n 
points from a Gaussian distribution with zero mean value. The principle of 
statistical inference is used to identify the most likely posterior functions that 
combine the priors to model the observed data Y. The covariance function k (X, 
X’) is used to relate one observation to another, and the covariance function is a 
squared exponential. 
 

………………2 
 
 
Where δ (X, X’) is the Kronecker delta function, σn is the variance of Gaussian 
noise with zero mean, n is the number of descriptors, wi are the weights to be 
determined, K is the covariance matrix k(X,X’).  For a given new vector X*, K* = [k 
(X*, X’), k(X*, X2)………k(X*, Xn), the predicted value Y* and uncertainty are 
calculated using the formulas: 
 
The summation is from descriptor n = 1, to n = n 
 
Schwaighofer et al. used a different covariance function in the solubility model35 
 

……………………………… 3 
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The reliability of GP prediction depends on how well the parameters in the 
covariance function are optimised. Based on Bayer’s theorem, the best 
parameter set θ = (wi, σf, σn) is obtained by maximising LogP (X/Y, θ), described 
in equation 4. 
 

……………..4 
 
Considering permeability, absorption, distribution of a drug in the system, 
plasma protein binding, metabolism, elimination, and toxicity, the following 
molecular descriptors may be used to select a ligand with drug-like properties 
and biological activity: 
  

 Lipophilicity Coefficient (LogP) 
 Aqueous Solubility (LogS) 
 Apolar and Polar Desolvation (AD & PD) 
 Hydrogen Bond Counts (HD & HA) 
 Molecular Weight (MW) 
 Molecular Flexibility (RB) 
 Polar Surface Area (PSA) 

 
 
 
 

5.1. LIPOPHILICITY 
 
The lipohilicity coefficient represented as LogP describes a compounds ability to 
dissolve into lipophilic solutions. Experimentally, it is measured as a compounds 
distribution between a non-aqueous phase (1-Octanol), and aqueous phase 
(water), expressed as the logarithm to the base 10 of the concentration ratios:  
 

 

………………………. 5 
 
It can be observed from Table 2, the differences in lipophilicity coefficients for 
most drug candidates; these can be ascribed to the several approaches in the 
calculation of lipophilicity coefficients. The different approaches range from 
experimental, fragmental, atom-based, conformation-dependent, property-
based, quantum chemical, molecular dynamics, lattice energy, property-based, 
continuum solvation, 3D structure representation, molecular lipophilicity 
potentials, and graph molecular connectivity approaches36. In one study, a total 
of 30 and 18 methods were tested for public and industrial datasets, 
respectively, and it was found that accuracy of models declined with the number 
of nonhydrogen-bonded atoms. The Arithmetic Average Model (AAM), was used 
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as the baseline model for comparism; methods with Root Mean Square Error 
(RMSE) greater than that of the baseline were unacceptable, while the majority 
of analysed methods produced reasonable results for the public dataset but only 
seven methods were successful on the in house datasets .37 The predictive power 
of the theoretical approaches can be checked by comparing their results with 
those of reliable experimental methods. From literature38, the predictive power 
of the calculation procedure is significantly better for simple organic molecules 
than chemically heterogeneous drug structures. Considering the structure-based 
approach, the calculation procedure can be arranged in three groups with 
significantly differing predictive power: Fragmental > atom-based > 
Conformation-dependent approaches.38, 39As an illustration of the differences in 
LogP coefficients for a single drug candidate, we will focus mainly on the 
fragmental and the atom based methods. 
 
The fragmental methods, for instance, the Molinspiration (MiLogP) method, cut 
molecules into fragments and apply correction factors in other to compensate for 
intermolecular interactions. This is expressed in equation 6: 
 

………………………………. 6 
 
Where, the first term considers the contribution of fragment content (fi), and the 
incidence of the fragment (ai) in the query structure. The second term considers 
the contribution of the correction factor (Fj), and its frequency (bj). The 
summation is from fragment n = 1, to n = n, and the contribution of the 
correction factor ranges from m = 1 to m = m. A prime advantage of the 
fragmental method is the defining of fragments larger than single atoms which 
guarantee that significant electronic interactions are compromised within a 
fragment, while the main disadvantage is the arbitrary fragmentation and 
missing fragments. 
 
