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SIX-POINTS COSINE RUNGE KUTTA METHODS FOR SOLVING FIRST ORDER

ORDINARY DIFFERENTIAL EQUATIONS.
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ABSTRACT

High order implicit Runge-Kutta method for solving first order differential equations is
constructed, Cosine functions are used to obtain special points which are used to construct the
high order implicit Runge-Kutta method. This method is an improvement of Gauss-quadrature
Legendre methods. The nodes of this method is simpler than Gauss methods whose roots are too
complicated to use in practice. Collocation approach at these special points are used to generate
continuous schemes for the generation of discrete schemes also developed.
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1.0 INTRODUCTION

Numerical methods is one of the most important areas of mathematics use in solving real-life
problems. The family of explicit Runge-kutta methods is quite rich, they may be ineffective for
some problems. Indeed, we see that no explicit method is suitable for so called stiff problems,
which frequently arise in practice, in particular from the spatial discretization of time dependent
partial differential equations.

Runge-kutta methods are useful for solving non-linear stiff and oscillatory differential equation.
A number of numerical methods for oscillatory problems have not fully been developed. We use
generalized collocation techniques based on fitting the special points of cosine function by
transforming the points to implicits Runge-Kutta methods for solving ordinary differential
equations problems. The coefficients of the methods are functions of the frequency and the step-

size.

1.1 Objective of the study
The objectives of this paper are:
i. To obtain the six special points of cosine function in [0, 7].
ii. To use the six points to generate nodes in [0, 1] which are used to get the continuous scheme.
iii. To obtain Runge-Kutta method in solving general and oscillatory first order differential
equations.
2. METHODOLOGY
2.1 Collocation method
This is the method which involves the determination of an approximate solution in a suitable set

of functions called trial or basis functions. The approximate solution is required to satisfy the
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differential equation and its supplementary condition of certain points in the range of interest,
called the collocation points.

The collocation methods by their very nature yield continuous solution and the principle behind
multistep collocation is allowing the collocation polynomial to use information from previous

points in the integration.

A collocation method is defined in the interval [x,_q,x;] by a continuous scheme, from the

initial value problem of ordinary differential equation.

Yy =f0,y),y(x) =yoa<x<h 2.1

We assume our approximate solution to be in form of
y(x) =X 20 d () yni1 + R YT v (Of (5, y(%) 2.2

Where t denote the number of interpolation points x,,,;, (j = 0,1, ...t — 1) and m denotes the
distinct collocation points &; (j = 0,..m — 1), f(x,y) is continuous and differentiable. The
numerical coefficients d;(j = 0,1, ... k — 1)and hv; (j = 0,1,...,m — 1) are elements of the

(t + m) x (t + m) square matrix A.

The d; (x)and v; (x) in (1.2) can be represented by polynomial of the form

di(x) = X0 dax', =01, .., t = 1) 2.3
hy; (x) = 251’31—1 hv %', (G =0,1,..,m — 1) 2.4

With the constant coefficients d; ;,, and hv; ;4 to be determined. Substituting (2.3) and (2.4)

into (2.2) we have

—\t—1 yvt+m—1 [ -1 yvt+m—1 i
Y(x) =X 220 Gir1X Yna HRES0 XiZ0T Vi1 X fayg
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y(x) =Z§26”‘1{Z§;& diiy1Ynsj t+ Z}nz_ol hvj.i+1fn+j}xi 2.5
And let

4 = (B0 di41Vne + 200 Wy ip1foey) @ ERE=01, ..t +m—1 2.6

Such that (2.5) reduces to the power series of a single variable x in the form

p(x) = X' 2.7
And (2.7) is used as the basis or trial function to produce an approximate solution to I\VP as
y(x) = Z]t-l"o”_l ax' 2.8
Whereq; € R/j = 0,1,..t + m —1,and U € c™(a, b)cp(x)

Thus equation (2.5) can be expressed explicitly in matrix form as follows

y(x) = (ynJ Yn+1 ""yn+k—1'ﬁu fn+1i -"'fn+m—1)ATB

d0,1 dqi, di_11 th,l hv1,1 hvm—l,l
do,z dq di_1 hvo,z hv1,2 hvm—l,Z
A=| dgs diz - diqg hvg 3 hvis - hvy,_q3 | 2.9
dO,t+m dl,t+m dt—l,t+m th,t+m hvl,t+m hvm—l,t+m/

