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Abstract 
This paper demonstrates that the results analysis of Albert Abraham Michelson’s 

moving mirrors experiment is wrong. The conclusion that the speed of reflected 

light rays from the moving mirrors is not affected by the speed of the mirrors 

cannot be deduced from the data presented in Michelson’s paper. 

There are several experiments that seemingly prove the second postulate of the 

theory of special relativity. One of them is Albert Abraham Michelson’s 1913 

moving mirrors experiment. Another is the 1887 Michelson-Morley experiment. 

While the objective of the Michelson-Morley experiment was to measure the 

ether wind speed, the failure of which left everyone surprised and led to some far 

reaching conclusions, the Michelson moving-mirrors experiment was designed 

specifically to decide whether the speed of reflected light is affected by the speed 

of reflecting mirrors. Michelson’s unequivocal conclusion was that the speed of 

light rays is not affected by the motion of the mirrors, which is seemingly an 

experimental verification of Einstein’s second relativity postulate. We will show 

that Michelson was wrong to assume that the delay between two collinear light 

rays could cause an interference pattern and to equate this spatial delay to the 

observed distance between two adjacent constructive interference lines. 

Therefore, the question whether the moving mirrors affect the speed of light rays 

reflected from them cannot be answered based on the data presented in 

Michelson’s paper which reviews his moving mirrors experiment.  

There are many arguments that invalidate (each one of them) the conclusions of 

the Michelson-Morley experiment. We will apply the argument used in the 

previous paragraph. The anticipation to observe an interference pattern was 

based on the premise that a spatial delay between two collinear light rays, caused 

by the ether wind, can produce such a pattern. Since this premise is wrong – all 

the conclusions of this experiment are invalid, including the refutation of the 

existence of ether.  
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Introduction 
 Over a time period of more than a century many experiments were performed to 

“prove” the postulates of the theory of relativity and its conclusions. In reference 

3 it is proven that the theory of relativity is based on an error and is thus invalid. 

An experimental validation of any postulate or conclusion of the theory of 

relativity will not validate this theory, but rather invalidate the basic laws of 

electromagnetism (Ampere’s, Faraday’s and both Gauss’s laws). 

The 1913 Michelson’s moving mirrors experiment was specifically designed to 

decide whether a moving mirror affects the speed of light reflected from it. The 

conclusion of this experiment was that the speed of the light rays reflected from 

the moving mirrors was not affected by their motion.  

In chapter 1 of this paper it is shown, based on Maxwell’s equations, that the 

speed of a light ray reflected from a perfectly conducting reflector equals the 

speed of the approaching light ray, both with respect to the reflector. This, of 

course, contradicts the conclusion of Michelson’s experiment. In order to resolve 

this discrepancy an attempt was made to find an error in Michelson’s calculations, 

but none was found. A seemingly observed interference pattern is attributed by 

Michelson to a delay between two collinear light rays and the spatial delay is 

equated to the distance between two adjacent constructive interference lines. 

We will show that an observed interference pattern cannot be created by two 

collinear light rays, even in the case where there exists a delay between them.  

There are three contributions to the various observations of Michelson’s 

experiment. Michelson took into account two of them and neglected the angular 

motion of the mirrors. The angular motion does not affect Michelson’s calculated 

delay between two light rays, but it is the only cause of the lateral displacement 

between the two rays which causes an interference pattern. In addition we will 

show that the fact whether the motion of the mirrors affects, or does not affect, 

the speed of the reflected light rays has no (or very little) effect on the measured 

distance between two adjacent interference lines. 

Consequently, the question whether the speed of light rays reflected from the 

moving mirrors is, or is not, affected by the motion of the mirrors cannot be 

decided based on the data presented in Michelson’s 1913 paper (reference 1). 

Another uncertainty about Michelson’s paper is what was actually observed in the 

experiment. It is quite probable that rather than observing an interference 

pattern – the telescope enabled to take a look at the intersection of two light rays 

with a mirror.  
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Nomenclature       
ang                                               The deflection angle of the moving mirrors from their position in figure 2.1   

                                                      (positive clockwise) 

Center Error                               The distance between the axis of rotation of the moving mirrors and the 

                                                      center of the cylindrical mirror    

Closest Distance                        The smallest distance between a constructive interference line and the 

                                                      zero point 

d                                                   Distance between the intersections of two split light rays on mirror A 

                                                      (figures 2.1 and 2.2) 
Effective Angular Deflection   The range of the angle  ang  at which the light rays hit the moving mirrors 

EM Wave                                     Electromagnetic Wave 

h                                                   Distance of midpoint between the intersections of two split light rays on 

                                                      mirror A and the zero point (figures 2.1 and 2.2) 
Lateral displacement                The distance between two parallel light rays, namely: in a direction 

                                                      normal to the direction of their propagation 

Lower Point                                The point of intersection between the lower ray and mirror A or the 

                                                      monitoring screen 

Lower Ray                                   The light ray travelling on the route A, D, E, C, B and back to A and the 

                                                      monitoring screen (figure 2.2)  
Monitoring Screen                    A screen on which optical phenomena are observed (figures 2.1 and 2.2)  

n                                                   Integer  
p                                                   hx /  

Plane Error                                  The distance between the plane containing both moving mirrors from the 

                                                       axis or rotation 

q                                                   
2)( τσ −  

r                                                   The factor by which the speed of a moving mirror affects the speed of a 

                                                      Light ray reflected from it.  r=0  or  r=2 
Upper Point                                The point of intersection between the upper ray and mirror A or the 

