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ABSTRACT-In this paper, numerical simulation of Modified Kicked Rotor Hamiltonian System have 
been investigated and presented. The onset of chaos in both the unmodified and modified system is 
also investigated through numerical simulation. The results for the modified standard map are 
compared with that for the unmodified standard map. The shift in the onset of chaos and the 
existence of resonance trajectories in the modified standard map for large values of the kick strength 
are observed and discussed. We observed that the kicked rotor mapping is an interesting standard 
map from a fundamental point of view in physics because it’s a model of a conservative system that 
displays Hamiltonian chaos and many physical systems can be approximated by this model. The 
physical realization of the modified kicked rotor is also discussed. 
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I. Introduction 

 The kicked rotor is one of the classical examples of 
non-integrable Hamiltonian system with regular and 
chaotic behavior and a prototype model for quantum chaos 
studies in Physics [1]. It describes a particle that is 
constrained to move in plane horizontal circular motion 
(e.g., pendulum on a rotating stick). The particle is kicked 
periodically by homogeneous field (equivalently: 
gravitational field which is switched on periodically in 
short pulses). When the field is switched on, it creates an 
imposing force which acts on the particle [2],[3].  
 The kicked rotor approximates systems studied in 
the fields of mechanics of particles (an electric dipole with 
fixed center rotating in a homogeneous electric field), 
electro-acoustic music, accelerator physics [4], plasma 
physics (neutral beam injection in a rotating plasma), 
theoretical solid-state physics and condensed matter 
physics. For example, circular particle accelerators 
accelerate particles by applying periodic kicks, as they 
circulate in the beam tube [5]. Thus, the structure of the 
beam can be approximated by the kicked rotor. 

 The kicked rotor dynamic system provides a model 
with a simple mathematical structure. Despite its 
simplicity, the kicked rotor is not merely a theoretical 
toy system but can be used to introduce graphical methods 
for studying mappings and recursion equations. In Physics, 
it helps to introduce the concept of a phase space and to 
demonstrate its usefulness and many general aspects of 
chaotic dynamics can be investigated [6]. It is worth to 
mention that this kicked rotor system can be quantized and 
this provides a basis for recent experimental research in 
quantum dynamics investigation [7],[8],[9]. The 
corresponding kicked quantum rotor has many physical 
realizations, including particle beams in an accelerator, 
atoms or molecules excited by microwaves [10], as well as 
ultracold atoms subjected to a pulsed standing wave of 
near resonant light [11]. 
 Several modifications of the kicked rotor mappings 
have been investigated and the display of chaotic behavior 
in these models has been reported [12],[13],[14]. Literature 
however has it that at a critical value of 𝑘c ≈  0.971635 (the  
Golden KAM2 curve), the trajectories splits the phase space 
into disjoint manifolds and the phase space becomes 
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predominantly chaotic with the probability of finding a 
regular island in the chaotic sea dropping exponentially 
with 𝑘 above this critical value [15]. In fact for values of 
𝑘 > 6 the entire phase space becomes fully chaotic with no 
regular motion [16],[17]. This has limited the study of the 
system’s behaviour at higher 𝑘 values. In this paper, 
consideration is given to this limitation. 
 This paper is organized as follows: the 
Hamiltonian system and the Kicked Rotor Hamiltonian 
Model are presented in section II. The Modified Kicked 
Rotor Hamiltonian Models is also presented in this section. 
Numerical results and detailed discussions are given in 
section III. Summary and conclusion are presented in 
section IV. 

II. Theoretical Considerations 
A. The Hamiltonian Method  
A Hamiltonian system is a dynamical system completely 
described by the scalar function 𝐻(𝑞, 𝑝, 𝑡), which is the 
Hamiltonian often corresponds to the total energy of the 
system [17]. 

