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ABSTRACT 

In this research, a Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model was 
modified to determine the effect of immunity and drug resistance on the transmission 
dynamics of tuberculosis.  The equilibrium point was found and its stability was 
investigated.  By analyzing the model, we found a threshold value R0, the basic 
reproduction number and the existence of the endemic point. The disease free equilibrium 
point of the model is locally stable (Eq0) since basic reproduction number R0<1 which was 
obtained from the numerical simulation of the model. The model has two non-negative 
equilibrium namely the disease free equilibrium (Eq0) and endemic equilibrium point 
(EEP). The graphical solutions of the differential equations were developed using MATLAB 
as well as the computer simulation. 

 
BACKGROUND OF THE STUDY 
The sequencing of the genome for M. tuberculosis, completed in 1998 at the Sange 
Institute in Paris, must rank as one of the most important developments in the study of 
the history of tuberculosis. There are two principal reasons for this. First, it enabled 
scientists to confirm that human remains from prehistoric times, which were believed to 
show signs of tuberculosis disease on clinical grounds, could now be proved to have the 
tubercle bacillus present in the tissues. The DNA of the bacillus could be extracted from 
such specimens and provide positive identification. Secondly, the structure of the genomic 
sequence disproved an earlier hypothesis that humans had derived their disease from the 
animals they kept. For this to be true, the bacteria usually causing disease in animals, M. 
bovis, would have to have been the antecedent of the human tuberculosis bacterium, M. 
tuberculosis. Comparing the two bacterial genomes it is apparent that M. tuberculosis 
was, if anything, the antecedent of M. bovis, not the other way round. Therefore, it is 
possible that humans gave their disease to the animals. Further study is needed on this new 
genome driven hypothesis. 
 
Tuberculosis is an airborne disease caused by Mycobacterium tuberculosis (MTB) bacteria.  
It is an ancient disease with evidence of its existence being found in relics from ancient 
Egypt, India and China.  In the eighteenth century, Western Europe suffered terribly 
from this disease with prevalence as high as 900 deaths per 100,000.  This was largely due 
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to poor ventilation, overcrowded housing, primitive sanitation and malnutrition among 
other risk factors that led to the epidemic (Daniel, 2006). 
 
Today, this disease ranks as the second leading cause of morbidity and mortality in the 
world from a single infectious agent, after the human immunodeficiency virus (HIV). 
Interestingly, about one-third of the world’s population is infected with MTB with 
approximately nine million people developing active tuberculosis and up to nearly two 
million people worldwide died from the disease every year.  
 
Clearly, this reveals that the current investment in tuberculosis falls below the low and 
middle-income country’s needs.  (MTB) bacteria spread through inhaling droplets from 
the cough or sneeze of a person suffering from active tuberculosis.  The bacteria enters the 
body causing an MTB infection affecting majorly the lungs but it can also affect any other 
part of the body including the urinary tract, brain, lymph nodes, bones, joints and the ear.  
Person(s) with lowered immunity such as those with HIV, diabetes, immune disorders, 
end-stage renal disease, those on drugs that suppress immunity, young children and 
pregnant women among others are at a higher risk of contracting the disease (Mandal, 
2013). 
 
Also people suffering from malnutrition due to lifestyle, drug abuse or poverty equally 
are at risk of contracting tuberculosis.  Another category of people largely at risk of 
contracting tuberculosis are those who work closely or live close to a person with active 
tuberculosis and they could include health care workers, people living in crowded living 
spaces or confined places such as schools or prisons (Zaman, 2010). The intensity of 
transmission depends on factors related to the bacteria, the human host, the environment and 
migration. Non-climatic factors such as environmental development and urbanization, 
population movement and migration affect the severity and incidence of tuberculosis. 
When it comes to environment and urbanization, the incidence of tuberculosis is generally 
lower in prime urban areas than in rural areas as there is difficult accessing proper medical 
care in rural villages compared to urban areas. However, rapid urbanization of areas within 
or on the outskirts of urban centers is commonly done in an uncontrolled fashion 
without thought or planning.  The settlers are mainly migrant workers from rural 
villages and they tend to settle mostly in poor, overcrowded houses commonly known as 
slums with hardly any proper sanitation and this in turn leads to  increased exposure of 
the population to MTB hence a possibility of amplification of the  
disease to epidemic proportions through lack of effective treatment (Mandal, 2013). 

Population movements have significant implications for tuberculosis transmission as 
migration introduces tuberculosis problem to the areas to which the migrants migrate to. 
Temporary migrant workers often bring the bacteria to lower prevalence areas and local 
transmission can be readily established (Semenza et al., 2010). 
Tuberculosis is curable provided an early diagnosis is made and one follows the proper 
treatment regimen which could take six months up to two years for the active tuberculosis to 
clear (Trauer, Denholm and McBryde, 2014). 
In 2015, there were an estimated 480, 000 new cases of multidrug-resistant TB (MDR-
TB) and an additional 100, 000 people with rifampicin-resistant TB (RR-TB) who were 
also newly eligible for MDR-TB treatment.  India, China and the Russian Federation 
accounted for 45% of the combined 580, 000 cases (WHO, 2016). 
 
AIM AND OBJECTIVES OF THE STUDY 
The aim of this study is to model the effects of immunity and drug resistance on 
transmission dynamics of tuberculosis. Thus, the objectives are: 
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1. To derive the disease free equilibrium. 
2. To obtain the basic reproduction number. 
3. To carry out stability analysis on the model. 
4. To solve the model equations numerically to show the effects of immunity and drug 
resistance on transmission dynamics of tuberculosis. 
STATEMENT OF THE PROBLEM 
There were an estimated 1.4 million TB deaths in 2015, and an additional 0.4 million 
deaths resulting from TB disease among people living with HIV. Although the number of 
TB deaths fell by 22% between 2000 and 2015, TB remained one of the top 10 causes of 
death worldwide in 2015 (WHO, 2016). Andam, (2013) formulated a deterministic model  
for the transmission dynamics of tuberculosis. However, the model did not incorporate 
drug resistant to the first line of treatment of tuberculosis and immunity at susceptible 
class. We, therefore, intend to investigate the effects of immunity and drug resistance on 
transmission dynamics of tuberculosis. 
 
RESEARCH QUESTIONS 
1. How do we know the diseases is in free equilibrium state?  
2. How long does it obtain the reproduction number? 
3. How does it stability analysis on the model?  
4. To know whether there is effect of immunity and drug resistance on 
transmission dynamic of tuberculosis. 
 
SIGNIFICANCE OF THE STUDY 
Considering the epidemics of tuberculosis and its attendant effects on population, the 
need to develop an effective control and management strategy cannot be over emphasized.  
Studying the effects of immunity and drug resistance on transmission dynamics of 
tuberculosis may yield interesting results that may usher in a new dimension in the 
control management by health service providers. 
 
SCOPE OF THE STUDY 
This research is only restricted to the use of mathematical modeling to investigate 
the effects of immunity and drug resistance on the transmission dynamics 
tuberculosis.  A system of non-linear ordinary differential equations is formed and 
the trace method is used to study the stability of Disease Free Equilibrium Points of 
the model followed by numerical simulation only. 
 
TB MODE OF TRANSMISSION 
TB is an infectious disease which is spread from person-to-person through the air by 
droplet nuclei.  Droplet nuclei are produced when person with pulmonary or laryngeal 
tuberculosis cough, sneeze, spit talk or sing.  The size of the nuclei is estimated to be 
about 1-5 and normal air current can keep them airborne for a long time and spread 
them throughout a room or building until they are removed by natural or mechanical 
ventilation. 
 