                                                      monitoring screen 
Upper Ray                                   The light ray travelling on the route A, B, C, E, D and back to A and the 

                                                      monitoring screen (figure 2.2). 
x                                                   Distance from the zero point on the monitoring screen (figure 2.1)                                               

Zero Point                                   The upper and lower points on the monitoring screen when they 

                                                      coincide at  ang=0 

α                                                   The angle between mirror A and the monitoring screen (figure 2.1)  
φ                                                   d/λ  

λ                                                   Light wave length  
σ                                                   αφξ cos/)( +n

 τ                                                    αtan  
ξ                                                   The fraction of wave-length by which one EM wave leads another wave 

                                                      5.05.0 ≤<− ξ  
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1. Speed of Reflected Electromagnetic Waves 

Based on Maxwell’s equations, it is proven in this chapter that the speed of a 

reflected electromagnetic (EM) wave from a perfectly conducting reflector equals 

the speed of the approaching wave, both relative to an observer which is 

stationary with respect to the reflector. 

An EM wave hits a perfectly conducting plane normal to its surface at a speed 
1
v , 

amplitude of electric field 
1
a , 

11
/1 λ=k  where 

1
λ  is the EM wave length and 

1
ϕ  is 

a given phase shift.  What are the corresponding values of the reflected wave 

parameters [the parameters with subscript 2 in equation (1.1)]? Of particular 

interest is the value of 
2
v , the speed of the reflected wave. Except for the phase 

angles 
1

ϕ  and 
2

ϕ  - the values of all other parameters are assumed to be positive. 

The values of all the above parameters are as viewed by an observer stationary 

with respect to the reflector. 

])(cos[])(cos[),(
22221111

ϕϕ ++++−= tvxkatvxkatxE                                (1.1) 

Let’s assume that the reflector is located at lx = . Due to the reflector being a 

perfect conductor we must have (in order to avoid infinite current densities): 

.0),( =tlE                                                                                                                       (1.2)    

Therefore: 

0])(cos[])(cos[),(
22221111
=++++−= ϕϕ tvlkatvlkatlE                              (1.3) 

for all t . 

It follows from equation (1.3) that ),( tlE  and all its time derivatives must vanish. 

0])(cos[])(cos[),(
22221111
=++++−= ϕϕ tvlkatvlkatlE                              (1.4) 

0])(sin[])(sin[),(
222222111111
=++−+−= ϕϕ tvlkvkatvlkvkatlE&                  (1.5) 

0])(cos[)(])(cos[)(),(
222

2

222111

2

111
=++++−= ϕϕ tvlkvkatvlkvkatlE&&     (1.6) 

From equation (1.6): 

0])(cos[])()[(

]})(cos[])(cos[{)(

222

2

11

2

22

22221111

2

11

=++−

+++++−

ϕ

ϕϕ

tvlkvkvk

tvlkatvlkavk
                                  (1.7) 

Since the first term in equation (1.7) vanishes according to equation (1.3): 

1122
vkvk =                                                                                                                                                        (1.8)                                                                       
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Equation (1.8) states that the frequencies of the oncoming and reflected waves, 

as viewed by an observer stationary with respect to the reflector, are equal. 

From equations (1.4), (1.5) and (1.8): 

])(cos[])(cos[
22221111

ϕϕ ++−=+− tvlkatvlka                                                  (1.9) 

])(sin[])(sin[
22221111

ϕϕ ++=+− tvlkatvlka                                                 (1.10) 

By adding the squares of the left and right hand side of the last two equations we 

obtain: 

12
aa =                                                                                                                             (1.11) 

Equation (1.11) states that since no energy is absorbed by the reflector – the 

amplitudes of the advancing and reflected waves’ electric fields are equal, and 

may thus be cancelled out from equation (1.1). 

From equations (1.1) and (1.8): 

]
2

)()(
cos[]

2

)()(
cos[

])(cos[])(cos[),(

11

21212121

222111

tvk
xkkxkk

tvxktvxktxE

−
−+−

⋅
+++

=++++−=

ϕϕϕϕ

ϕϕ

    

(1.12) 

At the location of the reflector, lx = : 

0]
2

)()(
cos[]

2

)()(
cos[),(

11

21212121 =−
−+−

⋅
+++

= tvk
lkklkk

tlE
ϕϕϕϕ

 (1.13) 

The first cosine in equation (1.13) is not a function of time – which enables the 

fulfillment of the boundary condition (1.2) by the proper selection of the phase 

angle 
2

ϕ . 

To determine the values of 
2
k

 
and 

2
v  we observe that the approaching EM wave 

[the first term on the right side of equation (1.1)] is a solution of the one 

dimensional Maxwell equation (1.14). 

2

2

2

12

2 ),(),(

x

txE
v

t

txE

∂

∂
=

∂

∂
                                                                                          (1.14) 

The introduction of a reflector in the path of an electromagnetic wave does not 

change the laws that determine its behavior; it only affects the boundary 

condition, thereby creating the reflected wave. Therefore, equation (1.1) must 

satisfy equation (1.14). Applying the operator (1.14) on equation (1.1) yields: 
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0])(cos[])()[(

])(cos[])()[(

222

2

12

2

222

111

2

11

2

111

=++−

++−−

ϕ

ϕ

tvxkvkvka

tvxkvkvka

                                          (1.15)        

The first term in equation (1.15) vanishes since, as explained above, it is a solution 

of the operator (1.14). From the second term of the last equation we obtain: 

0)(
2

1

2

2

2

2
=− vvk                                                                                                                                       (1.16)             

Hence: 

12
vv =                                                                                                                                                               (1.17) 

And it follows from the last equation and (1.8) that: 

12
kk =                                                                                                                                                              (1.18) 

Equations (1.17) and (1.18) state that, for an observer stationary with respect to a 

reflector, the speed and wavelength of a reflected EM wave equal those of the 

approaching wave. Substituting equations (1.17) and (1.18) into (1.12) yields: 

]
2

)(
cos[]

2

)(
cos[),(

11

2121

1
tvkxktxE −

−
⋅

+
+=

ϕϕϕϕ
                                        (1.19) 

This is a standing wave, which is a product of two functions: one varies only 

space-wise while the other varies only time-wise. 