𝐻(𝑞, 𝑝, 𝑡) =  𝐻(𝑞, 𝑝)                                  (1) 

The state of the system 𝑟, is described by the generalized 
coordinates momentum 𝑝 and position 𝑞 where both 𝑝 and 
𝑞 are vectors with the same dimension N. So, the system is 
completely described by the 2N dimensional vector 
𝑟 = (𝑞, 𝑝) and the time evolution of the system is uniquely 
defined by the Hamilton's equations [17]: 

�̇� = 𝜕𝐻
𝜕𝑝

    ,   �̇� = −𝜕𝐻
𝜕𝑞

                        (2) 

The Hamiltonian equations are then integrated as; 
𝑞(𝑡) = ∫ �𝜕𝐻𝜕𝑝� 𝑑𝑡  ,    𝑝(𝑡) = −∫�𝜕𝐻𝜕𝑞� 𝑑𝑡          (3) 

The solution to these equations of motion 𝑞(𝑡) and 𝑝(𝑡) are 
then used to construct the iterated maps and simulated 
using the developed program codes. 

B. The Kicked Rotor Hamiltonian Model  

Considering the Kicked Rotor Hamiltonian system, the 
field is on only for a very brief periods of time, and the 
force can be approximated by the Dirac delta function such 
that in the limit of arbitrarily short pulses, the model is 
described by the Hamiltonian [3]; 

𝐻(𝑞, 𝑝, 𝑡) =
𝑝2

2
+ 𝑘 cos 𝜃�𝛿

𝑛

(𝑡 − 𝑛𝑛)                  (4) 

where 𝑞 ≡ 𝜃 is the angular position, 𝑝 is the momentum, 𝑘 
is the kicking strength, 𝑛 is the period, 𝛿(𝑡) Dirac delta 
function and this limit of the problem is commonly termed 
the 𝛿-kicked rotor. This limit is particularly convenient 
because the equations of motion can be reduced to a simple 

and accessible two-dimensional area preserving discrete 
map in phase space. 
The kicked Rotor Model as reviewed in “equation (4) is 
described by the Hamiltonian,”: 

𝐻(𝑞, 𝑝, 𝑡) =
𝑝2

2
+ 𝑘 cos 𝑞�𝛿

𝑛

(𝑡 − 𝑛𝑛)               (5) 

The Hamiltonian “equations (5),” describes a free particle 
or kicked pendulum rotating in free field (more precisely a 
free rotor, because of the 2𝜋 periodicity of the position) 
which, when the time 𝑡 is equal to an integer 𝑛, receives a 
kick [18]. From the Hamiltonian it is obvious that during 
the kick, the potential term dominates the kinetic term. 
Between kicks, the potential term is zero, and the motion is 
that of a free rotor. Using “(5),” we obtain the partial 
derivative with respect to 𝑝 and 𝑞 given by Hamilton’s 
equations of motion as: 

�̇� = 𝜕𝐻
𝜕𝑝

= 𝑝
 
 

�̇� = −𝜕𝐻
𝜕𝑞

= 𝑘 sin 𝑞 ∑ 𝛿𝑛 (𝑡 − 𝑛𝑛)⎭
⎪
⎬

⎪
⎫

    (6) 

To construct a standard map for the Kicked Rotor 
Hamiltonian Model, for 𝑞 and 𝑝 just before the nth kick, we 
integrate the “equation (6)” by letting 𝛽 to be a small 
positive number. Integrating for 𝑝 we have; 

∫ 𝜕𝑝(𝑡)𝑡𝑛+1−𝛽
𝑡𝑛−𝛽

𝑑𝑡 = ∫ 𝑘 sin 𝑞𝑡𝑛+1−𝛽
𝑡𝑛−𝛽

∑ 𝛿𝑛 (𝑡 − 𝑛)𝑑𝑡               (7) 

where 𝑡𝑛 = 𝑛 is the time of the nth kick which yields 
𝛿(𝑡 − 𝑛) = 1. “Equation (7) becomes.” 

𝑝(𝑡𝑛+1 − 𝛽) − 𝑝(𝑡𝑛 − 𝛽) = 𝑘 sin 𝑞                                 (8) 

Similarly, integrating for 𝑞 we have; 

∫ 𝜕𝑞(𝑡)𝑡𝑛+1−𝛽
𝑡𝑛−𝛽

𝑑𝑡 = ∫ 𝑝𝑡𝑛+1−𝛽
𝑡𝑛−𝛽

𝑑𝑡                                (9) 
“Equation (9) becomes.” 
𝑞(𝑡𝑛+1 − 𝛽) − 𝑞(𝑡𝑛 − 𝛽) = 𝛽𝑝(𝑡𝑛 − 𝛽) + (1 − 𝛽)𝑝(𝑡𝑛+1 − 𝛽) 