The Atom based methods 40, 41 such as the Dragon ALOGP 42 cut molecules into 
single atoms and do not apply correction rules. This is described in equation 7: 
 
Log P = ni ai……………………………………………..7 
 
 Where ni represent the number of atoms of type i, and ai the contribution of an 
atom of type i. Since the partition coefficient is not a simple additive property, 
the constitutive feature is covered by classifying huge numbers of atom types 
according to structural environment. An advantage of atom-based method is the 
avoidance of ambiguities, and its shortcoming is the failure to deal with long- 
range interactions. 
 
The Molinspiration method of calculating lipophilicity coefficients can be reliable 
by virtue of its fragment-based approach, which applies a correction factor in 
order to compensate for intermolecular interactions. Molinspiration 
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Chemokinetics providers used datasets of more than 12 thousand molecules. It is 
based on group contributions and was developed using 35 small basic fragments 
as well as 185 larger fragments characterising intermolecular Hydrogen bond 
contributions and charge interactions. This procedure achieved R2=0.94 and 
MAE = 0.33 for 12202 molecules43  
Where R2 represents squared Pearson correlation Coefficient and MAE is the 
Mean Absolute Error. 
 

5.2. AQUEOUS SOLUBILITY. 

 
Aqueous Solubility is one of the key factors that affect a drug’s oral 
bioavailability44, 45. It governs both the rate of dissolution of the compound and 
the maximum concentration reached in the gastrointestinal fluid. Generally, a 
drug with high solubility and membrane permeability is considered free from 
bioavailability problems; otherwise, it is a problematic candidate or needs 
careful formulation work. Solubility is of various types, for instance, intrinsic, 
thermodynamic, apparent, and kinetic solubility. Most in silico models are 
developed to predict the intrinsic solubility S. In concept, the intrinsic solubility 
of a compound in its neutral form is the concentration in moles per dm3 (Mol/L) 
of its saturated solution in equilibrium with the solid phase. Other units of 
measurement of solubility include solute per volume (mg/L), solute per weight 
(g/kg), molarity (mole/L), molality (mole/1000g), and percentage solution 
(g/100ml). For completely ionisable electrolytes, solubility without reference to 
pH and ionisation constant pKa is meaningless. The logarithm of solubility is 
often used for convenience. For a given solid state and solvent, the solubility S is 
almost exclusively dependent on intermolecular adhesive interactions between 
solute-solute, solute-solvent, and solvent-solvent molecules. In other words, the 
crystal packing cavitation and solvation energy determine the intrinsic solubility 
of a compound. The first type of mathematical expression exemplified to 
describe LogS was by Jain and Yalkowsky’s in which LogS was correlated with 
experimentally determined temperature of melting point (TM) and the logarithm 
of octanol/water partition coefficient with n = 580, and AUE = 0.4246. Those 
models were referred to as the general solubility equation (GSE), but Wang et al 
noticed that there were several duplicated and erroneous entries in Jain and 
Yalkowsky’s data set, and after eliminating those problematic entries and 
replacing the experimental LogP with the calculated  (CLogP), a new general 
solubility equation was constructed. 
 
LogS = 3.513 – 0.010 × TM – 1.112 × ClogP………………………………………………..8 
 
Where TM represent melting point temperature of solid at -25oC, for a liquid the 
melting point temperature is 25oC, with  r2 = 0.937. 
 