The results of this chapter clearly indicate that a reflector moving relative to an 

inertial coordinate system does affect the speed of a reflected EM wave with 

respect to that coordinate system, contrary to the conclusion of Michelson’s 1913 

moving mirrors experiment. A review of the results analysis of the above 

mentioned experiment is presented in the next chapter. 
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2. A Review of Michelson’s Moving Mirrors Experiment 

2.1 Introduction 

Michelson’s moving mirrors experiment is described in reference 1 and the two 

following links. These links are very much the same – except for somewhat 

different notations. The second link displays the location of the telescope where 

an interference pattern is supposedly observed. 

https://en.wikisource.org/wiki/Effect_of_Reflection_from_a_Moving_Mirror_on_the_Velocity_of_Light 

http://www.angelfire.com/sc/aether/mic1913.html 

There is a question whether the motion of a reflector influences the speed of an 

electromagnetic (EM) wave reflected from it. The objective of the above 

mentioned test was to decide this question experimentally. 

We refer to the figure and notations of the first link (and figure 2 in section 2.3). 

A light ray from source S is split at the stationary lightly silvered mirror A and each 

of the resulting two rays travels over five legs and returns to mirror A. Over these 

five legs the two rays move in opposite directions. On the sixth leg, from mirror A 

to the telescope, they move in the same direction.  

In the first link the value of the parameter r is either 0 or 2. According to the 

undulatory theory of light the speed of light is independent of the velocity of the 

source, or of the velocity of a mirror at which it is reflected, namely: r=0. If the 

light corpuscles are reflected as projectiles from an elastic wall - the velocity of 

light normal to the mirror should be affected by twice of the mirror’s speed, i.e.: 

r=2. The conclusion of the article is that r=0, which seems to be an experimental 

verification of Einstein’s special theory of relativity second postulate. However, 

this result contradicts the conclusion of the previous chapter that r=2. The above 

mentioned contradiction is the motivation for the review of Michelson’s moving 

mirrors experiment results analysis, which is presented in this chapter. 
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2.2 Three Cases EM Wave Interaction 

Definition: The “lateral displacement” between two parallel EM waves is the 

distance between the lines of their motion, namely: in a direction normal to the 

direction of their propagation. 

 

Case #1: Two EM waves (both having the same speed v , wavelength λ  and 

electric field intensity amplitude a ) move on the same line (or two parallel lines 

the relative lateral displacement of which is smaller than one wavelength). There 

is a phase shift ϕ  between them. The resulting electric field of the composite 

wave is: 

)
2

cos()
2

cos(2)]cos()[cos(),(
ϕϕ

λ
ϕ

λλ
−

−
=−

−
+

−
=

vtx
a

vtxvtx
atxE      (2.2.1) 

The resultant wave is basically an “average” of the two original waves multiplied 

by an amplitude modification factor of )2/cos(2 ϕ . This means that the 

amplitude varies between the extremes of a2  and 0 , depending on the value of 

the phase shift ϕ . It is important to realize that there cannot be any interference 

pattern in this case. 

 

Case # 2: Two EM waves (both having the same wavelength λ  and electric field 

intensity amplitude a , but have different speeds 
1
v  and 2

v ) move on the same 

line (or two parallel lines the relative lateral displacement of which is smaller than 

one wavelength). 

The resulting electric field of the composite wave is: 

)
2

cos()2cos(2

)]cos()[cos(),(

21

21

21

t
vv

t
vv

x

a

tvxtvx
atxE

λλ

λλ

−
+

−

=
−

+
−

=

                                                    (2.2.2)
 

The resulting wave propagates at the average speed 2/)(
21
vv +  with a pulsating 

amplitude of a2  varying harmonically at the frequency )4/()(
21

πλvvf −= . As in 

the previous case, no interference pattern can be observed in this case as well. 
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Case #3: Two EM waves (both having the same speed v , wavelength λ  and 

electric field intensity amplitude a ) move on two parallel lines the relative lateral 

displacement of which is greater than one wavelength. 

 

In figure 1 a light ray FA hits a lightly silvered mirror at the point A and is reflected 

towards a screen. Another light ray GB hits the mirror at the point B and goes 

through it to the screen. In figure 1, dAB = , hCD =  and xDE = . α  denotes 

the angle between the mirror and the screen. The point E is a constructive 

interference point if λnBEAE =− , where λ  is the wavelength of the rays and 

n  is any integer. The last statement is valid only if the phases of the rays at the 

points A and B are equal. A modification for a more general case will be 

incorporated later. The parameters d  and α  may be either positive or negative. 

If the ray FA hits the lightly silvered mirror above the ray GB - d  is positive. 

