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ABSTRACT 

This study is pursuing to quantitatively simulate an existing natural gas sweetening plant with a 

commercial process simulator (Aspen Hysys version10), using Peng Robinson as the fluid 

package. In this dissertation, one of the typical processes present in the natural gas chain were 

modelled: via chemical absorption with methyldiethanol amine, which has absorption selectivity 

of H2S preferentially to CO2 but for purpose of this project, the process parameter was modified 

to increase CO2 loading because the natural gas contain negligible amount of H2S. As the plant is 

considered new, there is a requirement to review the current plant operation and investigate any 

possible optimization and modification that can lead to reduction in the flared waste gases 

without violating the sweet gas specifications. Reduction of the operating costs and increasing 

the environmental sustainability of the process are two critical concerns in Greenville oil and 

gas. The plant operation was optimized by carrying out sensitivity analysis of the operating 

parameters (amine circulation rate and concentration simultaneously) which showed a decrease 

in CO2 loading in lean amine. Also, graph of mole fraction of CO2 in the sweet gas was plotted 

against amine circulation rate and amine concentration which showed a reduction in CO2 

concentration in the sweet gas thereby meeting the liquefied natural Gas (LNG) specifications. It 

was found that increasing the absorption column temperature will increase the losses of water 

and amine to the sweet gas. There is a water loss of approximately 0.5 kmol h-1 for every 5°C 

increase in temperature. So, it is recommended that sensitive temperature difference between 

feed gas and the amine should be establish to eradicate excessive rich amine loss to the sweet gas 

at the top of the column. Also, it is recommended that, to avoid any condensation of light 
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hydrocarbons which can cause foaming. So, a flow rate difference of at least 7m3/h should be 

establish between the feed gas entering the contactor and the amine in a counter current manner. 

The result of this work shows that at circulation rate of 22.7m3/hrs and concentration of 45% 

yielded the optimum natural gas composition (CH4 = 91.4, C2H6 = 3.3459, C3H8 = 2.7336, i-

C4H10 = 0.5784, n- C4H10 = 0.8530etc) required for LNG production. 
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1. INTRODUCTION 

Natural gas sweetening, also known as amine gas treating, amine scrubbing, and acid gas 

removal, refers to a group of processes that used aqueous solutions of various alkylamines 

(commonly referred to simply as amine) to remove hydrogen sulphide (H2S)   and carbon 

dioxide (CO2) from gases. It is a common unit used in refineries and is also used in 

petrochemical plants, natural gas processing plant and other industries. From economic point of 

view, dissolving CO2 or H2S in water contribute the production of acidic solution (Kent & 

Eisenberg, 1976) and consequently corrosion in pipeline and related equipment will occur during 

transportation of natural gas. Moreover, Natural gas that contains more than 4 ppmv of hydrogen 

sulphide (H2S) is commonly referred to as "sour". This is because the odour of hydrogen 

sulphide gas in air at very low concentrations is similar to that of rotten eggs. Significant 

quantities of natural gas resources around the world are known to contain H2S. 

Natural gas is a prime source of energy, which can be used as an industrial and domestic fuel. To 

make natural gas suitable and environmentally safe to use, it is crucial to remove all 

contaminants that can affect its utilization and optimal energy capacity. These contaminants can 

also cause problems such as corrosion, freezing, plugging, erosion, health and environmental 

hazards if not removed. Ghanbarabadi & Khoshandam, (2015), studied simulation and 

comparison of sulfinol solvents performance with amine solvents in removing sulphur 

compounds and acid gases from natural sour gas. The acid gases of hydrogen sulphide (H2S), 

carbon dioxide (CO2) and water are impurities existing in natural gas brought up from wellhead 

(oil wells with associated gas or gas wells). The gas is considered sour if its H2S content exceeds 