(10) 

Then letting 𝛽 to be zero and defining 𝑞𝑛 and 𝑝𝑛 to be the 
values of 𝑞 and 𝑝 just before the nth kick, we obtain from 
"(8), " and "(10), " the mapping; 

𝑝𝑛+1 = 𝑝𝑛 + 𝑘 sin 𝑞𝑛
 

𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛+1
�                                    (11) 

“Equation (11) is the standard map for the Kicked Rotor 
Hamiltonian Model.” This mapping which depends only 
on a single parameter 𝑘 (Stochasticity parameter) known as 
the standard map or Chirikov map [15], is so named 
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because of its broad importance in the study of 
Hamiltonian Chaos. One important feature of the Standard 
map is the periodicity of the coordinate parameter 𝑞.  

C. Modified Kicked Rotor Hamiltonian Model 

 To modify the standard map for the Kicked Rotor 
Hamiltonian Model, we define the domain 0 ≤ 𝐷 ≥ 1 such 
that the modified standard map can be described by; 

𝑝𝑛+1 = 𝑝𝑛 + [𝐷𝑘 sin 𝑞𝑛 ± (1 − 𝐷) sin 𝑞𝑛]
 
 

𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛+1

�                  (12) 

where the angle 𝑞𝑛+1 is taken 𝑞𝑛 modulus 2𝜋 and 𝑞𝑛+1 ∈
(0 , 2𝜋). 

“Equation (12) represents the Modified Kicked Rotor 
Standard Map,” where the 𝐷 coupling is a perturbation 
added to the original system and serves as an ordering 
parameter of the system. These two equations "(11), "and 
"(12), " were implemented in MATLAB with executable 
program codes performing up to ten thousand time-step 
iterations. 

 
III. Results 

The results obtained from the simulation are presented below; 
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FIGURE 1(a-h).  Phase Space for the Unmodified Kicked Rotor Standard Map. 
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FIGURE 2 (a-n).  Phase Space for the Modified Kicked Rotor with Additive Term. 
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 FIGURE 3 (a-p).  Phase Space for the Modified Kicked Rotor with Subtractive Term.  

 
IV. Discussion 

The results of phase space for the Unmodified Kicked 
Rotor Standard Map are presented Figure 1. The phase 
space trajectory of the unmodified kicked rotor standard 
map is defined by the initial conditions 𝑝0=0.2, 𝑞0=1.0 and 
the kicking strength parameter 𝑘. Different trajectories 
corresponding to several values of 𝑘 are plotted in Figure 1 
(a) to (h). It should be noted that the phase space of the 
standard map corresponds to the motion of a periodically 
kicked rotor. If the kicking strength vanishes (𝑘=0), the 
system would rotate freely, which corresponds to the 
uniform increment of its phase 𝑞 with a constant 
momentum 𝑝 (Figure 1a) and the standard map is 
integrable. 
 At each kick, the momentum changes by a quantity 
𝑘 sin 𝑞𝑛 which can be either positive or negative. As we 
increase the kick strength to 𝑘=0.1 (Figure 1b), for the given 
initial conditions above, the orbits remains a rotational 
invariant circles (elliptical orbits) that seem to be very 
regular which implies that there are non-chaotic orbits for 
low values of the kick strength up to 𝑘 = 0.8. On varying 
the kick strength to 𝑘=0.9 (Figure 1c) the elliptical orbits 
appear to be deformed into doughnut and banana shapes 
along the torus. This transition from periodic to aperiodic 
behavior of the system is a signature for onset of chaos. 
Consequently at 𝑘=0.96 (Figure 1d), there is onset of chaos 
with emergence of two chaotic regions in the phase space 
where 𝑝 ≈ 0 and 𝑞 is near to 0 and 2𝜋 which is close to the 
critical value of 𝑘c ≈  0.971635, literally implying that the 
map becomes fully chaotic above this value of 𝑘. This 
however doesn’t mean that above this value there is no 
regular motion in the phase space, but the probability of 
finding a regular island in the chaotic sea drops 
exponentially with 𝑘 above this critical value.  
 As the parameter 𝑘 becomes very large, each kick 
is so strong that it gives rise to a diffusive-like behavior in 