Otherwise it is negative (figure 1). If the upper half of the lightly silvered mirror in 

figure 1 is farther away from the screen - α  is positive. Otherwise it is negative. 
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λαααα n
d

h
d

x
d

h
d

x =−++−++− 2222 )sin
2

()cos
2

()sin
2

()cos
2

(

  

(2.2.3) 

Multiplying and dividing the left hand side of equation (2.2.3) by a similar term 

where the minus sign between the square-roots is replaced by a plus sign, and 

assuming that hd <<  and xd << , we obtain: 

λ
αα

n
xh

xhd
=

+

⋅−⋅
22

2

)cossin(2

                                                                                

(2.2.4) 

Let’s define the following dimensionless parameters: 

dh

x
p

λ
φ ≡≡ ;

                                                                                                     
(2.2.5) 

Equation (2.2.4) becomes: 

φ
αα

n
p

p
=

+

⋅−
21

cossin

                                                                                              

(2.2.6) 

Now let’s assume that the phase difference between the two rays is known at 

point D on the screen where 0=p . If the phase difference at that point is 0 - the 

integer n  of equation (2.2.6) must also vanish at that point, and the term αsin  

must be added to the right side of (2.2.6) in order for it to equate. In general 

there will be a phase difference between the rays at point D which may be 

characterized by a parameter ξ , which is the fraction of wavelength by which the 

light ray FA leads the ray GB. The values of the parameter ξ  are in the range 

5.05.0 ≤<− ξ . In the more general case equation (2.2.6) becomes: 

αφξ
αα

sin)(
1

cossin
2

+−=
+

⋅−
n

p

p

                                                                      

(2.2.7) 

Dividing both sides of equation (2.2.7) by αcos  yields: 

α
α

φξα
tan

cos

)(

1

tan
2

+
−

=
+

− n

p

p

                                                                                 

(2.2.8) 
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The solution of equation (2.2.8) for hxp /=  as a function of n  provides the 

locations x of the various constructive interference lines. 

In order to facilitate the solution we define the following parameters: 

ατ
α

φξ
σ tan;

cos

)(
≡

−
≡
n

                                                                                        
(2.2.9)

 

Equation (2.2.8) becomes: 

τσ
τ

+=
+

−
21 p

p
                                                                                                       (2.2.10) 

To solve equation (2.2.10) we square both of its sides. Since squaring adds extra 

solutions it is necessary to retain only the solutions that satisfy equation (2.2.10). 

 )1()()( 222
pp ++=− τστ

   

                                                                                (2.2.11) 

Rearranging we obtain: 

])([2])(1[ 2222 τστττσ +−+⋅−+− pp                                                            (2.2.12) 

Therefore: 

2

2222

)(1

])(][)(1[

τσ

τσττσττ

+−

+−+−−±
=p

                                                       

(2.2.13) 

 

In the singular case where 1)( 2 =+τσ , the solution for p  is the following: 

τ

τ

τ

στσ

τ

τστ

2

1

2

)2(

2

)( 222 −
=

+
−=

+−
=p

                                                          

(2.2.14)

             

The condition for the existence of a solution is: 

0])(][)(1[ 2222 ≥+−+−− τσττστ
                                                                                     

(2.2.15) 

Let 
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2)( τσ +≡q
                                                                                                                                             

(2.2.16)
 

Equation (2.2.15) becomes: 

0)1(]1][[ 2222 ≥−+=−−− qqqq τττ
                                                                               

(2.2.17)
         

Wherefrom it follows that:  

0)]1([ 2 ≤+− τqq
                                                                                                                               

(2.2.18) 

Since 0≥q  the condition for the existence of a solution is therefore: 

21 τ+≤q
                                                                                                                                                   

(2.2.19) 

It follows from the definition of the parameter q  in equation (2.2.16): 

22
11 ττστ +≤+≤+−                                                                                                           (2.2.20) 

Thus: 

ττσττ −+≤≤−+−
22

11                                                                                                  (2.2.21) 

Inserting the values of σ  and τ  in equation (2.2.9) into equation (2.2.21) yields: 

αφξα sin1)()sin1( −≤−≤+− n
                                                                                          

(2.2.22) 

But since d/λφ = [see equation (2.2.5)]: 

ξ
λ

αξ
λ

α +−≤≤++−
d

n
d

)sin1()sin1(
                                                                         

(2.2.23) 

Equation (2.2.23) provides the range of the integer n  for which there exist 

solutions to equation (2.2.12). If 0=ξ  [ξ  is the fraction of wavelength by which 

the light ray FA leads the ray GB at point D (see figure 1)] 0=n  is in this range, 

and if 5.0/ <λd  this is the only point. It is easy to see that when 5.0/ <λd  

there are combinations of ξ  and α  for which the range of the values of n  in 

equation (2.2.23) is an empty set. This means that there is no solution to equation 

(2.2.12) and that no constructive interference lines can be observed. 
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In the case where 0=α , which means that the mirror is parallel to the screen, 

0=τ  and φξσ )( −= n , see equation (2.2.9): 

222
]/)[(1

/)(

])[(1

)(

1 dn

dn

n

n
p

λξ

λξ

φξ

φξ

σ

σ

−−

−
±=

−−

−
±=

−
±=

                              

(2.2.24) 

If, in addition, the phase shift between the two beams equals 0 ( 0=ξ . This is the 

case of the classical interference experiment where two slits are illuminated 

symmetrically by a monochromatic light source) we have: 

2)/(1

/

dn

dn
p

λ

λ

−
±=

                                                                                                                         

(2.2.25) 

From equation (2.2.25) we see that in this symmetric case: 

1. The interference pattern is symmetric. 

2. The number of constructive interference lines is finite with λ/dn < . 

3. The distance between adjacent constructive interference lines is not 

constant. They are more crowded at the center of the interference pattern 

and become sparser at the edges. 