SIGNS AND SYMPTOMS OF TUBERCULOSIS 
1. A bad cough that last three weeks or longer 
2. Pain in the chest 
3. Coughing up blood or sputum 
4. Weakness or fatigue 
5. Weight loss 
6. No appetite 
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7. Fever 
8. Sweating at night 
 
 
 
TREATMENT OF TUBERCULOSIS 
Antibiotics are used in the treatment of tuberculosis. Antibiotics treatment therapy is 
lengthy and one have to take them for 6 to 12 months to completely destroy the bacteria, the 
length of treatment and the type of drug that is needed is determined by age, overall health, 
result of susceptibility tests and weather one have TB infection or active TB. 
 
A REVIEW OF SOME RELATED LITERATURE 
Epidemiology of Tuberculosis 
Tuberculosis (TB) is one of the major public health threats, competing with the human 
immunodeficiency virus (HIV) as the cause of death due to infectious diseases worldwide. 
Although a declining trend in TB incidence, prevalence and mortality has been observed 
over the last decade, elimination of the disease at global level is still out of reach, and 
massive resource investment is still required.  TB is a poverty-related disease that 
disproportionately affects the poorest; the most vulnerable and marginalized population 
groups wherever it occurs.  Improving access to diagnosis and care, the basic requirements 
in the fight against TB, are particularly challenging in these persons. Besides, TB control 
cannot be carried out without setting up an effective surveillance system in order to define 
the course of the epidemic and assess the impact of control measures on the disease. 
Hence, TB national programs must devote significant resources to the disease-specific 
recording and reporting system. Routine surveillance systems represent the best method for 
drug resistance assessment and monitoring, though high-quality data can be generated only 
by the allocation of significant resources.  The increasing number of detected multidrug-
resistant forms is among the current most frightening issues, requiring a strong and 
comprehensive commitment in terms of funds allocation, research promotion and field 
implementation of new tools and protocols (WHO, 2014). 
 
MATHEMATICAL MODELS ON TUBERCULOSIS 
The first model for the transmission dynamics of tuberculosis was developed by Waaler, and 
Anderson (1962) who used a mathematical model to study the epidemiology of 
tuberculosis.  With time other models have been developed to help prevent the risk of 
transmission of tuberculosis.  Recent global reports of multidrug resistant and 
extensively drug-resistant tuberculosis have renewed concerns that antibiotic resistance 
may undermine progress in tuberculosis control (Young, Stark and Kirschner, 2008). 
Including MDR tuberculosis in mathematical models is relatively new and there are very 
few models with this aspect. 
Mandal et al (2017), among the estimated 1 million cases of childhood (0-14 years) TB 
worldwide, about 75% occur in the 22 high burden countries only. Being one of the high 
burden countries for TB, almost 10% of total TB cases in India is Pediatric TB. 
Pediatric TB has traditionally received a lower priority compared to the adult form of the 
disease because it is considered non-infectious, difficult to diagnose, too few in number 
and the wrong assumption that effective control of adult TB along with BCG by itself 
could effectively control childhood TB. Fortunately, World Health Organization (WHO) 
and the Revised National Tuberculosis Control Program (RNTCP) in India have realized the 
importance of pediatric TB and included special considerations for the Pediatric TB. In the 
wake of the recent changes in the guidelines regarding diagnosis and management of TB by 
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the RNTCP and WHO, we would like to highlight the changes applicable especially for 
the pediatric population: 
Three new goals in the management of TB have been adopted, viz.  
(a) relapse free cure; 
b) prevention of drug resistance and  
(c) break chain of transmission by rendering the patient non-infectious and decreasing the 
pool of infection.   
 
Definition of presumptive pediatric TB is provided which includes children with persistent 
fever and cough, loss of weight (loss of 5% body weight as compared to highest weight 
recorded)/no weight gain in last 3 months and history of contact with infectious TB cases. 
Diagnosis of tuberculosis based only on X-ray to be called as ‘Clinically diagnosed 
tuberculosis’. Classification based on drug resistance now also includes Mono-resistance 
(MR) and poly-drug resistance (PDR) TB apart from MDR (Multi-drug resistant) and 
XDR (Extensively-drug resistant) TB. MR is defined as resistance to one first-line 
anti-TB drug (ATD) only; while PDR refers to resistance to more than one first-line ATD, 
other than both INH and Rifampicin. Use of CBNAAT (Cartridge based nucleic acid 
amplification test) and Line probe assay for MTB (Mycobacterium tuberculosis) complex 
in pulmonary specimens for diagnosis of TBDR (Drug resistant)-TB in presumptive 
cases. Use of CBNAAT for the diagnosis of extrapulmonary TB (EPTB):  
(a) as an additional test to conventional smear microscopy, culture and cytology in fine-
needle aspiration cytology (FNAC) specimens;  
(b) as an adjunctive test for tuberculous meningitis but  
(c) not be routinely used to diagnose pleural TB. Rapid drug susceptibility testing (DST) 
of at least Rifampicin is recommended at the time of TB diagnosis.  In patients with 
Rifampicin-resistant or MDR- TB who have not been previously treated with second-
line drugs and in whom resistance to fluoroquinolones and second-line injectable agents has 
been excluded or is  
considered highly unlikely, a shorter MDR-TB regimen of 9-12 months may be used.  
 
Agusto et al, (2015), used a deterministic model with isolation where they studied the 
transmission dynamics of three strains of mycobacterium tuberculosis (TB), namely; the 
drug sensitive, multi-drug-resistance (MDR) and extensively-drug-resistance (XDR) 
tuberculosis strains.  Their result of the global sensitivity analysis indicated that the 
dominant parameters are the disease progression rate, the recovery rate, the infectivity 
parameter, the isolation rate, and the rate of cost to follow up and fraction of fast 
progression rates. They also found that an increase in isolation rate leads to a decrease in 
the total number of individuals who are cost to follow up. 
 
James M. Traver et al (2014), they present a mathematical model to stimulate Tuberculosis 
(TB) transmission in highly endemic regions of the Asia-Pacific, where epidemiology does 
not appear to be primarily driven by HIV co-infection deterministic model captures many 
of the observed phenomena important to disease dynamics, including partial and temporary 
vaccine efficacy, declining risk of active disease following infection, the possibility of re-
infection both during the infection latent period and after treatment,  
multi-drug resistant TB (MDR - TB) and resistance during treatment. They found that 
the model could not be calibrated to the estimated incidence ratio without allowing for re-
infection during latency, and that even in the presence of a moderate fitness cost and a 
lower value of R0, MDR - TB becomes the dominant strain at equilibrium. 
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Mandal (2013), there is an emerging form of tuberculosis commonly known as multi-drug 
resistant (MDR) tuberculosis which is defined as tuberculosis resistant to both of the two 
most effective first line of antibiotic treatment of active tuberculosis i.e., isoniazid (INH) 
and rifampin (RIF), and it is harder and more expensive to treat. It is currently a major 
health concern to medical workers and researchers and one can get MDR tuberculosis by 
either spending time with an MDR patient or breathing in the MDR tuberculosis bacteria or 
those with active tuberculosis not following their prescribed treatment regimen or TB 
medicine not being readily available to them.  MDR tuberculosis is much more difficult 
to treat and the mortality of persons with this form of tuberculosis is far much higher if 
the second line of antibiotic treatment is not effected promptly. 
 
Kalu A. U et al, (2013), also presented an epidemiological model that tuberculosis can 
effectively be controlled or even be eradicated if effort is made to ensure that the total 
removal rate from both the latent and the infectious classes is always less than the product of 
total contraction and total breakdown of the susceptible class. 
 