5.3. POLAR AND APOLAR DESOLVATION ENERGIES. 
 
Apolar desolvation energy (Kcal/mol) at 298.15K is the reduction in Gibbs free 
energy when a compound is dissolved in solution and the solvent is assumed to 
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be apolar , while polar desolvation energy is the same but the solvent is polar . In 
terms of thermodynamics, it is expressed as: 
 
ΔG bind = ΔE elec + ΔG des……………………………………………………..10 
 
Where ΔEelec represents total electrostatic energy and ΔGdes is the total 
desolvation energy. Based on equation 10, the desolvation energy of a protein 
can be approximated using expression 11 
 
g(r) ∑∑ eij ………………………………………………………………………….11 
 
This is the interaction between the ith atom of a ligand and the ith atom of a 
receptor, and eij is the atomic contact potential (ACP), g(r) is a smooth function 
based on distance. We assume atoms to be within 7Å distance. Within this range, 
g(r) varies from 0 to 1 and this information can be used in calculating 
desolvation energy47 
 

5.4. HYDROGEN BOND COUNTS. 

 
A hydrogen bond is an intermolecular or intramolecular force; it is a bond 
formed between a very electronegative atom such as Oxygen, Nitrogen, Sulphur 
with available lone pairs of electrons, and a hydrogen atom attached to a very 
electronegative atom. The atom types in a ligand may be hydrogen donor or 
hydrogen acceptor and based on Christopher A Lipinski rule of 5, the  
Number of hydrogen bond donors should not be more than 5, and the number of 
hydrogen acceptors in a ligand should not exceed 10 30 
 

5.5. MOLECULAR FLEXIBILITY. 

 
The number of rotatable bonds (RBN) is the number of bonds, which allow free 
rotation. This is defined as any single bond, not in a ring, bound to a nonterminal 
heavy atom. Excluded from the count is the amide C–N bond, which is stabilized 
by resonance and have a very high rotational energy barrier48.  
Rotatable bonds describe the flexibility of a molecule and are also a determinant 
of drug likeliness as well as oral bioavailability. Lipinski rule of 5 suggest a drug 
ought to have fewer than 10 rotatable bonds.30 
 

5.6. MOLECULAR POLAR SURFACE AREA 

 
The polar surface area (PSA) of a molecule is the surface sum of all polar atoms 
such as oxygen and nitrogen. It measures the ability of a drug to penetrate the 
blood-brain barrier in order to bind on receptors. It is a very useful parameter 
for the prediction of drug transport properties and correlates very well with the 
human intestinal absorption, 49, 50 CaCo-2 monolayer penetrations, 51-54 and 
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blood-brain barrier penetration 55, 56. Time requirements to calculate the PSA are 
generally high, up to tens of minutes per molecule when the geometry is 
optimised or conformational search is performed. Of recent, a fast single-
conformer method for PSA calculation was reported with a throughput of several 
molecules per second. 57 A new methodology for the calculation of PSA termed 
topological polar surface area (TPSA) is based on the summation of tabulated 
surface contributions of polar fragments such as atoms and their bonding 
patterns. The contributions of polar fragments were determined by last-square 
fitting of the fragments-based TPSA to a single conformer 3D PSA for a large set 
of drug like structures. Molecules from the world drug index, 58 were used for 
this procedure. A better solution would be to scale contributions of polar 
fragments according to the strength of hydrogen bonds 59. From the fitting 
procedures, the values for surface fragment contributions can be determined 
from equation 12. 
 

....................................................12 
 

Where 3D PSA is the traditionally calculated PSA based on 3D molecular 
structure, ntypes is the number of types of polar fragments, c(fragmenti) is the 
optimised surface contribution of fragment i, and ni is the frequency of fragment 
i in the molecule. The 3D PSA used as a target in the fitting was calculated from 
CORINA 60 geometries considering the Van der Waals surfaces belonging to 
Oxygen, Nitrogen, Sulphur, and Phosphorus atoms, including their attached 
hydrogen. All structure manipulation, processing of SMILES, identification of 
polar fragments, statistical analysis, was done using an in-house molecular 
development kit written Java. The statistical analysis provided good correlation 
between 3D PSA and TPSA with the following statistical parameters: r2 = 0.982, r 
= 0.991, σ = 7.83 Å2 and average absolute error = 5.62Å2. 
 