(4ppm volume-based). The process for removing acid gases from a natural gas stream is referred 

to as gas sweetening (Abkhizet al., 2014). With the increasingly strict environmental regulations 

on emissions from natural gas processing plants and also the market demand for high quality 
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natural gas, the gas sweetening process has become mandatory (Rezakazemiet al, 2011). The 

most widely used method for acid gases removal from natural gas, is amine gas sweetening 

process with more than 50% of the current acid gas removal technologies use aqueous solutions 

of alkanolamines. However, this gas sweetening process is energy intensive especially for amine 

regeneration (Wang et al., 2015). Therefore, optimizing the amine gas sweetening process could 

result in great energy savings and remarkable economic benefits for the existing gas sweetening 

plants. Depending on their molecular structure, the amines are characterized into three main 

groups: primary, secondary, and tertiary. Mixtures of amines are also used in industry.  The 

waste acid gases from the process are normally incinerated or flared to the environment.  In the 

incinerator, H2S is converted to SO2. The flaring of sour gases not only means that natural gas 

resources are wasted, but also results in the release of pollutants into the atmosphere. CO2 is a 

major contributor to global warming and SO2 causes acid rain; accelerated corrosion of buildings 

and reduced visibility. Recently, most of the publications on the pre- or post-treatment of natural 

gas is concentrating on CO2 capture either using physical or chemical solvents (Budzianowski & 

Koziol (2015), Budzianowski (2011a), Budzianowski (2011b), Budzianowski (2015)). However, 

the major concern of industry is always safety requirement for the removal of H2S, which is 

highly toxic, is still constraining the design of natural gas production and processing facilities 

(Duissenov, 2013). Therefore, optimizing the performance of existing processes or investigating 

possible process modifications should always take into consideration keeping H2S concentration 

in treated natural gas under the allowable discharge concentration.  

 

2. Materials And Methods 

3.2.2 Design of Components (Equipment) of Treatment Process 

Conservation of Mass  
Rate of mass inflow = Rate of mass out flow+Rate of Accumulation+Rate of generation (1) 

If there is no chemical reaction and no accumulation of mass within the system, so the steady 

state balance reduces to;  

Rate of mass inflow = Rate of mass out flow      (2) 

 

3. Material balance of packed column  

From the general material balance as shown in equation (1), we can deduce the material balance 

of the scrubber column as thus: 
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Flow rate in = flow rate out at steady-state, accumulate rate = 0    (1) 

GmY1 + LmX1 = GmY2 + LmX2       (2) 

But X1 =0, assumed pure solvent  

GmY1 = GmY2 + Lm X2        (3) 

Gm (Y1 – Y2) = Lm X2        (4)  

      

X2 = 𝐺𝐺𝑚𝑚
𝐿𝐿𝑚𝑚

 (Y1 – Y2)          (5) 

Definition of terms: 

Let:  

Y = mole fraction of gas absorbed at the bottom column (exist) 

X = mole fraction of the solvent at the exist  

G = mass fraction of the gas at exist.  

L = mass fraction of the solvent at the exist  

𝑚𝑚 = 𝐺𝐺𝑚𝑚
𝐿𝐿𝑚𝑚

can be obtained and rated to get, N0G 

The relationship between mGm
Lm

, and NOG  

Were: 

NOG = overall number of transfer unit  

4. Column Diameter Design 

The design models for obtaining the size of the column were adopted from (Sinnott&, 

Towler,2009). 

𝐺𝐺𝑚𝑚 = 𝐺𝐺𝐺𝐺
3600𝑠𝑠

(Kmol/s)          (6) 

Were:  

Gi = mass flow rate gotten from material balance.  