S.Mariam H. et al (2011), tuberculosis disease (TB) due to Mycobacterium tuberculosis 
infections caused an estimated 1.3 million deaths globally. When active TB is manifested 
the infection is normally treated with antibiotics, thereby providing an external pressure 
for the selection of antibiotic resistant bacilli. The risk of resistance development will be 
determined by a number of different factors, including the antibiotic selective pressure (set 
by the number, dosing and quality of the used drugs), any pre-existing resistances in the 
infecting clone, the immune status of the treated individuals and their compliance with the 
drug regime.  In addition, since all resistance development in M. tuberculosis occurs via 
mutational changes in the chromosome, the bacterial population size and the bacterial 
mutation rate will also affect the probability by which resistant clones appear during 
treatment.  Furthermore, the ability of a resistant clone to grow and rise in frequency in the 
treated individual is influenced by the effect of the resistance on bacterial fitness. 
 
Bhunu et al, (2008), presented a SEIR tuberculosis model which incorporated treatment of 
infectious individuals and chemoprophylaxis (treatment for the latently infected). The 
model assumed that the latently infected individuals develop active disease as a result of 
endogenous re-activation, exogenous re-infection and disease relapse.  The study shows that 
treatment of infectious individuals is more effective in the first years of implementation 
as it cleared active TB immediately. As a result, chemoprophylaxis will do better in 
controlling the number of infectious due to reduced progression to active TB. 
 
Cohen, and Murray (2004), modeled epidemics of multi- drug resistant tuberculosis of 
heterogeneous fitness. Their model suggested that the threat of multidrug resistance to 
tuberculosis control depends on relative fitness of MDR strains and this implied that the 
strains is considerably less than that of drug-sensitive strains and that the emergence of 
resistance would not jeopardize the success of tuberculosis control efforts. Their results 
implied that current epidemiological measures and short- term trends in the burden of 
MDR tuberculosis do not provide evidence that MDR tuberculosis strains can be 
contained in the absence of specific efforts to limit transmission from those with MDR disease. 
 
Ziv et al, (2001), used an SEIR-model with fast and slow progression to numerically 
compare the effects of preventative treatment of those in the fast-progressing latent class with 
treatment of those with active, infectious disease.  They concluded that contact tracing 
and preventative treatment compare quite favourably to treatment of those with the disease. 
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Dye et al, (1998), presented a model with explicit fast and slow progression from two 
latent classes. They studied drug-resistant TB alone, representing treatment failures as 
potential transmitters of drug-resistant TB. Using Monte Carlo methods to estimate the 
model’s R0 for drug-resistant TB, they argued that short-course chemotherapy can bring 
resistant strains under control, preventing drug-resistant TB from emerging, and that this 
can probably be done by meeting the WHO targets for case detection and cure. 
 
METHODOLOGY 
In this section, we will formulate the model with immunity and drug resistance effects on 
the transmission dynamics of tuberculosis. 
 
EXISTING TUBERCULOSIS MODEL 
We reviewed the existing model by Andam, (2013) in terms of assumptions, model 
description, model diagram, and model equations.  This served as the framework for the 
model with immunity and drug resistant effect on the transmission dynamics of 
tuberculosis. 
Model Assumptions 
1. Age, sex, social status, race coupled with climatic conditions in the district does not 
affect the probability of an individual being infected. 
2. The death rate of all individuals is balanced by a birth rate (birth and deaths occurs at 
equal rates). 
3. He assumes that once an individual is infected, he or she becomes exposed to the 
environment before becoming infectious. 
Description of the Model 
In the model developed by Andam, (2013) the total population (N) is divided into four 
classes:  Susceptible (S), Exposed (E), Infectious (I), and Recovered (R). The class of 
susceptible individuals S is increased by birth or immigration at a rate λ. It is decreased by 
infection due to contact with infected individuals at a rate β and diminished by natural death 
at a rate µ. The class of exposed individuals E is generated through contact with infected 
individuals and decreased by breakthrough into infected class I at a rate ε and  
diminished by natural death at a rate µ . The class of infected individuals I is generated by 
breakthrough of exposed individuals E, decreased by recovery from infection at a rate γ and 
diminished by natural death µ. This generates a class R of individuals who have complete 
protection against the disease and is diminished by natural death at a rate µ. 
Model Diagram 
Below is the model flow diagram of the dynamics of tuberculosis by Andam, (2013)  

 
Figure 3.1: Existing Model Diagram by Andam, (2013). 

Model Equations 
Below is the system of first order non-linear ordinary differential equations formulated by 
Andam, (2013). 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑃𝑃𝑃𝑃 − 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝛽𝛽.      (1)   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝐼𝐼 − (𝜇𝜇 + 𝜀𝜀)𝑑𝑑.       (2) 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜀𝜀𝛽𝛽 − (𝜇𝜇 + 𝛾𝛾)𝐼𝐼.                   (3) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼 − 𝜇𝜇𝑑𝑑.        (4) 
 
 

 

 

Symbols Description 

N(t) Total Population 

S(t) Number of Susceptible individuals at time t 

E(t) Number of Exposed individuals at time t 

I(t) Number of Infectious individuals at time t 

R(t) Number of Recovered individuals at time t 

λ Birth rate 

β Contact rate 

µ Death rate 

ε Infectious rate 

γ Recovery rate 

Table 1.1: Parameters and variable description. 
 
Reviewed Model 
Below are the assumptions, description, diagram and model equations of the formulated 
modified model. 
 
Assumptions of the with Immunity and Drug Resistance 
The following assumptions were made: 
1. Parameters and variables are considered non-negative. 
2. Recruitment into the susceptible compartment is variable. 
3. Transition into and out of any compartment is governed by a specified rate. 
4. Natural death and death due to tuberculosis occurs at variable rate. 
5. The members of the study population interact freely. 
 
Description of the Model 
The human population is categorized into six compartments such that at time t ≥ 0 there are 
(S), susceptible humans, (M), immune infants, (E), exposed humans to tuberculosis, (I), 
infected humans with active tuberculosis, (RES ) , resistant humans to the first line of 
treatment, (RH ) , recovered humans. Thus the size of the human population is given as N = 
S + M + E + I + RES  + RH . In our model, the recruitment into the susceptible human 
population is by birth Pπ. The size of the susceptible class is further increased by the immune 
infants in (M), partially immune humans in (RH ) after they lose their immunity at the rate η 
and ρ respectively. The susceptible class is decreased by natural death  
µ and exposed to MTB. The immune class (M) is increased by birth with immunity at a 
rate (1-P)π and decreased by natural death µ. The exposed susceptible to MTB move to the 
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exposed classes (E) with the force of infection being β, resulting in an increase in the 
exposed class.  Natural death µ and the proportion that move to the infected class (I) after 
developing active tuberculosis further decreased the exposed class. The infected class (I) is 
also reduced by natural death µ, disease induced death α, those who recover γ  and also by 
those resistant to the first line of treatment σ. Thus, both the infected class (I) and the resistant 
class RES  gain partial immunity at the rates γ and δ respectively thus moving to the 
recovered class (R) thus reducing their respective classes and also increasing the recovered 
class. The resistant class RES is also reduced by natural deaths µ and disease induced deaths 
α1 while natural death µ and those who lose their partial immunity at the rate ρ reduce the 
recovered class. 
 
Model Diagram 
The flow diagram of the model with Immunity and Drug Resistance on the 
Transmission Dynamics of Tuberculosis is given in figure below. 