With B defined as

/1 X, x?2 xttm-1 \
0 1  2xp4e - (E+m—1xfin—?
B=[0o 1 2x4, - (t4+m-—Dxiin? 2.10
0 1 2xn+cm_1 e (E+m— 1)xfl-"|-'rcnm_—21
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Where ¢; (j = 1,2,..m — 1) are collocation points chosen from the special points. Matrix B is
called the multistep collocation matrix which has a very simple structure and of dimension

(t + m) x (t + m) are the constant coefficients of the polynomials given in (2.6)
Derivation of six points cosine function in [0,7]

Points of cosine functions are special values of the cosé@ in [0,] where 6 are: 0, %, % -, =

and m, such that
cos(0) =1

cos(%) = i = V2

N
/[
cos(g) =1/2

cos(z?n) =al/2

3m. 1 2
cos( 4) = = A
cos(m) = —1

Special Points: special points are the transformed point of a cosine function form [-1, 1] onto the

interval [0, 1] by a linear transformation.
T(x)=3(1%x) [Agam (2015)]
Where x; are the values of cosine functions, given by

cos(0) =1, cos G) = g,cos (%) = %,cos (2?”) = —%,cos (%T) = —g, cos(m) = —1,

N3
7,x6 =-1

V2 1 1
Wherex; =1,x, = 5,3 = 7,2 = —7,%5 = —

Transformation:
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T0) =;1+0) =1,T® =1 (1+2) =1+ 27 (%) =3(1+3) =

V2

1 3 1
=0, po=5—7 P3=7, Pa=,,p5=5%

N R

We assume a power series solution of six points of the form
y(x) = T dixt, y'(x) = Tf_pidx ™

Interpolation at x,, and collocate at x, = x, +p;, wherei =0,1,...,6, yield a system of

simultaneous equation of the form
y, = do + dyx, + dyxZdsxs + dyxt + dsx; + dexS

V'napy = fatp; = 04 ot 2dpx, 4y, + 3d3xiy,, +4dgxs,,, + 5dsxy ., + 6dexn iy,

V'nips = fuap, = 04 dy 4 2daXy 4y, + 3d3xhy,, + 4daxnsy, + 5dsxny,, + 6deXniy,

(2.12))
where d;are to be determined.

Thus, (2.11) can be rewritten in matrix form as
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1
0
0
0
0
0
0
i.e
BA=Y, where
1 x,
0 1
0 1
B=0 1
0 1
0 1
0 1

Xn Xy
1 2x,4p,
1 2x,4p,
1 2x,4p,
1 2x,4p,
1 2x,4p
1 2x,4p,
X;

2xn+P1 3xiﬂh
2xn+P2 3x721+P3
2xn+P3 3x721+P3
2xn+P4 Bx%ﬂu
2xn+P5 3x%ﬂ?s

2
2x7l+P6 3xn+P6

Xn

3x721 +p1
3x721 tP3
3x721 tP3
3x721 +p4
3x721 +ps

2
3xn+P6

Xn

A= (do'd1d2'd3;d4; ds;ds)T'

Y = (Ynlfn+p1 'fn+p2 lfn+p3 lfn+p4 'fn+p5'fn+p6)T

4x73£+P1
4x73;+172
4x73;+173
4x73£+P4
4x3+P5

3
42 +pe

4% 4,
4x731) +p2
4x731) +p3
4% 4,
43 1

3
4xn P

Xn

Sxf{"'m
Sx;{ﬂ?z
5xg+P3
5xf{+p4
Sxf{"'Ps

4
S5xy +pe

5xf{+l’1
Sx;%"'Pz
5x7%+203
5xf{+l’4
5x3+ps

4
an+p6

Xn

6x7§ +p1
6x7§ +p2
6x7§ +p3
6x7§ P4

5
6, +ps

6x7§+l’1
6x751+202
6x751+203
6x7§+l’4
6x7§+ps

5
6x"+P6

5
6xn+P6

In
fr4ps
fr+ps
fr+ps
fr+pa
fr+ps

fn+p6

Using MAPLE mathematical software we obtain the continuous scheme of the form

y(x) =Yy t h(fn+p1 + fn+p2 + fn+p3 + fn+p4 + fn+p5 + fn+p6)

1342

Now evaluating the continuous scheme at p;= (0), p,= (% — g), P3 :%, Da :%, DPs= (% + g),

Pe=1
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We obtain the discrete schemes: by putting x,, = 0 in the continuous scheme, we give

yTL+p1 = :Vn
107 2 1 232 43 2
Yntp, = In + (144_0 - %) hf""‘Pl + (_E + 160 >hfn+P2 + <@ - ?) hfn+P3

