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Abstract

A class of analytic functions involving the Gegenbauer polynomial in the unit disk was
introduced and investigated . Coefficient bounds fot the function of the class S(«,x)(2)
was obtained , furthermore , upper bounds of the second and third Toeplitz determinant
belongs to the class S(a,x)(z) were established. Various known and new result are also
derived..
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1 Introduction and Preliminaries

Let A denote the class of functions of the form
f) =2+ a2, (1.1)
=2

which are analytic in the open disk A={z € C : |z| < 1}, and normalized by the conditions
f(0) = f/(0) =1 = 0. Furthermore, let S be the class of all functions in A which are univalent
in A

A subordination between two analytic functions f and g is written as f < g. conceptually
the analytic function f is subordinate to g if the image under g contain the image under f.
Technically, the analytic function f is subordinate to g if there exists a schwarz function w(z)
with w(0) =0 and |w(z)| < 1 for all z € A; such that

Besides, if the function g is univalent in A, then the following equivalence holds:

f(2) < g(z) if and only if f(0) = ¢g(0) and f(A) C g(A).
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Further on subordination principle see details in [1]

A Toeplitz determinants is an upside down Hankel determinants, that is Hankel deter-
minants have constant entries along the reverse diagonal while Toeplitz determinants have
constant entries the diagonal.

Thomas and Halim [6] introduced the symmetric Toeplitz determinant Ty (n) for analytic
function f(2) of the form f(2) = z + a22? + a3z + ... defined as follows;

(0799 An+1 -eo Oni4q-1
an+1 Qp, «vr OAniqg—2
Tq(n) = . . .
Gp4q—1 OGpdq—2 --- (7%

(where n,q = 1,2,3,...a; = 1 for f(z) € S)
In particular,

a a a; ag as
T2) =7 Pl 131) =laz a1 a
9 G2 as ag ai

We assume aq = 1, we have
Ts(1) = asz(a3 — a3) — az(az — azaz) + (1 — a3).
Then,
T3(1) < |aslaj — as| + |az||az — azas| + |1 — a3
see details in [6, 11]
For non-zero real constant «, a generating function of Gegenbauer polynomials is defined

by
1

(1 —2zz+ 2%)>’
where x € |-1,1] and z € A. For fixed x the function &, is analytic in A, so it can be expanded
on a Taylor series as

Ka(T,2) = (1.2)

Ka(x,2) = ZC’S(QJ)z", (1.3)
n=0

Where C%(z) is Gegenbauer polynomial of degree n.
Obviously k. generates nothing when o = 0. Therefore, the generating function of the
Gegenbauer polynomial is set to be

ko(z,2) =1 —log(1l — 2x2 + 2%) = Z CO(x)2" (1.4)
n=0
for @« = 0 and Gegenbauer polynomials can also be defined by the following recurrence rela-
tions: .
Cn(a) = —[22(n+a—1)Ch 4 (2) = (n+2a = 2)C_4 (2)]; (1.5)

with initial values
C§(z) =1, Of(x) = 2ax and C§(z) = 2a(1 + a)z? — . see details in[7]

Definition 1 A function f(z) € A given by (1.1) is in the class S(«,x)(z) if
1+ eit

f(z) + 2f"(2) = kalz, 2)

wher60§a<1,x€(%,1], —5<t< T andze A
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The Lemmas below are employed for the purpose of this research

Lemma 1 if the function P(z) =1+ > 7", Cpp, € P, then
len] <2, n > 1

The inequality is sharp for f(z) = %

Lemma 2 The power series for p(z) = 1+ 00 1 ¢p2™.
(1.1), then,

Let the function p € A be given by

25 = i +x(4 — ) (1.6)
des=c3+201(4—cD)x—c1(4— )2 +2(4 — (A — |z)*)y (1.7)

for some value of x,n € C with |z| <1 and || < 1. see details in [7, 12]

Recently, Ala Amourah et al. [7] examined the Gegenbauer polynomials (or Ultraspherical
polynomials) C(x). They are orthogonal polynomials on [-1,1] that can be defined by the
recurrence relation

_ 2+ a—1DOF, (2) — (L4 20 = 2)OF ()

Ci(x) = ; ,Co(z) =1,C7 () = 2ax (1.8)

where ¢ € N\{1}.it si easy to see from (2.8) that C§(z) = 2a(1 + a)x? — a. For a € R\{0},
a generating function of the sequence C*(z), j € N, is defined by

1
(1 —2zz422)*’

Ka(x,2) 1= Z Ci(x)zt = (1.9)
=0

where z € A and x € [-1,1]. See[3] for details.
Two particular case of C*(z) are

i) C}(x) the second kind of chebyshev polynomials and

NI

ii) C?(z) the Legendre polynomials (see details in [4,7])

2 Coefficient Bounds

In this work, the coefficient bounds and upper bounds of second and third Toeplitz determinant
for the function in class S(a, x)(z),the following theorems are investigated:

Theorem 2.1 If the function f(z) € S(a,x)(z). Then
_ fa
“ 7 24,

o (x)ea + 5 (x))cf
303
i (x)es + ¢ (z)c}

2N

as =

as =

Where ¢; = [1 + 1+Te“(] - 1)] and j € N{2}
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Proof: For f(z) € Sy(a,z)(z) then there exist w(z) called a schwarz function with w(0) =0

and |w(z)| < 1 such that

1%—6#
2

f'(z) + 2f"(2) = Ka(z,w(2)) (2.1)