 

Figure 3.2: Model with immunity and drug resistance effect on the transmission. 
3.3.4 Model Equations 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑃𝑃)𝜇𝜇 − (𝜇𝜇 + 𝑛𝑛)𝑑𝑑.      (5) 

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑃𝑃 + 𝑛𝑛𝑑𝑑 − 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝛽𝛽 𝑝𝑝.         (6) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝐼𝐼 − (𝜇𝜇 + 𝜖𝜖)𝑑𝑑.            (7) 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝜖𝜖𝑑𝑑 − (𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)𝐼𝐼.                 (8) 

𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼 − (𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿)𝑑𝑑𝑑𝑑𝛽𝛽 .     (9) 

Where S(0) = S0, V(0) = V0, E(0) = E0, I(0) = I0, RES (0) = RES0, RH (0) = RH0. 
Note that N = S + M + E + I + RES  + RH . 
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Symbols Description 

M(t) Number of immune infants at time t 

RH(t) Number of Recovered humans from both active and MDR tuberculosis at time t 

RES(t) Number of Resistant humans to first line of treatment at time t 

I(t) Number of Infectious individuals at time t 

Pπ Birth rate without immunity 

(1-P)π Birth rate with immunity 

Η Rate at which immune infants become susceptible 

Α Disease induced death rate due to active tuberculosis 

α1 Disease induced death rate due to MDR tuberculosis 

Δ Recovery rate of infected humans from MDR tuberculosis 

Σ Rate at which infected humans become resistance to first line of treatment 

Ρ Rate at which infected humans become susceptible 

Table 1.2: Additional parameters and variables. 
 
Method of Model Analysis 
Various methods are considered in this section to carry out the analysis which are as 
follows: 
 
Existence and Uniqueness 
Theorem 1 
Let D denote the region |t − to| ≤ α and |x − x0| ≤ b, where x = (x1, x2, x3  . . .  xn  ) and 
x0 = (x0,1, x0,2, x0,3 . . .  x0,n ). Suppose that f(t, x) satisfies Lipchiz condition  
|f (t, x1) − f (t, x2)| ≤ K |x1 − x2| where the pair (t, x1) and (t, x2) belongs to D and K is a 
positive constant. Thus consider the following lemma. 
Lemma 1 
Let x1  = M, x2  = S, x3  = E, x4  = I, x5  = RES , x6  = RH  and f1, f2, f3, f4, f5  and f6 be 
the respective equations in system (5) - (9) and let λ = β x2 x4. The goal is to show that 
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑𝑗𝑗

 i,j = 1, 2, 3, 4, 5, 6 are continuous and bounded in D. Now 

f1 = (1-P)π-(µ+η)𝑑𝑑1 
�𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑1

� = |−𝜇𝜇 − 𝑛𝑛|  < ∞; �𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑2

� = �𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑3

� = �𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑4

� = �𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑5

� = �𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑6

� = 0 < ∞ 

Similarly, going on in same manner for f2, f3, f4, f5 and f6 of model (5 - 9) above, we see 
that their partial derivatives exists for all equations and are continuous and bounded. Hence 
the system (5 - 9) has a unique solution. 
 
 
3.4.2  Positivity of the solution 
Lemma 2 
Let the initial solution set {M (0) > 0, S(0) > 0, E(0) > 0, I(0) > 0, RES (0) > 0, RH (0) > 
0} ∈ R6+, then the solution set {M (t), S(t), E(t), I(t), RES (t), RH (t), } is positive for all  
time t > 0. 
Proof 
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Let the force of infection be λ = βSI. Consider the first equation (i.e. equation (5)) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑃𝑃)𝑃𝑃 − (𝜇𝜇 + 𝑛𝑛)𝑑𝑑. 
≥ −(𝜇𝜇 + 𝑛𝑛)𝑑𝑑. 

𝑑𝑑(𝑑𝑑) = 𝑑𝑑(0)𝑒𝑒𝑑𝑑𝑝𝑝−∫(𝜇𝜇+𝑛𝑛)𝑑𝑑𝑑𝑑 > 0 
Also for the second equation (i.e. equation (3.6)) 

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑃𝑃 + 𝑛𝑛𝑑𝑑 − 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝛽𝛽 + 𝑝𝑝𝑑𝑑𝐻𝐻 . 
≥ −(𝛽𝛽𝐼𝐼 + 𝜇𝜇)𝛽𝛽. 

𝛽𝛽(𝑑𝑑) = 𝛽𝛽(0)𝑒𝑒𝑑𝑑𝑝𝑝−∫(𝛽𝛽𝐼𝐼+𝜇𝜇 )𝑑𝑑𝑑𝑑 > 0. 
Going in same manner for the third, fourth, fifth and sixth equation, we found that E(t) 
> 0, I(t)> 0, RES  (t)> 0, RH  (t)>0 respectively. Hence the solution set is positive for all 
time t > 0. 
 
Invariant Set 
If a solution of a differential equation or a system of differential equations start on a 
given space, surface, or curve and remains within it for all time t, then the set is said to be 
invariant. Hence a positively invariant set will have solutions that are positive for all time. 
Now, let N = S + M + E + I + RES  + RH  be the total population at any time t. 
Therefore, 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

 
= 𝑃𝑃 − 𝑃𝑃𝑃𝑃 − 𝜇𝜇𝑑𝑑 − 𝜂𝜂𝑑𝑑 + 𝑃𝑃𝑃𝑃 + 𝜂𝜂𝑑𝑑 − 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝛽𝛽 + 𝑝𝑝𝑑𝑑𝐻𝐻 + 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝑑𝑑 − 𝜀𝜀𝑑𝑑 + 𝜀𝜀𝑑𝑑 − 𝜇𝜇𝐼𝐼

− 𝛼𝛼𝐼𝐼 − 𝛾𝛾𝐼𝐼 − 𝜎𝜎𝐼𝐼 − 𝜇𝜇𝑑𝑑𝑑𝑑𝛽𝛽 − 𝛼𝛼1𝑑𝑑𝑑𝑑𝛽𝛽 − 𝛿𝛿𝑑𝑑𝑑𝑑𝛽𝛽 + 𝛾𝛾𝐼𝐼 − 𝜇𝜇𝑑𝑑𝐻𝐻 − 𝑝𝑝𝑑𝑑𝐻𝐻 + 𝛿𝛿𝑑𝑑𝑑𝑑𝛽𝛽 . 
𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑃𝑃 − 𝛼𝛼𝐼𝐼 − 𝛼𝛼1𝑑𝑑𝑑𝑑𝛽𝛽 − 𝜇𝜇(𝑑𝑑 + 𝛽𝛽 + 𝑑𝑑 + 𝐼𝐼 + 𝑑𝑑𝑑𝑑𝛽𝛽 + 𝑑𝑑𝐻𝐻) 
= 𝑃𝑃 − 𝛼𝛼𝐼𝐼 − 𝛼𝛼1𝑑𝑑𝑑𝑑𝛽𝛽 − 𝜇𝜇𝑃𝑃. 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑃𝑃 − 𝜇𝜇𝑃𝑃. 