5.7. MOLECULAR WEIGHT. 

 

Molecular weight or molar mass of a substance is the mass of one mole, or the 
mass of 6.0632*1023 particles of the substance. The SI units of molar mass are 
the kilogram per mole (kg/mol), but it is commonly expressed in grams per mole 
(g/mol). The molecular weight of a substance can be calculated from its molar 
refractivity from equation 13: 
 
 

n2 – 1 MW 
            -------- ----- = MR ………………………………………………13 
            n2 + 2    d 
 
Where MR is the molar refractivity, n is the index of refraction, d the density of 
substance, and MW is the Molecular weight. 

GSJ: Volume 9, Issue 2, February 2021 
ISSN 2320-9186 1253

GSJ© 2021 
www.globalscientificjournal.com



 12 

Ligands with lower molecular mass will easily diffuse through the phospholipid 
bilayer of the plasma membrane than larger molecules, and based on these 
criteria, molecules with molecular masses between 150 and 500 are more 
suitable as drug candidates.30 
 
 
 
 
 
 
 
 
 
 

6. METHODOLOGY. 

 

Structure-based virtual screening has had several important successes in recent 
years61, and is now a common technique in early stage drug discovery. The zinc 
database contains a library of 727842 molecoles62, and catalogs of compounds 
from vendors. The molecules have been assigned biologically relevant 
protonation states and are annotated with properties such as logP coefficients, 
hydrogen-bond counts, number of rotatable bonds, polar surface area, 
desolvation energies, net charge, apolar and polar surface area, and molecular 
weights. Each molecule in the library contains vendor and purchasing 
information and is ready for docking simulations. The ZINC platform contains 
subsets of search methods such as, structure, catalog or vendor, property, target, 
ring, and cart. With the subset property, we used ‘drug-like’ to filter the drug-like 
properties such as molecular weight between 150 and 500, calculated logP in the 
range -4 ≤ 5, number of hydrogen bond donors < 6, number of hydrogen-bond 
acceptors < 11, and number of rotatable bonds < 14. A total of 2548 purchasable 
compounds, which satisfied the above constraints, were displayed. 
To select the porphyrin-like compounds, we then imputed the porphyrin SMILE 
or its name, two compounds annotated with molecular descriptors where 
obtained. We then used the ZINC ID of the two compounds to search for more 
molecules similar to porphyrin. As the number of porphyrin-like molecules 
increased, we used their ZINC ID to obtain more, and finally, we arrived at 36 
porphyrin-like molecules. From the 36, we selected 29 of them with lipophilicity 
coefficients in the range (0, 5), and molecular weight less than 500. However, we 
tolerated some lipophilicity coefficients than proscribed by the Lipinski’s rule of 
5 because of the uncertainties in the calculated values. The molecules can be 
downloaded in the following formats: MOL2, SDF, SMILES, or as flexibase. 
Limits on molecular properties such as net charge and molecular weight are 
specified on the left-hand side of the search Web page. On the bottom left, 
individual ZINC database registration codes, the unique serial number assigned 
to each substance may be specified, either by typing or choosing a text file of 
codes to upload from the browsing computer, and molecules matching any of the 
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ZINC codes specified will be found. On the right, molecular substructures may be 
drawn using the Java Molecular Editor (JME) 63. 
To calculate LogP or LogS coefficient using the Molinspiration algorithm or the 
ALOGP2.1, we copied the SMILE or draw the structure of the ligand from the 
ZINC database, imputed it on the platform, and then click on calculate LogP or 
LogS coefficient. The calculation is performed in a matter of seconds, and the 
results displayed. 
 