4. If 1/ ≤λd  there are no constructive interference lines, except for the one 

at the center. 

5. As λ/d  increases – there are more constructive interference lines and they 

are more evenly spaced close to the center of the interference pattern. If 

λ/d  is very large – the constructive interference lines are very crowded 

and might appear as continuous line of light at the center of the 

interference pattern. 

6. The above closed-form analytical solution is valid only in case where 

hd <<  and xd << . It seems that in the actual experiment these 

conditions are not met and an iterative procedure is needed to arrive at the 

exact solutions. 
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2.3 Michelson’s 1913 Moving Mirrors Experiment 

As indicated in the above links this experiment was carried out with the purpose 

of deciding whether the motion of the mirrors affects the speed of light rays 

reflected from them (r=2) or whether it does not (r=0). The experiment results 

analysis led Albert Michelson to the seemingly indisputable conclusion that r=0. 

We will show that the results analysis is faulty and that the measured distance 

between two adjacent constructive interference lines is not affected by the speed 

of the reflected light rays from the moving mirrors. In other words – the 

measured distance is the same (or varies marginally) whether the moving mirrors 

affect the speed of the reflected light waves or if they do not. 

 

Figure 2 is a slightly modified diagram of the experiment apparatus compared to 

that presented in reference 1. A light ray emanating from source S is split at the 

lightly silvered mirror A. The resulting two rays move over five legs in opposite 

directions, return to mirror A and move in the same direction on the sixth leg 

towards a monitoring screen where an interference pattern is observed. If the 

GSJ: Volume 6, Issue 7, July 2018 
ISSN 2320-9186 

GSJ© 2018 
www.globalscientificjournal.com 



16 

 

“moving mirrors” are not rotating – the time spans it takes both rays to traverse 

the various legs are identical and will be referred to as the “nominal values”. 

When the “moving mirrors” are rotating – the above mentioned time spans differ 

from the nominal values and are not the same for both rays. Michelson computed 

the difference between the arrival times of both rays at the monitoring screen (in 

the original experiment it was a telescope), multiplied it by the nominal speed of 

light and divided it by the light wavelength. The result is the number of 

wavelengths by which one light ray arrives at the monitoring screen ahead of the 

other ray. Michelson equated this difference with the observed distance between 

two adjacent constructive interference lines. 

The first attempt to review Michelson’s work was to check the veracity of his 

analysis. In order to avoid any doubt – a computer program was written, which is 

basically a ray tracing program, to compute the various variables associated with 

the experiment. The computations are absolutely accurate, no approximations 

whatsoever. In addition to the deviation from the nominal values of the travel 

time of both rays over the various legs, the program computes the coordinates of 

the intersection points between the rays and all the mirrors of the experiment 

setup, as well as the intersection points between the rays and the monitoring 

screen on which the interference pattern is observed. 

There are three contributions to the above mentioned computed and measured 

variables: 

1. The effect of the velocities of the moving mirrors. 

2. The translational deviation of the moving mirrors. 

3. The angular deflection of the moving mirrors. 

In the computer program each contribution can be evaluated separately. 

Michelson neglects the third contribution. However, although the angular 

deflection of the moving mirrors significantly affects the travel time of the light 

rays over the various legs – the sum of these deviations from the nominal values 

is identical for both rays so that the delay between them is unaffected. This 

means that Michelson’s calculations are accurate. 
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Seems that the conclusion of Michelson’s report is correct and the case is closed. 

Well, not quite. 

A question arises: How is the observed interference pattern created? It certainly 

cannot be created due to the lag between the two light rays. While the above 

mentioned third contribution, namely: the angular deflection of the moving 

mirrors, does not affect the delay between the light rays, it turns out to be the 

only factor that causes them to hit mirror A at different points. Michelson 

neglected this contribution, accordingly on the final sixth leg the two rays must be 

travelling on the same straight line. As explained in case #1 of section 2.2 this lag 

can only affect the intensity of the light ray hitting the monitoring screen. It 

cannot create an interference pattern. Therefore, Michelson’s results analysis of 

his experiment is wrong. 

The distance between two adjacent constructive interference lines in Michelson’s 

moving mirrors experiment is expressed in terms of the light wavelength.  In case 

#3 of section 2.2 this same distance is expressed in terms of hxp /= , where h
 
is 

the distance between the monitoring screen and the midpoint between the 

locations where the two light rays hit mirror A. Consequently, the comparison 

between the observed and computed locations of the interference lines is not 

straightforward. However, the computed distance between two adjacent 

constructive interference lines in case #3 of section 2.2 is independent (or varies 

very slightly as a function) of the value of the parameter r. Thus, the observed 

distance between two adjacent constructive interference lines is not indicative of 

the value of the parameter r. Therefore, the value of r cannot be determined 

based on the results presented in Michelson’s moving mirrors experiment article. 

However, repeating the experiment can render the value of the parameter r by 

observing the locations of constructive interference lines. 

Firstly a “zero point” should be marked on the monitoring screen. This is done by 

turning on the light source while the mirrors are stationary, positioned as shown 

in figure 2, and observing the light spot on the screen. Turning the mirrors 

manually back and forth does not affect the position of the above mentioned light 

spot which remains located on the zero point.  
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Let’s define the “closest distance” as the distance between the zero point and the 

nearest constructive interference line, while the mirrors are rotating. 