Integrating this by variable separable method we have 

�
𝑑𝑑𝑃𝑃

𝑃𝑃 − 𝜇𝜇𝑃𝑃
= �𝑑𝑑𝑑𝑑 

−
1
𝜇𝜇

= ln(𝑃𝑃 − 𝜇𝜇𝑃𝑃) + 𝑙𝑙𝑛𝑛𝑙𝑙 = 𝑑𝑑 

ln(𝑃𝑃 − 𝜇𝜇) − 𝜇𝜇𝑙𝑙𝑛𝑛𝑙𝑙 = −𝜇𝜇𝑑𝑑 
ln(𝑃𝑃 − 𝜇𝜇𝑃𝑃) − 𝑙𝑙𝑛𝑛𝑙𝑙𝜇𝜇 = −𝑃𝑃𝑑𝑑 
ln(𝑃𝑃 − 𝜇𝜇𝑃𝑃) = −𝜇𝜇𝑑𝑑 + 𝑙𝑙𝑛𝑛𝑙𝑙𝜇𝜇  
𝜇𝜇 − 𝜇𝜇𝑃𝑃 = 𝑒𝑒𝑑𝑑𝑝𝑝−𝜇𝜇𝑑𝑑+𝑙𝑙𝑛𝑛𝑙𝑙𝜇𝜇  

𝑃𝑃 − 𝜇𝜇𝑃𝑃 = 𝑃𝑃0𝑒𝑒𝑑𝑑𝑝𝑝−𝜇𝜇𝑑𝑑 ;   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃0 = 𝑙𝑙𝜇𝜇  
𝜇𝜇𝑃𝑃 = 𝑃𝑃 − 𝑃𝑃0𝑒𝑒𝑑𝑑𝑝𝑝−𝜇𝜇𝑑𝑑  

𝑃𝑃 =
1
𝜇𝜇

(𝑃𝑃 − 𝑃𝑃0𝑒𝑒𝑑𝑑𝑝𝑝−𝜇𝜇𝑑𝑑 ) 

Where N0 is the initial population at time t = 0, thus as t → ∞, we have N = 𝑃𝑃
𝜇𝜇
 Now, at 

any time (t), the total population 
𝑃𝑃(𝑑𝑑) ≤

𝑃𝑃
𝜇𝜇

 

and therefore, if we let Ω to represent the invariant set, then 
 

Ω= �(𝑑𝑑 + 𝛽𝛽 + 𝑑𝑑 + 𝐼𝐼 + 𝑑𝑑𝑑𝑑𝛽𝛽 + 𝑑𝑑𝐻𝐻)𝜖𝜖𝑑𝑑+
6 :𝑃𝑃 = 𝑃𝑃

𝜇𝜇
� 
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Equilibrium States 
The equilibrium state for the model is obtained by setting the model equations to zero. 

𝑖𝑖. 𝑒𝑒 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = 𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

 = 0 

Disease Free Equilibrium (Eq0) 
The disease free equilibrium point of a system represent the state at which there are no 
infections in the whole population. Now, considering the two compartments 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 and 𝑑𝑑𝛽𝛽

𝑑𝑑𝑑𝑑
. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑃𝑃)𝑃𝑃 − (𝜇𝜇 + 𝜂𝜂)𝑑𝑑. 
(1 − 𝑃𝑃)𝑃𝑃 − (𝜇𝜇 − 𝜂𝜂)𝑚𝑚 = 0. 

𝑑𝑑0 =
(1 − 𝜂𝜂)
𝜇𝜇 + 𝜂𝜂

. 

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑃𝑃 + 𝜂𝜂𝑑𝑑 − 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝛽𝛽 + 𝑝𝑝𝑑𝑑𝐻𝐻 = 0. 
𝑃𝑃𝑃𝑃 + 𝜂𝜂𝑑𝑑 − 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝛽𝛽 + 𝑝𝑝𝑑𝑑𝐻𝐻 = 0.  

𝛽𝛽0 =
𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃

𝜇𝜇(𝜇𝜇 + 𝜂𝜂)
 

𝑑𝑑0 = 𝐼𝐼0 = 𝑑𝑑𝑑𝑑𝛽𝛽0 = 0. 
Therefore, the disease free equilibrium state for the model is 

𝑑𝑑𝐸𝐸0(𝑑𝑑0, 𝛽𝛽0,𝑑𝑑0, 𝐼𝐼0,𝑑𝑑𝑑𝑑𝛽𝛽0 ,𝑑𝑑𝐻𝐻0 ) =  �(1−𝑃𝑃)𝑃𝑃
𝜇𝜇+𝜂𝜂

, 𝑃𝑃𝑃𝑃(𝜇𝜇+𝜂𝜂)+(1−𝑃𝑃)𝜂𝜂𝑃𝑃
𝜇𝜇 (𝜇𝜇+𝜂𝜂)

, 0,0,0,0�. 

Basic Reproduction Number 
The reproduction number R0 is defined as the average number of secondary cases of 
infection generated by one primary case in a whole susceptible population.  The basic 
reproduction number is used to predict whether the epidemic will spread or die out. 
In this model, I will adopt the method of the next generation on the equations (5-9) in the 
form of matrices F and V. 
Let:  
Fi be the rate of approach of the new infection in a compartment. 
Vi be the transfer of individuals out of compartment by another means.  
X0 be the disease-free equilibrium (Eq0). 
The basic reproduction number is (R0) is obtained by setting; 

R0 = ρ(FV−1); where F =  �𝜕𝜕𝐹𝐹𝑖𝑖(𝑑𝑑0)
𝜕𝜕𝑑𝑑𝑗𝑗

�  and V = �𝜕𝜕𝑉𝑉𝑖𝑖(𝑑𝑑0)
𝜕𝜕𝑑𝑑𝑗𝑗

� for i ≥ 1 for the number of 

compartments and 1 ≤ j ≤ m for the infected compartments only. 
ρ(FV−1) denotes the spectral radius of the matrix F and V are m × m matrices, where m 
is the number of infected classes (Diekmann, & Heesterbeek, 2000). Considering the infected 
compartments; 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝐼𝐼 − (𝜇𝜇 + 𝜀𝜀)𝑑𝑑
𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝜀𝜀𝑑𝑑 − (𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)𝐼𝐼
�                       (10) 

The system (10) can be represented in a matrix form as follows; 

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

� =    �0 𝛽𝛽𝛽𝛽
0 0 �  �𝑑𝑑𝐼𝐼 � − �𝜇𝜇 + 𝜀𝜀 0

−𝜀𝜀 𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎� �
𝑑𝑑
𝐼𝐼 � 
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𝐹𝐹 = �0 𝛽𝛽𝛽𝛽
0 0 � = �0 𝛽𝛽

𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃
𝜇𝜇(𝜇𝜇 + 𝜂𝜂)

0 0
� 

𝐹𝐹 = �0 𝛽𝛽
𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃

𝜇𝜇(𝜇𝜇 + 𝜂𝜂)
0 0

� 

𝑉𝑉 = �𝜇𝜇 + 𝜀𝜀 0
−𝜀𝜀 𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎� 

To find 

𝑉𝑉−1 =
1

|𝑉𝑉|𝐴𝐴𝑑𝑑𝑗𝑗𝑉𝑉. 

|𝑉𝑉| = �𝜇𝜇 + 𝜀𝜀 0
−𝜀𝜀 𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎� 

|𝑉𝑉| = (𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎) 
and 

𝐴𝐴𝑑𝑑𝑗𝑗𝑉𝑉 = �𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎 0
𝜀𝜀 𝜇𝜇 + 𝜀𝜀� 

𝑉𝑉−1 =

⎝

⎛

1
𝜇𝜇 + 𝜀𝜀

0

𝜀𝜀
(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)

1
𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎⎠

⎞ 

𝐹𝐹𝑉𝑉−1 = �0 𝛽𝛽 𝑃𝑃𝑃𝑃(𝜇𝜇+𝜂𝜂)+(1−𝑃𝑃)𝜂𝜂𝑃𝑃
𝜇𝜇 (𝜇𝜇+𝜂𝜂)

0 0
��

1
𝜇𝜇+𝜀𝜀

0
𝜀𝜀

(𝜇𝜇+𝜀𝜀)(𝜇𝜇+𝛼𝛼+𝛾𝛾+𝜎𝜎)
1

𝜇𝜇+𝛼𝛼+𝛾𝛾+𝜎𝜎

�  

 