+53 \/Eh N 1+19\/§h +37 \/ih
180 5 fotps 15 480 futps 1440 60 futpo

31 11 92 1 1
Yntps = Yn + (m) hfosp, + 120 + 128 hfpip, + (m) hfnips + <m> hfntps

N 11 9\/§h +<1>h
120 128 futps 640 futs

63 9 9v2 21 21
Yuens =0+ (ggg) b * (= 75 55m) Wosraitiligg) Wens +(30) Wvens

9 92 33
|\ ~20 128 "fn+ps+(@)hfn+ps

107 2 1 19v2 43 V2
Yn4ps = In + 1440 +% hfn+p1 + _E_ 480 hfn+p2 + @‘F? hfn+p3
53 2 1 23V2 37 2
— 4+ |n —— - )n —+—|h
* (180 MG ) Jups ( 15 160 ) Jatps + (1440 * 60) Futos
1 2 8 8 2
Yn4pg = In + (E) hfn+p1 + (_ E) hfn+p2 + (E) hfn+p3 + (E) hfn+p4 + (_ E) hfn+5 +
1
(55) Pt 3.12
The discrete schemes (3.12) must satisfy the (1.3), to change to Runge-Kutta formula, Hence
yrll+p1 = f(xn+pyyn+p1) ifp =0

y;1+p1 = f(xn+p11yn + 0) =f(xn+p11Yn)
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yrll+p2 = f(xn+p2'yn+p2)

107 2 1 23V2 43 2
ntp1 15 160 ntp2

Vn+p, = f (xn+p2'yn + (1440 - % ﬁ - ?) hfn+p3
53 2 1 19v2 37 2
s — = hfn+p +|\ -t =5+ hfn+p t 05— == hfn+p
180 5 4 15 480 5 1440 60 6
yrll+p3 = f(xn+p3'yn+p3)

Vntps =

f (xn+p3'yn + (%) hfn+p1 + (% + %) hfn+p2 + (ﬁ) hfn+p3 + (%) hfn+p4 +

11 92 1
(335~ 78) Moo + (5ig) W)
y;1+p4 = f(xn+p4lyn+p4)

' 63 9 9./2 21 21
yn+p4 = f (xn+p4'yn u (%) hfn+p1 + (_E-I' E) hfn+p2 = (E) hfn+p3 + (E) hfn+p4 +
9 92 33
(=2 = 125) Wasos + (2 Wfusne)
y;1+p5 = f(xn+p51yn+p5)
: 107 2 1 192 43 2
yn+p5 = f(xn+p5'yn + (144_0 + %) hfn+p1 + (_E - 480 >hfn+p2 <@ + ?) hfn+p3
53 2 1 232 37 V2
+|—+—|h +|-—=—-———|h +|——=+—]h
(180 5 ) Jotpy ( 15 160 ) Jntps (1440 60) f”+P6>
y;1+p6 = f(xn+p6lyn+p6)

, 1 2 8 8
Yn+p6 = f (xn+p6'yn + (E) hfn+p1 + (_ E) hfn+p2 + (E) hfn+p3 + (E) hfn+p4

(- ()
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Putting

y;1+p1 = f(xn+p11yn+p1) = fn+p1 =k YT’l+p2 = f(xn+pZIYn+p2) = fn+p2 = ks,
y7’1+p3 = f(xn+p3'yn+p3) = fn+p3 = ks, yT,l+p4 = f(xn+p4Jyn+p4) = fn+p4 = ky,
y;1+p5 = f(xn+p51yn+p5) = fn+p5 = ks, YT’l+p6 = f(xn+p6'yn+p6) = fn+p6 = ke

We obtain the function evaluation as

k1:O

e = £ (e (5= ) R+ (g = ) Mo+ (=35 500) W (55 = 5) W +
(15830 g) Mfusp, + ( =T 1;;{)—) Mfnsps + (% - 6_\/07) hf"+P6)
ks =
92

f (x” + G) oy + (%) Mfrsp, + (120 y 128) fntp, + (1;0) Mfnsps + (%) fnspy +

(11210 j\z/;) Mfpaps + (6i0)hf”+?’6)

ky =
(o + () o+ () W + (= 55+ 358) Woans + () Whaima + (55 Wi +
(_ % N 2\2/;) hfnips + (634-30) hf”+P6)

ks = 1 (oo + (54 ) oo+ (G +50) W + (=5 = 50) W + (55 +
g+ (e D g (B W+ (5 + D)
k6 = f (xn + (1)h' In + (%) hfn+p1 + (_12_5) hfn+p2 + (1%) hfn+p3 + (1%) hfn+p4 +