the phase space. It can be observed that inside the chaotic 
zones, there exist small islands of non-chaos and some 
adjacent to the major orbit in the phase space. As we 
progress to 𝑘= 1.2 (Figure 1e), there are visibly two chaotic 
regions where 𝑝 is near to 0 or 2π and 𝑞 is near to 0 or 2π 
with two major islands inside which appears to be a 
Period-doubling bifurcation of the single major orbit with 
some minor island lying side by side and at the corners. 
The centers of these major island are stable fixed points 
which means that initially close orbits will stay in their 
neighborhood for all times. There are four such stable fixed 
points as the value of 𝑘 is increased to 𝑘=1.5 (Figure 1f).  
 These regular orbits are observed to diminish from 
𝑘= 2.5 (Figure 1g) and above where the entire phase space 
become fully chaotic with no visible island within the 
chaotic sea. Subsequent increment in the value of 𝑘 rather 
gives rise to a denser chaotic sea in the phase space with no 
single visible regular orbit (Figure 1h). This result is 
consistent with the work done by other authors 
[6],[12],[15],[17]. 

In attempt to seeking order out of this disorderliness, we 
will analyze the phase space for the modified kicked rotor 
standard map first applying the additive term with the 
same initial conditions used for the unmodified rotor. The 
results of phase space for the Modified Kicked Rotor with 
Additive Term are presented in Figure 2. Whenever our 
ordering parameter 𝐷=0 (Figure 2a) we obtain a phase 
space for the well-known unmodified kicked rotor 
mapping for 𝑘 =1 which appears Chaotic. Similarly if we 
set 𝐷=1 for any value of 𝑘 we obtain the phase space 
trajectory for that corresponding value of 𝑘 in the 
unmodified standard map. Hence the choice of setting 𝐷=0 
or 𝐷=1 does not alter the Physics of the unmodified kicked 
rotor. 
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 For 𝑘=0.1 when we set 𝐷=0.1, it is observed that the 
phase space trajectory is identical to the unmodified kicked 
rotor mapping for 𝑘=0.9 which follows immediately that at 
this low value of 𝑘 when the ordering parameter is below 
𝐷=0.5, the system behaves aperiodically. This requires that 
we vary the ordering parameter from 𝐷=0.5 and above in 
order to obtain an invariant rotational orbit as depicted in 
figure 2b. This however is not a computational error since 
similar effect can be observed for 𝑘=0.5 with 𝐷=0.1 
corresponding to the phase space trajectory of the 
unmodified map at 𝑘<0.8. On setting 𝐷=0.5 to 0.9 we obtain 
elliptical orbit (Figure 2c-d). Going by these observations, it 
is sufficient to state that for values of 𝑘 below 0.9 one 
require to set 𝐷 above 0.5 to observe a regular motion in the 
phase space. Dramatical deformation of the rotational 
orbits is observed at 𝑘=0.9, 𝐷=0.9 (Figure 2e), consequently 
chaotic behavior is manifested at 𝑘=1 with 𝐷=0.1 to 0.9 
(Figure 2f-2g) contrary to the case with the unmodified 
rotor.  
 Furthermore we explore the effect of the ordering 
parameter at 𝑘=2. We can observe that with 𝐷=0.2 (Figure 
2h) the phase space is not chaotically filled as opposed to 
the unmodified map. The webs of islands embedded in an 
extended chaotic sea are possibly organized by the two 
major stable orbits found in their centers. Consequently 
what is obtainable only at 𝑘= 1.2 (Figure 1e) for the 
unmodified map is now achieved at 𝑘=2 with 𝐷=0.2. 
Without argument we can agree that 𝑘=2 with 𝐷=0.5 
(Figure 2i) corresponds to the phase space for 𝑘= 1.5 in the 
unmodified map with four major regular stable orbits 
(Figure 1f). This reveals that the ordering parameter plays a 
vital role of organizing regular motion in the chaotic 
region. But at 𝑘=2 with 𝐷=0.9 the phase space becomes 
smeared and the regular orbits are seen to diminish (Figure 
2j). This chaotic behavior is being suppressed by the 
ordering parameter at 𝑘=3 with 𝐷=0.1 (Figure 2k) as oppose 
to the case in the unmodified map. However the limit to 
which regular orbits can be obtained for 𝑘=3 lies between 
𝐷=0.1 to 𝐷=0.5 and above this value the system retains its 
full chaotic behavior as it is with the unmodified map. 
 Furthermore, it is only possible to obtain regular 
orbits for 𝑘=4 between 𝐷=0.1 to 𝐷=0.3 above which the 
phase space is filled with chaos. This same limit is observed 
for 𝑘=5 but for 𝑘=6 the limit lies between 𝐷=0.1 to 𝐷=0.2 
only. It is thus reasonable to state that as the kicked 
strength increases the value of the ordering parameter 𝐷 
required for regular orbits must be low. Consequently from 
𝑘=8 (Figure 2m) upwards, regular orbits are only visible 
with 𝐷=0.1 and appear to be diminishing at 𝑘-12 (Figure 
2n). By implication, for 𝑘>12 there is no possibility of 
obtaining regular orbits even with 𝐷=0.1 in the phase space 