The mirrors should then be rotated. If the closest distance equals zero, namely: a 

constructive interference line is located on the zero point, then r=2. If the closest 

distance equals approximately a quarter of the distance between two adjacent 

constructive interference lines, and the corresponding constructive interference 

line is shifted towards the light source S in figure 2, then r=0. [See figure 6] 

If the experiment is repeated – a laser beam should be used and the telescope of 

the original experiment can be replaced by a monitoring screen located relatively 

far away from mirror A (say 1.2m). In this case the assumptions that hd <<  and  

xd <<  are valid along with all the derivations presented in section 2.2. 

The data presented in reference 1, as well as in the two links at the beginning of 

this chapter, provides the position of the moving mirrors C and D relative to the 

cylindrical mirror E (see figure 2). The exact positions of the stationary mirrors A 

and B are not specified. For the computations, the results of which are presented 

below, it was assumed quite arbitrarily that the distance travelled by the light ray 

between mirrors A and D, while stationary, is 0.3m. The results corresponding to 

two more values of this arbitrarily chosen distance are summarized below. 

The four following figures present results obtained from the ray-tracing computer 

program runs, both for r=0 and r=2. Since the “calculated displacements” for r=0 

and r=2 in Michelson’s paper equal 3.76 and 0, respectively, the corresponding 

values of ξ  are -0.24 and 0. These results match the corresponding outputs of the 

ray-tracing computer program, which in addition provides the following results: 

63.5/ ≅λd  and 
o6242.45=α . The value of 2.1=h m was arbitrarily selected. 

As explained above, the light ray emanating from source S is split at the lightly 

silvered mirror A. We first define the following two terms (see figure 2): 

1. Upper Ray: The light ray travelling on the route A, B, C, E, D and back to A 

and the monitoring screen.  

2. Lower Ray: The light ray travelling on the route A, D, E, C, B and back to A 

and the monitoring screen. 
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The figures below pertain to the condition where the moving mirrors are rotating. 

  

Figure 3.  Upper ray deflection vs. rotating mirrors’ angular position 

 

Figure 4.  Lower ray deflection vs. rotating mirrors’ angular position 
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As indicated above, when the mirrors are not rotating both the upper and lower 

rays hit the same point on the monitoring screen, which is called the “zero point”, 

at any angular position of the moving mirrors. 

Figures 3 and 4 present the normalized deviations of the upper and lower rays, 

respectively, from the zero point as a function of the angular deflection of the 

moving mirrors C and D relative to their position in figure 2 (a positive value of 

the angle  ang  means counter clockwise rotation).  

It is apparent from figures 3 and 4 that these deviations are negligible, in view of 

the fact that the distance between two adjacent constructive interference lines is 

of the order of magnitude of 25.0/ =hx . 

Figure 5 presents the distance d  between the upper and lower rays when hitting 

the mirror A on their way to the monitoring screen, divided by the light wave-

length λ  (
6106.0 −⋅=λ m). As is obvious from the figure the variation of λ/d  is 

less than 0.15% and has an insignificant effect on the interference pattern 

presented in figure 6. Accordingly, the value of λ/d  corresponding to 2=r  at 

0=ang   was arbitrarily selected for both curves in figure 6. 

 

Figure 5.  Distance between rays on mirror A vs. rotating mirrors’ angular position 
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Figure 6 presents the interference patterns, only a limited regions near the zero 

point, for r=0 and r=2. Points where the normalized light intensity equals 1 or 0 

correspond to constructive and destructive interference lines, respectively. In 

addition to the fact that an interference pattern is achieved for both r=0 and r=2, 

it is obvious that the distance between two adjacent constructive interference 

lines is practically the same for both values of r. The decision whether  r=0  or  r=2 

can be made by measuring the “closest distance” defined above. If the closest 

distance equals zero, i.e.: a constructive interference line is located right on the 

zero point, then r=2. If the closest distance equals approximately a quarter of the 

distance between two adjacent constructive interference lines (it should actually 

be close to the value of 24.0=ξ ) then r=0.  

 

Figure 6.  Nominal interference pattern   

As pointed out above, it was assumed quite arbitrarily that the distance travelled 
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If the distance travelled by the light ray between mirrors A and D in figure 2 

equals 0.186m or 1.5m, the values of the normalized deflections in figures 3 and 4 

should be multiplied by the factor 0.933 or 1.785, respectively. These deflections 

are still negligible compared to the distance between two adjacent constructive 

interference lines. The values of λ/d  in figure 5 should be multiplied by the 

factors 0.982 and 1.194, respectively. The normalized distance hx /  between two 

adjacent constructive interference lines will be inversely proportional to these 

factors. However, the decision whether r=0  or  r=2 stays unaltered since it 

depends on the ratio between the “closest distance” defined above and the 

distance between two adjacent constructive interference lines, rather than on 

absolute locations. 

If notes taken during the moving mirrors experiment in 1913 by Michelson and his 

assistants are available – a look at them might answer the question about the 

location of the closest constructive interference line relative to the zero point. 

Otherwise a repetition of the experiment is necessary to determine the value of r. 

I bet that if the experiment is repeated, a constructive interference line will be 

located right on the zero point, and will thus be an experimental refutation of 

Einstein’s second relativity postulate. 