Now, insert the value of f'(z) and f”(z) in (2.1) we have

1 a1 (i — 1as Jj—1
—i—Zja]z —i—Z](] )a; 5~
Jj=2 Jj=2
. :
1 1 - '
—G—Zja]z [1+ 5 (7—1) (2.2)
j=2
(2.2) becomes
e .
L+ jgja;2’ " (2.3)
j=2

where ¢; = [1 + 1+Ten(j - 1)] and j € N{2}

For some analytic functions
w(z) =1z + 222 +e32® + euzt +
On the unit disk A with w(0) = 0,|w(z)| <1 (z € A) then,

Ka(z,w(2)) = L4 ¥ (2)erz + [c§(x)cad 5 (p)ed] 22 e (x)ez + 5 (x)ci]® + ... (2.4)
Equating (2.3) and (2.4) we have
)
1 =
+ T — ol
1+ 2¢oasz + 3¢za3z? + 4ggas2® + ... = 1+ §(x)crz + [ef(z)ez + c§(z)ed)2? + [ (x)es +
g (x)cd]23 + ...
Equating the coefficient of z, 22 and 23 we get
cfer
az = , 2.5
27 20y (25)
of (w)ea + ¢ (x))cf
az = , 2.6
3 - (2.6
o, = E@es + S@)ch (2.7)
494

Theorem 2.2 Let 0 < « < 1, and if the function f(z) be of the form (1.1) belongs to the class

S(a,z)(2)
2 2 20 9 1 16022a(55)
‘a3—a2‘§ Cl @—% +T¢§
4
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Proof: Using the coefficients in the Theorem 2.1 then T5(2) < |a3 — a3| becomes

o |crwcs e e ez ) )
903 369303
using lemma 2 in (2.8) we have
03— a3 = C3o(x) (Cf +2C1%x X + 22 X? B C? (993C3(x) — 4¢3C3*(z)) (2.9)
9¢3 4 369303
simplifying (2.9),we get
C?(x)0f C¥(x)C? Cza(x)4 C3(2)C3z| X C¥(x)|x|*X?
2 2 |4 1 Ui i, 962 i i i _
|CL3 (12’ — 36¢§ 4¢% + C 1 ¢3 + 18¢§ 36@5% U(‘$|?C)
(2.10)
Differentiating (2.10) partially with respect to |z| we get
(63 (6% (6% 4 (6% (6%
PO S 36¢2 4¢3 c 17 18¢2 18¢2 '
suppose |z| = 1 then
CQa(x)CZL CZa(:E)CQ C«Qoe(x)4 0204(:6)
2 2 |4 _ Y 2 2 i 2y o x2
since X = (4 — C?) and c € [0,2] then
C2e(z)C*  C2(2)C? Cza(x)4 C2(z)
2 2 |4 _ Y 2 2 i 16 4+ 402
o5 — a3l <{= 3557 1 teg e (164407

Obtaining the maximum value for |a3 — a3| at ¢[0,2] i.e ¢ <2 we have

co ( 9 1 ) | 1603 (x)

2 2
ol g w) e

Theorem 2.3 Let 0 < « < 1, and if the function f(z) be of the form (1.1) belongs to the class
then S(a, z)(z)

T3(1) < |1+

ACT* (x) +8CF* (2)Cs (x) 207 (x) (40%@(:@ - 160§a(x)>
36503 %3 993
Proof: Using the coefficients in the Theorem (2.1) then

T5(1) = ‘1 + 2a3(ag — 1) — a3| becomes

C*(2)CCy + CF*(2)C8 () CF — 3CF* (2)Cipe C3(x)C3 + C3°(x)Ct
Ty() =1+ 6026(3 B 902
¢56(3) o3
(2.12)
5
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using lemma 2 in (2.10) we have

LGP | G Gl | CR@)0s@)C)
12¢3¢3 3¢3¢3 12¢3¢3 6¢3¢3

C12a(z)C?  C?(x)0f C?(x)C?xX B C?(x)x? X? B C3(x)Cy

203 3602 18¢3 362 992

T5(1) =

We assume that X = (4 — C?)
Applying Triangular Inequality and let ¢; = ¢,

Ty(1) < |14 CE@C! | CR@ICE@)CT_CR@)C?_CR@)Ct_ CR@)Ct| | O (@)CRlal _
N 120303 66363 202 3602 92 36203

Ci(@)Cll| 202 @)C?a| | CF*(@)Clal _ACE@)lal? | 208 @)CPaf _ C@Claf _
12q§§¢3 9¢§ 18(75% 9¢§ 9(;5% 36(1)% ’

Differentiating v(c, |z|) partially with respect to |z| and clearly ¢'(]z|) > 0 on [0, 1] which
implies p(|z|,c) < ¢(1,c)w

T (1) < 1+C{)a($)04 012“(:6)03‘(3:)04_01204(35)02_012&(;3)04_012a(x)04 C{’o‘(l‘)CIQ
= 120263 66203 202 3692 992 3¢2¢3
()0 207 (@)C* | CP(x)C* 8CT (x)|x] " ACH (2)C?|z| . CF*(2)C|x]
126363 963 18¢3 963 943 18¢3
(2.13)

since |z| = 1 and € € [0, 2] then (2.11) becomes

3a 2a0 o 20 20 20 3o 2

T3(1) < |1+ ACT* () 4‘82012 ()05 (x) 209 2(@ _ (401 (z) +21602 (93)> + Cy (255)01
3¢2¢3 ¢2 9¢73 3¢2¢3

B C3o(x)Cf B 20%2%(x)C? O (z)C* B 8C2(x)  4C?*(x)C? B C?(x)C4 (2.14)
12033 93 1803 93 993 1803 '

Obtaining the maximum value for |T5(1)| at ¢[0,2] i.e ¢ < 2 we have

T5(1) 1+

403 (x) + 80 (2)C5'(x)  203°(x) <4C%“(fc)+1603a(x)) (2.15)
36303 % 93 |
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