since the phase space is entirely occupied by chaotic 
behavior. The interesting point is that the ordering 
parameter allows us at least to theoretically observe regular 
motion for values of 𝑘>5 which is not possible with the 
unmodified map. 

The results of phase space for the modified kicked rotor 
with subtractive term are presented in Figure 3. The 
application of the subtractive term in the modified kicked 
rotor standard map yield interesting results that differ 
significantly from the additive term with the same initial 
conditions. It was observed that rotational orbits can only 
be seen for 𝑘=0.2 with 𝐷=0.9 below which only hyperbolic 
and sinusoidal curves can be seen in the phase space. This 
is possibly due to the weak kick strength as suppressed by 
the ordering parameter. This requires that 𝐷 should be high 
in order to obtain rotational orbits for low values of 𝑘. As 
can be seen in Figure 3(a) for 𝑘=0.3 when 𝐷=0.9 the motion 
follows an elliptical orbit which is our point of interest. 
This regular behavior persist up to 𝑘=0.8 with 𝐷=0.6 which 
agrees with the results obtained for the unmodified map. 
Dramatically for 𝑘=0.8 with 𝐷=0.9 the single elliptical orbit 
becomes unstable and split into two intertwine orbits seen 
in Figure 3(b) which signifies the onset of chaos. 
 As an evidence, the effect of the subtractive 
ordering parameter can be observed even as we increase 
the kick strength to 𝑘=0.9 with 𝐷=0.6 to 𝐷=0.9 (Figure 3c) 
the stable elliptical orbit resurfaced contrary to the additive 
ordering parameter. The subtractive term obviously yields 
a better result for this modification. To further Buttress this 
point, the unmodified map have only one single value of 
𝑘=0 for which the phase space displays a constant 
momentum whereas for the modified map, the subtractive 
term there are three such set of values; (𝑘=1, 𝐷=0.5), (𝑘=4, 
𝐷=0.2) and (𝑘=9, 𝐷=0.1) for which one can obtain an 
invariant momentum in phase space (Figures 3d, 3j and 3l).  
That is the system follows the same trajectory for different 
set of 𝑘 with 𝐷  values. Theoretically this implies that for 
the subtractive term, the system possess resonant 
trajectories/orbits for some given values of 𝑘 with respect to 
the ordering parameter 𝐷. 
 Our main aim is to ascertain whether the ordering 
parameter can subdue the chaotic behavior in this system. 
The result gotten so far has confirmed that Chaos can 
actually be suppressed as the aperiodic behavior observed 
for 𝑘 = 0.9 (Figure 1c) in the unmodified map turn out to 
occur in the modified map for 𝑘=2 with 𝐷=0.65 (Figure 3e). 
With just a slight shift of 𝐷=0.651 we can see that the 
regular orbit splits into a disjoint unstable trajectory 
leaving the upper region of the phase space chaotic with 
some visible islands (Figure 3f). As we increase 𝐷 the phase 
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space becomes more chaotic (Fig 3g).  
 The possibility of having regular behavior in the 
system for higher values of 𝑘 depends on low values of 𝐷 
and it was observed that even for 𝑘=17 with 𝐷=0.1 the 
system appear to be integrable. Any small increment above 
𝐷=0.1 destroys the integrability of the system leading to a 
chaotic behavior. However for 𝑘=18 even with 𝐷=0.1 (Fig. 
3m) the rotational stable orbit appears to be deformed and 
above this value there exists no such rotational stable orbit 
in phase space. That notwithstanding, this modification 
presents stable orbits in the phase space over a long range 
of kick strength unlike in the unmodified map as observed 
for 𝑘=25 with 𝐷=0.1 (Figure 3n) which gradually diminishes 
as we further increase 𝑘 above this value (Figures 3o-3p). In 
general the ordering parameter serves as chaos control in 
the modified kicked rotor Hamiltonian system. 