The above presentation is valid when the experiment setup is absolutely accurate, 

I.e.: the axis of rotation is contained in the plane of the moving mirrors and is 

located exactly at the center of the cylindrical mirror. The required accuracy of 

the above parameters is analyzed in the appendix. The required accuracy 

increases with the angular size of the cylindrical mirror, which is twice the 

effective angular deflection of the moving mirrors. For a ±40° cylindrical mirror 

the accuracy should be a few microns. This can be achieved by fine tuning the 

experiment setup based on measurements of the distance between the upper 

and lower rays on mirror A as a function of the angular position of the moving 

mirrors while they are stationary. The moving mirrors assembly should be rigid 

enough and well balanced to avoid vibrations and the consequent blurring of the 

interference pattern. The cylindrical mirror is most probably much smaller than 

±40°, hence the required setup accuracy may be significantly reduced. 
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2.4 Michelson-Morley 1887 Experiment 

The 1887 Michelson Morley experiment is presented in reference 2 and at the 

following link: 

https://en.wikipedia.org/wiki/Michelson%E2%80%93Morley_experiment 

This experiment is flawed as well. Again, the expected interference pattern is 

attributed to the time (or distance) delay between two light rays (see figure 4, last 

figure, at the above link) which is wrong reasoning as explained in section 2.2.  

In figure 7 of the above link we can see that an interference pattern was 

observed, but the estimated ether speed was much less than expected. The 

question is, in view of the explanations in the previous section, how was an 

interference pattern created in the first place? The reason could be very simple. 

Inaccuracies in mounting the various mirrors caused the two light rays to hit the 

central mirror at two different points, thus obtaining two light sources which are 

a necessary condition for the establishment of an interference pattern. The less 

accurate the mounting of the mirrors – the larger the distance between the two 

rays which is translated to a closer distance between two adjacent interference 

lines. Since the speed of the ether wind was wrongly associated with this distance 

– less mirror-mounting accuracy was interpreted as slower ether wind. In fact, if 

all the mirrors were mounted with absolute accuracy there would be no 

interference pattern. In case of very accurate, but not perfect, mounting the 

estimated ether wind could be estimated as greater, even much greater, than the 

speed of Earth in its orbit around the Sun. However, the above reasoning does not 

explain the periodic variation with time of the estimated ether wind speed which 

was observed in the Michelson-Morley experiment (could it be due to the angular 

positions of the various mirrors being affected by the gravitation of the Sun 

and/or moon?).  

There are other difficulties with this experiment which we will not elaborate on, 

but the above argument is sufficient to invalidate all of its conclusions.  
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Appendix: Required Accuracies in Assembling the Experiment Setup 

The analysis of Michelson’s 1913 moving mirrors experiment in section 2.3 

assumed that the experiment setup was assembled with absolute accuracy. 

Consequently, while the moving mirrors are not rotating, both the upper and 

lower rays (defined just before figure 3) hit the monitoring screen at the same 

point for any angular positions of the stationary mirrors. This point is defined as 

the “zero point”. This fact can be proven trigonometrically, but the proof is not 

included in this article. 

Interferometry is very powerful in displaying extremely small time differences due 

to the exceptionally small light wave length. However, this feature makes it very 

sensitive to assembly errors of the experiment equipment. 

What happens if the setup is not absolutely accurate? In this case there would not 

be a zero point since the upper and lower rays usually hit the monitoring screen 

at two different points. The intersections between the upper and lower rays, with 

either the monitoring screen or mirror A, are defined as the “upper point” and 

“lower point”, respectively. In addition, the locations of these points depend on 

the angular position of the mirrors. 

The following graphs pertain to r=2, but they are essentially the same also for r=0. 

The “zero point” referred to in these graphs is the point where both upper and 

lower rays hit the monitoring screen when the angular position of the moving 

mirrors is as shown in figure 2 at the beginning of section 2.3 (i.e.: ang=0). 

We discuss here two sources of errors:  

1. The distance between the plane containing both moving mirrors from the axis or 

rotation, which is defined here as the “plane error”. It is positive when the plane 

of the moving mirrors is displaced towards the cylindrical mirror relative to the 

axis of rotation, when ang=0. 
2. The distance between the axis of rotation and the center of the cylindrical mirror, 

which is defined here as the “center error”. It is positive when the axis of rotation 

is displaced towards the cylindrical mirror relative to the center of this mirror. 
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Figure 7.  Plane error: upper ray deflection vs. stationary mirrors’ angular position 

 

  
Figure 8.  Plane error: lower ray deflection vs. stationary mirrors’ angular position 

Figures 7 and 8 display the distance from the zero point of the upper and lower 

points, respectively, for two values of the plane error: 5 microns and 10 microns. 

This error is termed “shift” in the legends of the graphs. 
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Although the values are significantly different from the perfectly accurate case 

(where they vanish), they are still negligible compared to the normalized distance 

between two adjacent constructive interference lines, which is of the order of 

magnitude of 0.25. 

The real problem, in this case, is the distance (in terms of the light wave-length) 

between the upper and lower points on mirror A shown in figure 9. The variation 

is significant relative to the nominal value of about 5.63 when the mirrors are 

rotating and there are no assembly errors (see figure 5 and figure 15). In this case 

the number of interference lines and their locations vary significantly with the 

angular position of the moving mirrors, so that when the mirrors are rotating the 

interference pattern could come out fuzzy. This situation is unacceptable.  

  
Figure 9.  Plane error: distance between rays vs. stationary mirrors’ angular position 
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Figure 10.  Joint error: upper ray deflection vs. stationary mirrors’ angular position 

 

 
Figure 11.  Joint error: lower ray deflection vs. stationary mirrors’ angular position 
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What is significant is the reduction of the distance between the upper and lower 

points on mirror A in figure 12 relative to that in figure 9. In this case the locations 

of the interference lines, when the mirrors are rotating, do not vary appreciably 

and the appearance of the interference pattern should be clear.  