𝐿𝐿𝑚𝑚 = 𝐿𝐿𝐺𝐺
3600𝑠𝑠

(Kmol/s)           (7) 

Were: 

Li = 0.98 𝑌𝑌1𝐺𝐺𝑚𝑚
𝑋𝑋2

          (8) 

Select material type of packing i.e. 25mm Rashing rings ceramics    

Packing factor Fp = 525 m-1 

𝜌𝜌𝑔𝑔 = 𝑀𝑀𝑚𝑚𝐺𝐺𝑚𝑚
22.4

 x 𝑇𝑇
𝑇𝑇𝑓𝑓

 =  𝑀𝑀𝑚𝑚𝐺𝐺𝑚𝑚
22.4

 x 273
(30+273)

       (9) 
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𝜌𝜌𝑔𝑔  = density of the solvent known or gotten from data (literature)  

𝐹𝐹𝐿𝐿𝐿𝐿 = 𝐿𝐿𝑚𝑚
𝐺𝐺𝑚𝑚
�
𝜌𝜌𝑔𝑔
𝜌𝜌𝐿𝐿

          (10) 

Taking 20mm H2O per packing of pressure drop 

K4 is obtained from 𝐹𝐹𝐿𝐿𝐿𝐿  as above.  

𝐺𝐺𝐺𝐺∗ = � 𝐾𝐾4𝜌𝜌𝑔𝑔  (𝜌𝜌𝐿𝐿−𝜌𝜌𝑔𝑔)

13.1 𝐹𝐹𝐹𝐹  (µ𝐿𝐿
𝜌𝜌𝑔𝑔)0.1�

�
½

  [kg/s.m2]         (11) 

Thus, ac = column area is calculated as thus;  

𝑎𝑎𝑐𝑐 = 𝐺𝐺𝑚𝑚
𝐺𝐺𝐺𝐺∗

  [m2]          (12) 

Hence, column diameter is given  

𝐷𝐷𝑐𝑐 = (4𝑎𝑎𝑐𝑐
𝜋𝜋

) ½  [m]          (13) 

Estimation of HOG, hence Height of column  

(Sinnott&, Towler, 2009).Stated design models for the estimation of overall height of gas 

transfer unit which are given as:  

Given: DL (Diffusivity of liquid), [m2/s] 

Dv = Diffusivity of vapour, [m2/s] 

µv = Viscosity (vapour), [Ns/m2] 

𝑎𝑎𝑤𝑤
𝑎𝑎

= 1 − exp�−1.45 �𝜎𝜎𝑐𝑐
𝜎𝜎𝐿𝐿
�

0.01
� 𝐿𝐿𝐺𝐺

∗

𝑎𝑎𝑢𝑢𝑐𝑐
�

0.01
�𝐿𝐿𝐺𝐺

∗𝑎𝑎
𝜌𝜌𝑔𝑔∗
�
−0.05

� 𝐿𝐿𝐺𝐺
∗

𝜌𝜌𝐿𝐿𝜎𝜎𝐿𝐿𝑎𝑎
�

0.2
�    (14) 

Where:  

a = 194 m2/m3 (actual area of packing) per unit volume, see Chemical Engineering design 

Sinnott, 2009, Table 11.2, vol.6.  

aW= Effective interfacial area of packing per unit volume, m2/m3 

𝜎𝜎𝑐𝑐  = critical surface tension (61 x 10-3 N/m)  

𝜎𝜎𝐿𝐿 = surface tension of liquid, N/m  

g = acceleration due to gravity, 9.81 m/s2 

5. Determination of mass transfer coefficients for both liquid and gas KL and KG. 

𝐾𝐾𝐿𝐿 �
𝜌𝜌𝐶𝐶
𝜇𝜇𝑙𝑙𝑔𝑔
�

1/3
= 0.0051 � 𝐿𝐿𝐺𝐺

∗

𝑎𝑎𝑤𝑤𝑢𝑢𝐿𝐿
�

2
3�
� 𝜇𝜇𝐿𝐿
𝜌𝜌𝐶𝐶𝐷𝐷𝐶𝐶

�
1

2� (𝑎𝑎𝑎𝑎𝐹𝐹)0.4     (15) 

𝐾𝐾𝐺𝐺 �
𝑅𝑅𝑇𝑇
𝑎𝑎𝐷𝐷𝑣𝑣

� = 𝐾𝐾5 �
𝐺𝐺𝐺𝐺
∗

𝑎𝑎𝐷𝐷𝑣𝑣
�

0.7
� 𝜇𝜇𝑣𝑣
𝜌𝜌𝑔𝑔𝐷𝐷𝑣𝑣

�
1

3�
�𝑎𝑎𝑎𝑎𝐹𝐹�

−2.0
      (16) 

Were: 
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K5 = 5.23, for packing size above 15mm and for sizes below 15mm.  