7. RESULTS AND DISCUSSIONS. 

7.1 DATA ANALYSIS. 
 
Results of the search are reviewed using the Database Browser, and most of the 
web queries are answered in half a minute or less, complex queries or multiple 
simultaneous requests may take longer. The database Browser displays in a table 
containing ZINC registration codes, a 2D sketch, purchasing information, and 
molecular properties such as calculated LogP, number of rotatable bonds, 
hydrogen bond counts, topological polar surface area, net charge, molecular 
weight, and sometimes the properties are pH dependent for some molecules.  
 About 100000 molecules of the Zinc database violate Lipinski rule of 5, while 
more than 500000 are acceptable. These figures are a strong indication that the 
results from the ZINC database are reliable. Consequently, the probability is high 
that the 29 molecules selected are drug like. The differences in lipophlicity 
coefficients have been discussed in section 5.1; Different methods of calculation 
result in differing lipophilicity coefficients for a single drug candidate. The 
Molinspiration, ZINC, and the ALOGPS2.1 methods of lipophilicity calculations 
have been presented in table 1 & 2. In table 1, we have presented the molecular 
descriptors for each drug candidate based on the ZINC calculation. The minimum 
value of LogP being -0.4 for ZINC59380156 and the maximum is 4.55 for 
ZINC78206861. The negative logP values are a bit out of the Lipinski rule of 5 
ranges, but other molecular descriptors such as molecular weight, molecular 
flexibility, and total polar surface area might compensate for the lower 
lipophilicity coefficients. In table 2, the lipophilicity and aqueous solubility 
coefficients of the 29 molecules based on the Molinspiration and ALOGPS2.1 
calculations have been presented. See section 5.1 for the differences in the 
calculation of lipophilicity coefficients. 
 

7.2 THE PORPHYRIN MOLECULAR STRUCTURE. 

 
The porphyrins bind the NH2- Term_PrP at the 5Trp residues, W57, W65, W73, 
W89 at the Octapeptide Repeat region (OR), and also a number of charged 
residues such as K23, K24, K100, K103 and K10564. The 29 molecules selected 
from the ZINC database are similar to porphyrin in chemical and physical 
properties. The chemical structures of the drug candidates are presented in table 
3. 
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The molecules are heterocyclic macrocycles made from four pyrole subunits and 
linked by methine bridges. The porphyrin structure is characterised by high 
stability, which is as a consequence of its conjugated macrocyclic system. It can 
be viewed as four pyrole rings connected to each other by four meso- carbons. 
The pyroles are aromatic 5- membered rings with 6 π-electrons and high degree 
of aromaticity. 