(= 2) Pfurs + (55) fung )
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The weight b = (by, by, b3, by, bs, bg), evaluating the continuous scheme at x = x,, + h, we

obtain b:(i 4 16 16 _ 4 3)

30’ 30’30’30’ 30’30
The six points general formula for Runge-kutta method is defined as
Va1 = Yn + RIS bk =y + = hky + k) — 3o h(ky + ks) + 5 hes + ky)
Where k;,j = 1,2, ... 6 are given by (2.2), can be summarized in table below

Table 2.0 Butcher table summary

C A U

B \Y

Where € = (¢1,¢z .. c)" A= a;,ij =1,2..6,U = (1,1,1,1,1,1)7, V = (1),
B = (bl,bz ...b6)T
We can represent the Butchers’ tableau

Table 2.1 Butcher table summary of six point cosine function Runge-Kutta method

A= (a;)ij=12..6
A= (ay)

0 0 0 0 0 0
LD (545 -9 (59 (530 (5-5)
;&) R & & GE &

3 63 9 | 92 21 21 9 92 33
3 (%) (-5 +%) (%) &) (5% &)
LG D) (-2 D) B D) (230 (D)
&) = & & = &
3 4 16 16 4 3
30 " 30 30 30 " 30 30
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Where a;;'s  are coefficients

3.0 Analysis of Results
1. Consistency: the Runge-Kutta method is consistent since it satisfy the consistency condition
Yooy = ¢, XP—1 b = 1, (see Table3.1)
2. Stability: the stability of the method is investigated by considering the linear test equation.
y =1y, A1€C

Putting Z = Ah, h € (0,1)
The stability function is R(Z)

R(Z)=1+Zb"(I —ZA) e
Where | is the identity matrix, b = (by, b,,b3,b4,bs, bg) is the weight, e = (1,1,1,1,1,1), A is the
Runge —Kutta matrix of the coefficient of the butcher .

The Runge-Kutta method is generally represented by a butcher’s tableau as

Table 2.4 Butcher table summary

C A

b

Where C = (c¢q, ¢, ...cg)Tis the abscissae or Gausian nodes, the transformed zeros of special
points on the interval[0,1], b = (by, by, b3,bs,bs, bg), is the weight of the method 1, A =

(a;),i,j = 1,2,...6, is the coefficient matrix for the method.

The stability domain, R(Z) is defined as R(Z) ={Z € C/R(z)/< 1}, R (2) is a rational

polynomial defined by

_ det(I-ZA+ZebT)
R(z) = det (I-ZA)

,wheree = (1,1,1,1,1,1), Z = Ah. 3.24

A € C, his the step-size, C is the set of complex numbers.
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: : : : : 3 4 16 16 4 3
For the six point cosine function, with b = (ﬁ, ~30°30" 30" —5,5),

A=(a;)i,j=12,..6,

a;; =0 - - - — - ae =0
o = 207 \/Za_1+23\/§a_43 \/Ea_ss ﬁa— 1, 192
21 T 440 60’ 7227 15 ' 160’723 T 180 5’724 T 180 5’7257 15 ' 480"’
37 V2

Ay = — .
26 7 1440 60

(1 _ 2 (8 (8 _ 2 (1
A1 = \15) %62 =\ 7 15) %3 =\15) %64 = \15) 5 =7 15) %6 =3,

Simplifying (3.24) using MAPLE or MATLAB, and substituting the values of a;;, and b for s=6.

ij s
We obtain the rational function.

z: 73 Z6
R(Z)=1+Z+i+§+ A ' 3

Since R(Z) is precisely the truncated exponential series

z? 73 Zs
R(Z)=1+Z+§+i+ - — = +H

Which is bounded, and stability functions are always bounded. Thus our method is stable.

4.0 CONCLUSION

In this paper, we made use of points of cosine functions in generating special points which we
used to develop our continuous scheme of six point points of special-cosine function Runge-
Kutta methods. This method is used to solve general and oscillatory problems in first order ODE.
Yakubu & Babu (2011) on Runge-kutta collocation method of six stages and order six for

solving first order differential equations is studied and improved.
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Therefore, We have derived new more efficient method, with simple collocation points, which is

less tedious, less complicated than most methods in literature so far.
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