𝐹𝐹𝑉𝑉−1 = �
𝛽𝛽𝜀𝜀 [𝑃𝑃𝑃𝑃(𝜇𝜇+𝜂𝜂)+(1−𝑃𝑃)𝜂𝜂𝑃𝑃 ]
𝜇𝜇 (𝜇𝜇+𝜀𝜀)(𝜇𝜇+𝜂𝜂)(𝜇𝜇+𝛼𝛼+𝛾𝛾+𝜎𝜎)

𝛽𝛽 [𝑃𝑃𝑃𝑃+(1−𝑃𝑃)𝜂𝜂𝑃𝑃 ]
𝜇𝜇(𝜇𝜇+𝛼𝛼+𝛾𝛾+𝜎𝜎)(𝜇𝜇+𝜂𝜂)

0 0
�  

𝜌𝜌(𝐹𝐹𝑉𝑉−1) = �
𝛽𝛽𝜀𝜀 [𝑃𝑃𝑃𝑃(𝜇𝜇+𝜂𝜂)+(1−𝑃𝑃)𝜂𝜂𝑃𝑃 ]
𝜇𝜇(𝜇𝜇+𝜀𝜀)(𝜇𝜇+𝜂𝜂)(𝜇𝜇+𝛼𝛼+𝛾𝛾+𝜎𝜎)

− 𝜆𝜆 𝛽𝛽 [𝑃𝑃𝑃𝑃+(1−𝑃𝑃)𝜂𝜂𝑃𝑃 ]
𝜇𝜇 (𝜇𝜇+𝛼𝛼+𝛾𝛾+𝜎𝜎)(𝜇𝜇+𝜂𝜂)

0 0 − 𝜆𝜆
� = 0  

�
𝛽𝛽𝜀𝜀[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎) − 𝜆𝜆� (−𝜆𝜆) = 0 

𝜆𝜆1 = 0 
and 

𝛽𝛽𝜀𝜀[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]
𝜇𝜇(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)

− 𝜆𝜆 = 0 

𝜆𝜆2 =
𝛽𝛽𝜀𝜀[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)
 

𝜌𝜌(𝐹𝐹𝑉𝑉−1) =
𝛽𝛽𝜀𝜀[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)
 

𝑑𝑑0 =
𝛽𝛽𝜀𝜀[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)
 

The disease free equilibrium point of model (5 - 9) is locally stable if R0  < 1 and 
unstable if R0 > 1. 
 
Local Stability Analysis of the Disease Free Equilibrium of the Model 
To check for the local stability of the disease free equilibrium of the model, we use 
trace method. 
Lemma 2 

GSJ: Volume 9, Issue 8, August 2021 
ISSN 2320-9186 238

GSJ© 2021 
www.globalscientificjournal.com



Page 14 of 21                                                   U.Y. Madaki, M. A. Jatau and S. B. Sambo 2021 
 

The disease free equilibrium point (Eq0) is locally asymptotically stable if the trace Tr(J 
Eq0) < 0 and the determinant Det(J Eq0) > 0 where J Eq0  is the Jacobian matrix of the 
disease free equilibrium.  
Proof  
Recall system (5 - 9) 

𝑑𝑑1 = (1 − 𝑃𝑃)𝑃𝑃 − (𝜇𝜇 + 𝜂𝜂)𝑑𝑑. 

𝑑𝑑2 = 𝑃𝑃𝑃𝑃 +  𝜂𝜂𝑑𝑑 − 𝛽𝛽𝛽𝛽𝐼𝐼 − 𝜇𝜇𝛽𝛽 + 𝜌𝜌𝑑𝑑𝐻𝐻 . 

𝑑𝑑3 = 𝛽𝛽𝛽𝛽𝐼𝐼 − (𝜇𝜇 + 𝜀𝜀)𝑑𝑑. 

𝑑𝑑4 = 𝜀𝜀𝑑𝑑 − (𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)𝐼𝐼. 

𝑑𝑑5 = 𝜎𝜎𝐼𝐼 − (𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿)𝑑𝑑𝑑𝑑𝛽𝛽 . 

𝑑𝑑6 = 𝛾𝛾𝐼𝐼 − (𝜇𝜇 + 𝜌𝜌)𝑑𝑑𝐻𝐻 + 𝛿𝛿𝑑𝑑𝑑𝑑𝛽𝛽 . 

The Jacobian matrix of the system of equations is given as; 

⎝

⎜
⎜
⎛
−(𝜇𝜇 + 𝜂𝜂)

𝜂𝜂
0

0
−(𝛽𝛽𝐼𝐼 + 𝜇𝜇)

𝛽𝛽𝐼𝐼

0
0

−(𝜇𝜇 − 𝜀𝜀)
0 0 𝜀𝜀
0
0

0
0

0
0

   

0
−𝛽𝛽𝛽𝛽
𝛽𝛽𝛽𝛽

0
0
0

0
𝜌𝜌
0

−(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎) 0 0
𝜎𝜎
𝛾𝛾

−(𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿)
𝛿𝛿

0
−(𝜇𝜇 + 𝜌𝜌)⎠

⎟
⎟
⎞

   

At disease free equilibrium (𝑑𝑑𝐸𝐸0) the component is given as  

(𝑑𝑑𝐸𝐸0) = (𝑑𝑑0, 𝛽𝛽0,𝑑𝑑0, 𝐼𝐼0,𝑑𝑑𝑑𝑑𝛽𝛽0 ,𝑑𝑑𝐻𝐻0 ) = �(1−𝑃𝑃)𝑃𝑃
𝑃𝑃+𝜂𝜂

, 𝑃𝑃𝑃𝑃(𝜇𝜇+𝜂𝜂)+(1−𝑃𝑃)𝜂𝜂𝑃𝑃
𝜇𝜇 (𝜇𝜇+𝜂𝜂)

, 0, 0, 0, 0� 

There Jacobian matrix of the becomes; 

(𝐽𝐽𝑑𝑑𝐸𝐸0)

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛−(𝜇𝜇 + 𝜂𝜂)

𝜂𝜂
0

0
−𝜇𝜇
0

0
0

−(𝜇𝜇 + 𝜀𝜀)
0 0 𝜀𝜀
0
0

0
0

0
0

   

0

−𝛽𝛽
[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜂𝜂)

𝛽𝛽
𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃

𝜇𝜇(𝜇𝜇 + 𝜂𝜂)

0
0
0

0
𝜌𝜌
0

−(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎) 0 0
𝜎𝜎
𝛾𝛾

−(𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿)
𝛿𝛿

0
−(𝜇𝜇 + 𝜌𝜌)⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

(𝐽𝐽𝑑𝑑𝐸𝐸0) =

⎝

⎜⎜
⎛

−𝛽𝛽
𝜂𝜂
0

0
−𝜇𝜇
0

0
0
−𝑙𝑙

0 0 𝜀𝜀
0
0

0
0

0
0

   

0
−𝐷𝐷
𝐷𝐷

0
0
0

0
𝜌𝜌
0

−𝑑𝑑 0 0
𝜎𝜎
𝛾𝛾

−𝐹𝐹
𝛿𝛿

0
−𝐺𝐺⎠

⎟⎟
⎞

 

Where B = (𝜇𝜇 + 𝜂𝜂), C= (𝜇𝜇 + 𝜀𝜀), D = 𝛽𝛽 [𝑃𝑃𝑃𝑃(𝜇𝜇+𝜂𝜂)+(1−𝑃𝑃)𝜂𝜂𝑃𝑃 ]
𝜇𝜇 (𝜇𝜇+𝜂𝜂)