7.2.1 EFECT OF SUBSTITUENTS ON THE PORPHRIN MACROCYCLIC RING. 

     
The substituents on the macrocyclic ring influence its chemical properties, as 
well as biological activity: (I) the electron donating groups such as –OH, -NH2, -
OR, -NHCOR, -R, where R represents an alkyl group increase the electron density 
and aromaticity of the ring. Electron donating groups contain an electronegative 
atom directly attached to the ring, and the electronegative atom has at least a 
lone pair of electrons for delocalisation by the positive mesomeric effect. The 
alkyl groups increase electron density by the positive inductive effect. (II) 
Electron withdrawing groups such as –COOH, -COOR, -CONH2, -COR, -SO3H, -CN, -
NO2 decrease the electron density and aromaticity of the ring by the negative 
mesomeric or resonance effect. The electron withdrawing groups all contain an 
electronegative atom, and at least a double or triple bond for delocalisation. It 
can be observed from table 3, that ZINC 60076174, 80774214, 60076186, 
78069660, 7809660, 79132071, 60076177, 59380156, 78222613, 78139775 for 
instance, have strong electron withdrawing groups attached to the macrocyclic 
ring. This electron withdrawing groups pull electrons from the ring, thereby 
making it less aromatic and the entire molecule is more polarised, this result in 
lower lipophilicity coefficients and aromaticity indices. The polar drug 
candidates will easily bind polar residues at the NH2-terminal PrP such as Lysine, 
Arginine and Histidine. On the other hand, ZINC 49783984, 78015143, 
82153006, 78315702 contain electron donating groups which enhances the 
electron density and aromaticity of the macrocycle, and consequently, the 
porphyrin macrocycle has a high affinity for π-stacking interactions with 
aromatic residues on NH2-terminal  PrP such as tryptophan.  
The value of the lipophilicity coefficient decreases on average with the strength 
of electron withdrawing groups on the porphyrin macrocyclic ring due to 
increasing polarity and aqueous solubility. Thus, ZINC 59380156 and 49783984 
with very strong electron withdrawing groups are polar and have the lowest 
lipophilicity coefficients in table 1, while ZINC 78015143 and 78315702 with 
electron donating groups have very high lipophilicity coefficients due to an 
increase in the aromatic character of the porphyrin macrocycle. Although 
ZINC782068 has a lipophilicity coefficient of 4.55, its electron withdrawing 
group is not directly attached to a pyrole but to an exocyclic substituent (the 
methine group), and so its effect is minimal. 
ZINC 78222613 is a dianion and has a lower logP value of -0.652 based on the 
Molinspiration calculation and 1.25 based on the ZINC calculation. Furthermore, 
it has an aromaticity index of -14.9 compared to that of the uncharged 
macrocyclic ring which is -16.5 based on the Nuclear Independent Chemical Shift 
(NICS). These lower values may be ascribed to the strong electron withdrawing 
groups which polarizes the molecule thereby making it less aromatic. The 
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dianion will obviously have a high affinity for the positively charged residues 
such as Arginine, lysine and Histidine at the N-terminal PrP. 
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Table 1. Classification of drug candidates based on the rule of 5 by Lipinski, namely; the LogP 
coefficient, number of rotatable bonds, Molecular weight (MW), Solubility (LogS), Apolar 
Desolvation (AD), Polar Desolvation (PD), Polar surface Area (PSA) 

ZINC ID LogP PD HD HA Charge PSA MW RB  

60076174 1.54 -40 7 8 1 145 427.45 5  
80774214 2.64 -67 4 8 -1 141 428.47 4  
60076186 2.35 -40 7 8 1 145 455.5 4  
78069660 2.28 -59 7 10 1 160 486.55 6  
79132071 0.96 -52 8 10 1 172 489.55 6  
          
60076177 1.72 -41 9 12 1 202 587.66 8  

49783638 2.61 -99 10 10 2 171 544.7 6  
59380156 -0.4 -22 8 10 0 187 485.5 6  
          
78222613 1.25 -85 6 12 -1 211 543.56 8  
78139775 1.80 -99 6 12 -1 211 571.6 10  
59380157 0.39 -99 11 10 3 192 530.65 9  
60076177 1.72 -41 9 12 1 102 428.56 5  
78222613 1.25 -99 5 12 -2 210 542.55 8  
          
78315702 3.65 -14 6 8 0 138 378.3 0 

60194322 3.69 -26 5 6 1 102 324.46 0  
60194323 3.38 -82 7 8 2 132 451.5 4  
82190886 3.40 -17 4 7 0 107 415.49 4  
79824394 3.55 -67 3 8 -1 127 442.45 5  
79231393 3.77 -16 4 7 0 107 429.52 4  
82054668 3.82 -69 4 8 0 131 457.54 6  
59651175 4.16 -16 2 5 0  328.37 0  
82153006 4.23 -14 4 6 0 98 346.39 0  
38792143 4.81 -13 2 4 0 57 314.39 0  
60308698 3.15 -72 6 10 -1 178 519.57 3  
60308695 3.47 -43 7 10 0 180 518.57 3  
78015143 3.65 -15 6 8 0 138 378.38   
49783984 -0.3 -82 2 6 2 57 562.8 12  
49784734 3.69 -87 8 10 2 147 606.8 12  
78206861 4.55 -63 5 6 1 102 428.56 5  
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Table 2. Prediction of LogP coefficient based on the Molinspiration Method (MinLogP), the 
ALOGPS2.1 (ALogS), and the calculation of solubility based on the  ALOGPS2.1 (LogS).  