V. Physical Interpretation 
The kicked rotor standard map can be applied to electro-
acoustic music as a chaotic oscillator for generating 
harmonic and noisy sounds. A possible way to build a 
sound source base on this chaotic map was described by 
[19]. In his work he describe a method to interpret this 
system as an oscillator by considering the phase of the 
rotor as the phase of a wave table oscillator in which the 𝑝0 
coordinate of the initial points corresponds to the angular 
frequency of the oscillator according to the formula; 

𝑝0 =
2𝑓
𝑓0

 

where 𝑓0 is the sample rate of the system. 
This formula however connects the initial conditions of the 
system with the frequency of the generated sound for the 
case where 𝑘=0 only. There is no known formula for the 
case where 𝑘 ≠0. 
When the kick strength 𝑘=0, one obtain a phase generator 
with a constant frequency but in the limit 𝑘 → ∞ when the 
entire phase space is chaotic, the oscillator serves as a phase 
generator of noise. Thus it can be employed as an 
interpolating oscillator between noisy and harmonic 
sounds. 
The most fascinating aspect of this map as a sound 
generator is in the region when 𝑘 ≈ 𝑘𝑐 where there are 
three types of trajectories; those that split the phase space 
which corresponds to sounds with definite pitch with some 
small deviations in their frequencies, those that are 
restricted to a small area of the phase space (small circles) 
which corresponds to sounds with strongly modulated 
frequencies and lastly those in the chaotic sea which 
corresponds to noise. The first two types of trajectories are 
closed implying that the motion returns to the initial point 
in the phase space after a periodic time relevant to that 
trajectory, hence these trajectories are called periodic orbits. 
In contrary, the last types of trajectories are open and fill 
the entire phase chaotic sea. The mixing effect of these 
trajectories creates really nice, yet unpredictable sounds 

achieved by simply tuning the kicking strength parameter 
𝑘 of the model and the initial conditions (𝑝0, 𝑞0) of the 
system. 
Despite these interesting features, it is practically 
impossible for one to predict whether a set of initial 
conditions (𝑘, 𝑝0, 𝑞0) would result in a periodic orbit or an 
open chaotic one. It is even harder to guess whether an 
initial condition describing a periodic orbit corresponds to 
a trajectory that splits the entire phase space or it 
corresponds to a small circle. Base on these limitations, the 
chaotic map can only be employed as a low-frequency 
oscillator since it generates almost-constant values with 
small and unpredictable deviations in the low range of the 
parameter 𝑘. 
Our modification presents the possibilities for the map to 
be employed as a high-frequency oscillator since it 
generates such constant frequencies even at high range of 
the kicking strength 𝑘. However, this does not simply 
require the tunning of the 𝑘-parameter but also carefully 
setting the ordering parameter 𝐷. Our modified model also 
provides the basis for generating sounds with resonant 
frequencies for specific values of the initial conditions 
(𝑘, 𝑝0, 𝑞0) with appropriate 𝐷-control. Consequently for 
some specific values of the initial conditions with 𝐷-
control, we can generate beautiful and unique harmonic 
sounds. 

VI. Conclusions 
We have investigated and presented the Modified Kicked 
Rotor Hamiltonian System by numerical simulation. The 
standard map for the kicked rotor has been studied and 
indeed it displays interesting behaviours (regular and 
chaotic). Most interestingly, the modified map presents us 
with an extension of the application of the kicked rotor 
even in the chaotic regime where it was initially considered 
undeterministic. We can conclude that our results are 
interesting not only for pure theoretical physicist but also 
for experimental physicist, because they are numerical and 
more general. 
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