R = 0.08314 bar m3/kmol.K  

Li
∗ = Lm

Gc
Kmol/m2s         (17) 

Gi
∗ = Gm

ac
, Kmol/m2s         (18) 

P = given total pressure, atmospheric (101.325 kPa). 

Determination of liquid and gas height of transfer unit, HL and HG 

𝐻𝐻𝐿𝐿 = 𝐿𝐿𝑚𝑚
𝐾𝐾𝐿𝐿𝑎𝑎𝑤𝑤𝐶𝐶𝑡𝑡

, m             (19) 

Where: 

Ct = 𝜌𝜌𝐿𝐿
𝑀𝑀𝑠𝑠

  (20) 

And, Ms = molar mass of solvent.  

HG = 𝐺𝐺𝑚𝑚
𝐾𝐾𝐺𝐺𝑎𝑎𝑤𝑤  𝑃𝑃

  (21) 

HOG = HG +  𝑚𝑚𝐺𝐺𝑚𝑚
𝐿𝐿𝑚𝑚

 HL  (22) 

Z = NOG HOG  (23)  

Where: 

ZT = Total height of the packed column  

R= Ideal gas constant, bar m3/kmol.K 

m = Slope of the equilibrium line 

𝐶𝐶𝑡𝑡  = Total concentration, kmol/m3  

dp = packing size, mm.  

   Process Simulation 

The process simulation model developed using a commercial process simulator follows an 

“ideal-stage” approach, coupled with kinetic modelling for carbon dioxide. In an ideal-stage 

model, each stage is assumed to reach thermodynamic equilibrium, and a real column is 

modelled by determining the number of ideal stages that yields the same performance as the 

real column. The kinetics model accounts for different absorption rates of the relatively slow 

absorption of CO2, which is kinetically limited. Simulation flow diagram are validated 

against plant operating data, as shown in Figure 1. The Greenville LNG amine gas 

sweetening plant was simulated by using Aspen Hysys V.10. The MDEA is utilized as an 

aqueous absorbent to absorb acid gases from sour gas stream. The first step of simulation 
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work was selection of suitable fluid package and provide the feed gas stream and amine 

compositions.  

 

Figure 1: Aspen Hysys Process Simulation Model of the Plant 

3.   Results and Discussion  

Table 1: Simulation Results 

 

                                                                    CASES 

State Amine 

Concen

tration 

% 

Amine 

Flow 

Rate 

(m3/h) 

Regenera

tor 

Spec 

Value 

(KJ/h) 

Sweet 

Gas  

CO2 

Composi

tion 

(mol %) 

Regenerat

or or 

Reboiler 

Bottom 

Acid Gas 

Loading 

Case 

1 

40 18.17 5 0.071000 0.004762 

Case 

2 

40 18.17 6 0.066000 0.003684 

Case 

3 

40 18.17 7 0.064000 0.003143 
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Case 

4 

40 22.71 5 0.009694 0.006793 

Case 

5 

40 22.71 6 0.009649 0.004863 

Case 

6 

40 22.71 7 0.009626 0.00395 

Case 

7 

40 27.26 5 0.009774 0.009925 

Case 

8 

40 27.26 6 0.008718 0.006448 

Case 

9 

40 27.26 7 0.008691 0.004948 

Case 

10 

42.5 18.17 5 0.008986 0.004472 

Case 

11 

42.5 18.17 6 0.007937 0.003388 

Case 

12 

42.5 18.17 7 0.007912 0.002853 

Case 

13 

42.5 22.71 5 0.006706 0.006447 

Case 

14 

42.5 22.71 6 0.005666 0.004506 

Case 

15 

42.5 22.71 7 0.005645 0.003597 

Case 

16 

42.5 27.26 5 0.004645 0.003597 

Case 

17 

42.5 27.26 6 0.004469 0.006041 

Case 

18 

42.5 27.26 7 0.003747 0.004539 

Case 

19 

45 18.17 5 0.003574 0.004233 

Case 45 18.17 6 0.004521 0.003133 
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20 