ZINC ID MinLogP LogS ALogP 

60076174 -1.48 -4.30 1.26 
80774214 -0.07 -3.96 1.58 
60076186 -0.676 -4.52 1.63 
78069660 -0.351 -3.99 0.47 
79132071 -1.248 -3.92 -0.31 
    
60076177 -1.298 -4.64 1.5 

49783638 1.206 -4.76 -0.35 
59380156 -0.04 -3.24 -0.04 
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78222613 0.652 -3.93 0.01 
78139775 -0.111 -4.11 0.07 
59380157 -0.282 -5.38 -1.40 
60076177 -1.298 -4.65 2.09 
78222613 -0.652 -3.93 0.01 
    
78315702 3.649 -1.84 -0.45 

60194322 0.667 -5.38 2.97 
60194323 0.396 -5.82 1.55 
82190886 3.405 -3.77 0.96 
79824394 0.839 -3.78 1.12 
79231393 3.768 -3.85 1.35 
82054668 0.959 -4.66 1.18 
59651175 4.158 -3.84 1.48 
82153006 4.232 -3.14 0.60 
38792143 4.814 -4.46 2.77 
60308698 0.084 -3.22 0.48 
60308695 0.244 -3.88 1.60 
78015143 3.649 -2.79 1.22 
49783984 -0.881 -5.92 -0.25 
49784734 0.639 -5.61 0.28 
78206861 2.349 -5.20 0.92 
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Table 3. Molecular structures of the selected drug candidates from the Zinc database. 

 

ZINC ID CHEMICAL STRUCTURE 
60076174 

 
80774214 

 
60076186 
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78069660 

 
79132071 

 
  
  
  
60076177 
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49783638 

 
59380156 

 
  
78222613 
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78139775 

 
59380157 

 
60076177 
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78222613 

 
  
  
78315702 

 
60194322 
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60194323 

 
82190886 

 
79824394 
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79231393 

 
82054668 

 
59651175 
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82153006 

 
38792143 

 
60308698 
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60308695 

 
78015143 

 
49783984 
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49784734 

 
78206861 

 
 
 
 
 
 

7. CONCLUSIONS. 

The porphyrins bind specific residues at the octapeptide repeat 
region (OR) of the NH2-term_PrP; this has been suggested to be a 
novel highly valuable strategy against Alzheimer’s disease. The 
Lipinski’s rule of 5 is a criterion to select the ligands with drug-like 
properties from the ZINC database, but lipohilicity and the aqueous 
solubility coefficients are the two cardinal molecular descriptors. The 
differences in lipophilicity coefficients for a single drug candidate 
may be ascribed to the numerous methods of calculation, but the 
fragmental method of Molinspiration can be trusted since it applies 
correction methods in order to compensate for intermolecular 
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interactions. The C-C and C-N bond lengths in porphyrins are 
influenced by exocyclic substitutions; this has been analysed with the 
harmonic oscillator method of aromaticity (HOMA), and the nucleus-
independent chemical shift (NICS) models. Substituents on the 
porphyrin macrocyclic ring influence the values of molecular indices; 
electron withdrawing groups decrease lipophylicity coefficients and 
index of aromaticity, while electron donating groups increase 
lipophilicity coefficients and index of aromaticity. The ZINC database 
uses the fragmental method of Molinspiration in the calculation of 
the lipophilicity coefficients; consequently, we suggest the ZINC 
database classification of the 29 selected molecules will be used for 
molecular docking with NH2-term_PrP, in order to select the best 
binding poses for molecular dynamics simulations. 
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