 
Figure 12.  Joint error: distance between rays vs. stationary mirrors’ angular position 

It is evident from the last six figures that the deviations of the distance between 

the upper and lower points caused by the plane error can be greatly reduced by 

introducing a corresponding center error, but cannot be totally eliminated. As 

expected, for a given maximum value of deviation – the angular range of the 

moving mirrors for the shift of 5 microns is larger than the corresponding angular 

range for the shift of 10 microns. Consequently, if the plane error is less than 10 

microns – a corresponding center error can certainly be found and introduced so 

as to achieve a clear interference pattern when the mirrors are rotating. In 

addition, the moving mirrors assembly should be rigid enough and well balanced 

to avoid vibrations and the consequent blurring of the interference pattern. 

Figures 13 to 15 display the same kind of data as in figures 10 to 12, but for the 

case where the mirrors are rotating. The variation of λ/d  (figure 15) by less than 

±1.8% is small enough for a clear interference pattern to be obtained. 

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

-20 -15 -10 -5 0 5 10 15 20

d
/λ

ang

(Distance Between Rays on Mirror A)/(Wave Length) 

shift = 5 microns

shift = 10 microns

GSJ: Volume 6, Issue 7, July 2018 
ISSN 2320-9186 

GSJ© 2018 
www.globalscientificjournal.com 



29 

 

 
Figure 13.  Joint error: upper ray deflection vs. rotating mirrors’ angular position 

 

 
Figure 14.  Joint error: lower ray deflection vs. rotating mirrors’ angular position 
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Figure 15.  Joint error: distance between rays vs. rotating mirrors’ angular position 
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Conclusion 

The 1913 Michelson’s moving mirrors experiment was specifically designed to 

decide whether a moving mirror affects the speed of light reflected from it. The 

conclusion of this experiment was that the speed of light rays reflected from the 

moving mirrors was not affected by their motion. In this article we prove that the 

objective of the experiment cannot be decided based on the data presented in 

Michelson’s paper.    

The present work was motivated by the results of chapter 1 that prove, based on 

Maxwell’s equations, that an ideal reflector moving with respect to an inertial 

coordinate system does affect the speed of an EM wave reflected from it, which 

contradicts the conclusion arrived at by Michelson in his above mentioned paper. 

Michelson attributes the creation of an observed interference pattern to a delay 

between two collinear light rays and equates the spatial delay between them to 

the distance between two adjacent interference lines. We have shown that an 

observed interference pattern cannot be created by two collinear light rays, even 

in case where there is a delay between them. 

We have also shown that there are three contributions to the various 

observations of Michelson’s experiment. Michelson took into account two of 

them and neglected the angular motion of the mirrors. The angular motion does 

not affect Michelson’s calculated delay between two light rays, but it is the only 

cause of the lateral displacement between them which is responsible to the 

creation of an interference pattern. In addition we have shown that the fact 

whether the motion of the mirrors affects, or does not affect, the speed of 

reflected light rays has a very small effect on the measured distance between two 

adjacent interference lines. Therefore, the effect of a moving mirror on the speed 

of a light ray reflected from it cannot be deduced from this measurement. 

Similar arguments invalidate the conclusions of the 1887 Michelson-Morley 

experiment. 

The article points out that the effect of a moving mirror on the speed of a light ray 

reflected from it can be determined based on a different observation from 

Michelson’s experiment, namely: the closest distance between a constructive 

interference line and the zero point. If this distance equals zero, i.e.: a 

constructive interference line is located right on the zero point, then the speed of 
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a reflected light ray is affected by the motion of the mirror and r=2. If, however, 

the closest constructive interference line is displaced from the zero point (in a 

direction towards the light source S in figure 2) by approximately one quarter of 

the distance between two adjacent constructive interference lines – the speed of 

a reflected light ray from a moving mirror is not affected by the motion of the 

mirror and r=0. 

It has also been pointed out that, according to reference 3, the theory of relativity 

is based on an error and is thus invalid. Therefore, an experimental validation of 

Einstein’s second relativity postulate would not confirm the theory of relativity, 

but would rather invalidate Ampere’s, Faraday’s and both Gauss’s electric and 

magnetic laws. 

Finally, I am stating my belief that the examination of notes left by Michelson and 

his assistants, or the repetition of Michelson’s 1913 moving mirrors experiment, 

will prove that the speed of a reflected light ray from a moving mirror is affected 

by the motion of the mirror and that r=2. This result will invalidate Michelson’s 

conclusion and will be an experimental refutation of Einstein’s second postulate 

of the theory of relativity. 

On second thought – I am doubtful whether the phenomenon observed by 

Michelson in his moving mirrors experiment was indeed an interference pattern. 

The distance between two adjacent interference lines is not an absolute 

magnitude; it depends on the distance between two light sources and an 

observation screen. The assignment of an absolute value to the measured 

distance between two adjacent constructive interference lines might indicate that 

what was actually measured was the distance between the intersection points of 

the two light rays with mirror A. The computed value, in terms of the light wave 

length is (see figure 1): 937.3)°6242.45cos(63.5cos/ =⋅=⋅ αλd , fits nicely in 

the range 3.1-4.3 of the measured values. The variation of the measured data 

about the midpoint is %16± . This is a relatively large spread and should be 

investigated. A possible explanation is a small inaccuracy in locating the rotation 

axis relative to the center of the cylindrical mirror and/or the location of the 

mirrors plane with respect to the rotation axis (“center error” and “plane error”, 

respectively, in the appendix). 

In view of these facts an extensive review of all interferometry experiments is 

required, due to the attribution of the interference pattern phenomenon to 

totally unrelated reasons.                                                                           תושלב"ע 
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