,𝑑𝑑 = (𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎), F = 
(𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿) and G = (𝜇𝜇 + 𝜌𝜌). 
Now, the trace is determine as; 

−(𝐵𝐵 + 𝜇𝜇 + 𝑙𝑙 + 𝑑𝑑 + 𝐹𝐹 + 𝐺𝐺) < 0. 
and 
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𝐷𝐷𝑒𝑒𝑑𝑑(𝐽𝐽𝑑𝑑𝐸𝐸0) = −𝐵𝐵 �
�

−𝜇𝜇
0
0

0
−𝑙𝑙
𝜀𝜀

−𝐷𝐷
𝐷𝐷
−𝑑𝑑

0 0 𝜎𝜎
0 0 𝛾𝛾

  

0
0
0

𝜌𝜌
0
0

−𝐹𝐹 0
𝛿𝛿 −𝐺𝐺

�
� 

= −𝐵𝐵(−𝜇𝜇 �

−𝑙𝑙
𝜀𝜀

𝐷𝐷
−𝑑𝑑

0
0

0 𝜎𝜎 −𝐹𝐹
0 𝛾𝛾 𝛿𝛿

    
0
0
0
−𝐺𝐺

� − 𝐷𝐷 �
0
0

−𝑙𝑙
𝜀𝜀

0
0

0 0 −𝐹𝐹
0 0 𝛿𝛿

    
0
0
0
−𝐺𝐺

� + 𝜌𝜌 �

0
0

−𝑙𝑙
𝜀𝜀

𝐷𝐷
−𝑑𝑑

0 0 𝜎𝜎
0 0 𝛾𝛾

    
0
0
−𝐹𝐹
𝛿𝛿

�    

= −𝐵𝐵 �−𝜇𝜇 �−𝑙𝑙 �
−𝑑𝑑 0 0
𝜎𝜎 −𝐹𝐹 0
𝛾𝛾 𝛿𝛿 −𝐺𝐺

� − 𝐷𝐷 �
𝜀𝜀 0 0
0 −𝐹𝐹 0
0 𝛿𝛿 −𝐺𝐺

�) − 𝐷𝐷(𝑙𝑙 �
0 0 0
0 −𝐹𝐹 0
0 𝛿𝛿 −𝐺𝐺

���) 

+𝜌𝜌(𝑙𝑙 �
0 − 0
0 𝜎𝜎 −𝐹𝐹
0 𝛾𝛾 𝛿𝛿

� + 𝐷𝐷 �
0 𝜀𝜀 0
0 0 −𝐹𝐹
0 0 𝛿𝛿

�)] 

= −𝐵𝐵[−𝜇𝜇 �−𝑙𝑙 �−𝑑𝑑 �−𝐹𝐹 0
𝛿𝛿 −𝐺𝐺�� − 𝐷𝐷 �𝜀𝜀 �−𝐹𝐹 0

𝛿𝛿 −𝐺𝐺��� − 𝐷𝐷(𝑙𝑙 �−𝐹𝐹 0
𝛿𝛿 −𝐺𝐺�) 

+𝜌𝜌(𝑙𝑙 �𝑑𝑑 �0 −𝐹𝐹
0 𝛿𝛿 �� + 𝐷𝐷 �−𝜀𝜀 �0 −𝐹𝐹

0 𝛿𝛿 ��)] 

= −𝐵𝐵[−𝜇𝜇(−𝑙𝑙)(−𝑑𝑑)(𝐹𝐹𝐺𝐺) − 𝐷𝐷(𝜀𝜀)(𝐹𝐹𝐺𝐺) − 𝐷𝐷�𝑙𝑙(0)(𝐹𝐹𝐺𝐺) + 𝜌𝜌�𝑙𝑙(𝑑𝑑)(0) + 𝐷𝐷(−𝜀𝜀)(0)��.  
= −𝐵𝐵(−𝜇𝜇𝑙𝑙𝑑𝑑𝐹𝐹𝐺𝐺 + 𝜇𝜇𝜀𝜀𝐷𝐷𝐹𝐹𝐺𝐺 − 0 + 0 + 0) 

= −𝐵𝐵(−𝜇𝜇𝑙𝑙𝑑𝑑𝐹𝐹𝐺𝐺 + 𝜇𝜇𝜀𝜀𝐷𝐷𝐹𝐹𝐺𝐺) 

= 𝜇𝜇𝐵𝐵𝑙𝑙𝑑𝑑𝐹𝐹𝐺𝐺 − 𝜇𝜇𝜀𝜀𝐵𝐵𝐷𝐷𝐹𝐹𝐺𝐺. 

Where B = (𝜇𝜇 + 𝜂𝜂), C = (𝜇𝜇 + 𝜀𝜀), D = 𝛽𝛽 [𝑃𝑃𝑃𝑃(𝜇𝜇+𝜂𝜂)+(1−𝑃𝑃)𝜂𝜂𝑃𝑃 ]
𝜇𝜇 (𝜇𝜇+𝜂𝜂)

,𝑑𝑑 = (𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎), F = 
(𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿) and G = (𝜇𝜇 + 𝜌𝜌).  

𝐷𝐷𝑒𝑒𝑑𝑑(𝐽𝐽𝐹𝐹𝐸𝐸0) = 𝜇𝜇(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝜌𝜌)(𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎) 

−𝜇𝜇𝜀𝜀 �
𝛽𝛽[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜂𝜂) � (𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿)(𝜇𝜇 + 𝜌𝜌)(𝜇𝜇 + 𝜂𝜂) 

= 𝜇𝜇(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎) 

�1 −
𝛽𝛽[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)
� 

= 𝜇𝜇𝐵𝐵𝑙𝑙𝑑𝑑𝐹𝐹𝐺𝐺 �1 −
𝛽𝛽[𝑃𝑃𝑃𝑃(𝜇𝜇 + 𝜂𝜂) + (1 − 𝑃𝑃)𝜂𝜂𝑃𝑃]

𝜇𝜇(𝜇𝜇 + 𝜂𝜂)(𝜇𝜇 + 𝜀𝜀)(𝜇𝜇 + 𝛼𝛼 + 𝛾𝛾 + 𝜎𝜎)
� 

𝐷𝐷𝑒𝑒𝑑𝑑(𝐽𝐽𝑑𝑑𝐸𝐸0) = 𝜇𝜇𝐵𝐵𝑙𝑙𝑑𝑑𝐹𝐹𝐺𝐺(1 − 𝑑𝑑0) 

 

Thus, the𝐷𝐷𝑒𝑒𝑑𝑑(𝐽𝐽𝑑𝑑𝐸𝐸0) will only be greater than zero if 𝑑𝑑0 < 1. Hence if it’s so, the disease 
free equilibrium point (𝑑𝑑𝐸𝐸0) is locally asymptotically stable.  
 