Case 

21 

45 18.17 7 0.004494 0.002597 

Case 

22 

45 22.71 5 0.002875 0.006152 

Case 

23 

45 22.71 6 0.002840 0.0042 

Case 

24 

45 22.71 7 0.001232 0.003288 

Case 

25 

45 27.26 5 0.002925 0.009191 

Case 

26 

45 27.26 6 0.003894 0.005688 

Case 

27 

45 27.26 7 0.003878 0.004184 

 

From Table 1 it was observed that keeping the temperature and pressure constant and 

increasing concentration and circulation rate of amine the amount of carbon dioxide (CO2) 

removed increased. Also, it can be seen that at amine concentration of 40% and circulation 

rate of22.7m3/hr the CO2 content is 0.009626. When the amine concentration and circulation 

rate was increased to (42.5% and 27.3m3/hr), there was a decreased in the 

CO2content0.007645 in the sweet gas and when the amine concentration and circulation rate 

was increased to 45% and 22.7m3/hr, the CO2 content in the sweet gas was reduced to 

0.001232. This showed that increasing amine concentration to 45% and circulation rate to 

22.7m3/hr will reduce the CO2 content to 0.001232 as the optimal value 
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Figure 2: Graph of CO2 Concentration in the Sweet Gas against Amine Circulation Rate 
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Figure 3: Graph of CO2 Concentration in the Sweet Gas against Amine Concentration 

A sensitivity analysis was carried out using Hysys version 10 (Figure 2 and Figure 3) to 

investigate the effect of the amine circulation rate and amine concentration on CO2 in the 

sweet gas as well as the regeneration duty requirements, keeping the number of trays in the 

columns and other parameters fixed. 

3.1     Plant Data Validation 

 Plant data validation before optimizing the actual gas sweetening process, the simulation 

results for the sweet gas stream specifications and required duties using the two Hysys 

packages are compared to the actual plant data from Greenville LNG. Table 4.1. Shows the 

plant data validation. 

Table 4.5 Plant Data Validation 

Components Feed 

Gas 

 

Amine 

Plant 

Data 

Sweet Gas 

Simulation 

Results 

Amine 

Simulation  

Results 
     

CO2 Content (%) 0.0286 0.000273 0.0012 0 

Circulation Rate (m3/h) 16 19.7 15.5 22.7 

Concentration (%) - 41 - 45 
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4.  Conclusion 

The plant model was set up in Hysys version 10, using current operating conditions in 

Greenville LNG RUMUJI, to set a benchmark, or base case. The plant data in Table 3.1 was 

used as simulation input data, then the flow sheet for conventional gas treatment system was 

developed, as shown in Figure3.1 

It was found that the carbon dioxide in the rich amine increased with increasing amine 

circulation rates22.7m3/h and concentration 45%.  Regeneration reboiler duty (2969257kJ/h) 

increased due to increased flow rate (22.7m3/h) entering the regeneration column (Table 4.3) 

which enhanced the stripping off CO2 (0.003597) from the rich amine. 

Also, CH4 composition in the feed gas 87.1357% before simulation was increased to 91.4% 

in sweet gas. These resulted in enhanced acid gases removal efficiency in the absorption 

column thereby converting the raw gas to sweet gas that contains 91.4% CH4which is within 

the LNG specification. 

From the Data Validation in Table 4.1, this work has been able to discover how amine 

circulation rate and concentration can be tuned to increase high content CO2 absorption by 

MDEA from the natural gas that meets CO2 specification at the gas liquefaction unit. 
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