Endemic Point 
Setting (5 – 9) to zero we have 

𝑑𝑑∗ =
(1 − 𝑝𝑝)𝑃𝑃
𝜇𝜇 + 𝜂𝜂

=
(1 − 𝑝𝑝)𝑃𝑃

𝐾𝐾1
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𝛽𝛽∗ =
𝑝𝑝𝑃𝑃𝐾𝐾1 + 𝜂𝜂𝑃𝑃(1 − 𝑝𝑝) + 𝑝𝑝𝐴𝐴𝑑𝑑𝐻𝐻∗

(𝛽𝛽𝐼𝐼8 + 𝜇𝜇)𝐾𝐾1
 

𝑑𝑑∗ = 𝛽𝛽𝛽𝛽 ∗𝐼𝐼∗

𝐾𝐾2
 , 𝐼𝐼∗ =  𝜀𝜀𝑑𝑑

∗

𝐾𝐾3
 →                                       (11) 

𝑑𝑑𝑑𝑑𝛽𝛽∗ =
𝜎𝜎𝐼𝐼∗

𝐾𝐾4
,   𝑑𝑑𝐻𝐻∗ =

𝛾𝛾𝐼𝐼∗ + 𝛿𝛿𝑑𝑑𝑑𝑑𝛽𝛽∗

𝑑𝑑5
 

Where 𝐾𝐾1 = (𝜇𝜇 + 𝜂𝜂),𝑑𝑑2 = 𝜇𝜇 + 𝜀𝜀,𝐾𝐾3 = 𝜇𝜇 + 𝑑𝑑 + 𝛾𝛾 + 𝜎𝜎,𝐾𝐾4 = 𝜇𝜇 + 𝛼𝛼1 + 𝛿𝛿,𝐾𝐾5 = 𝜇𝜇 + 𝜌𝜌.  
From (11)  𝑑𝑑∗ = 𝐼𝐼∗𝐾𝐾3

𝜀𝜀
. 

⟹
𝐼𝐼∗𝐾𝐾3

𝜀𝜀
=
𝛽𝛽𝛽𝛽∗𝐼𝐼∗

𝐾𝐾2
⟹ 𝛽𝛽∗ =

𝐾𝐾2𝐾𝐾3

𝛽𝛽𝜖𝜖
 

 

𝐾𝐾2𝐾𝐾3

𝛽𝛽𝜖𝜖
=

𝑝𝑝𝑃𝑃𝑘𝑘1+𝜂𝜂𝑃𝑃 (1−𝑝𝑝)
𝐾𝐾1

+ 𝑝𝑝𝐾𝐾1(𝛾𝛾𝐾𝐾4+𝛿𝛿𝜎𝜎 )𝐼𝐼∗

𝐾𝐾1𝐾𝐾4𝐾𝐾5

(𝛽𝛽𝐼𝐼∗ + 𝜇𝜇)𝐾𝐾1
 

⟹ 𝐼𝐼∗ =
𝑝𝑝𝑃𝑃𝛽𝛽𝜖𝜖𝐾𝐾1𝐾𝐾4𝐾𝐾5 + 𝛽𝛽𝜖𝜖𝜂𝜂𝑃𝑃(1 − 𝑝𝑝)𝐾𝐾4𝐾𝐾5 − 𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4𝐾𝐾5𝜇𝜇

𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4𝐾𝐾5𝛽𝛽 − 𝑝𝑝𝐾𝐾1𝛽𝛽𝜀𝜀(𝛾𝛾𝐾𝐾4 − 𝛿𝛿𝜎𝜎)
 

𝐾𝐾∗ = 𝐾𝐾3
𝐾𝐾6
𝐾𝐾7

 where 𝐾𝐾6 =  𝜌𝜌𝑃𝑃𝛽𝛽𝐾𝐾1𝐾𝐾4𝐾𝐾5 + 𝛽𝛽𝜀𝜀𝑃𝑃𝜂𝜂(1 − 𝑝𝑝)𝐾𝐾4𝐾𝐾5 − 𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4𝜇𝜇. 
𝐾𝐾7 =  𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4𝐾𝐾5𝛽𝛽 − 𝑝𝑝𝐾𝐾1𝛽𝛽𝜀𝜀(𝛾𝛾𝐾𝐾4 − 𝛿𝛿𝜎𝜎) 

𝑑𝑑𝑑𝑑𝛽𝛽∗ =
𝜎𝜎𝐾𝐾3𝐾𝐾6

𝐾𝐾4𝐾𝐾7
 

𝑑𝑑𝐻𝐻∗ =
(𝛾𝛾𝐾𝐾4 + 𝛿𝛿𝜎𝜎)𝐾𝐾6

𝐾𝐾4𝐾𝐾5𝐾𝐾7
=
𝐾𝐾6(𝛾𝛾𝐾𝐾4 + 𝛿𝛿𝜎𝜎)

𝐾𝐾4𝐾𝐾5𝐾𝐾7
 

𝛽𝛽∗ =
𝐾𝐾2𝐾𝐾3

𝛽𝛽𝜀𝜀
 

𝑑𝑑∗ =
(1 − 𝑝𝑝)𝑃𝑃

𝐾𝐾1
 

𝑑𝑑∗ = 𝐾𝐾2𝐾𝐾3𝐾𝐾6
𝜀𝜀𝐾𝐾7

’𝐼𝐼∗ = 𝐾𝐾6
𝐾𝐾7

 

From 𝐼𝐼∗ = 𝐾𝐾6
𝐾𝐾7

 
Since the force of infection 𝜆𝜆∗ = 𝛽𝛽𝐼𝐼∗𝛽𝛽∗ then  

𝜆𝜆∗ = 𝛽𝛽𝐼𝐼∗𝛽𝛽∗ = �
𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4𝐾𝐾5𝜇𝜇(𝑑𝑑0 − 1)

𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4𝐾𝐾5𝛽𝛽 − 𝑝𝑝𝐾𝐾1𝛽𝛽(𝛾𝛾𝐾𝐾4 + 𝛿𝛿𝜎𝜎)
� 

Lemma 3: 

The endemic Equilibrium point (EEP) exist and is unique and is locally asymptotically 
stable if and only if 𝑑𝑑0 > 1. (By Descartes Rule of signs). 

 
RESULT AND DISCUSSION 

Numerical Simulation 
The numerical simulation of the model was carried out using MATLAB. The estimated 
parameter values used in the simulation of this model are presented in table 2.1. Since the 
parameter values are known, then we can solve our system of differential equations (5 - 9), 
since the model uses six separate differential equations one must use a numerical solver to plot 
the solution. 
 
This is easier with MATLAB. We used the parameter values (Table 2.1) in MATLAB 
and plot the graph. The numerical simulation result is displayed in figure 1.1. 
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Figure 1.1: Numerical Simulation of Infected Individual against time. 
 
 

Parameters Value 

N 1000 

Π 5000 

µ 0.9 

P 0.04 

Β 0.05 

Ε 0.06 

Γ 0.65 

Α 0.6 

Δ 0.3 

α1 0.04 

Η 0.088 

Σ 0, 0.25, 0.75 

Table 2.1: Estimation of Parameter and Constant 
The graph of figure (1.1) represent three cases from table (2.1), the first case when σ = 0 
that is the initial state, second case when σ = 0.25 and the third case when σ = 0.75. We 
can see that there was less number of infected population when there is no resistance and 
infection is increased as we increases the resistance from 25% to 75% with respect to time. 
 
DISCUSSION 
From the numerical simulation of the condition in figure (4.1) above, it shows that there 
was less number of infected population when there is no resistance and infection is 
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increased as we increases the resistance from 25% to 75%. This was achieved by first choosing σ = 
0 simulation gives R0 = 0.865116 < 1, secondly when σ = 0.25 simulation gives R0 = 
0.907885 < 1 and lastly when σ = 0.75 < 1 simulation gives R0 = 0.751353 < 1 showing 
that the disease free equilibrium point (Eq0) of the model is locally stable in all the three 
(3) different values of σ. Since the basic reproduction number R0 < 1, it implies that the 
disease will gradually die out in the population when there are no resistance and the disease 
will increase when there is resistance to first line of treatment. 
 
 
SUMMARY 
This research was designed to model, analyzed and to study the effect of immunity and drug 
resistance on the transmission dynamics of tuberculosis using MSEIR model. The disease 
free equilibrium was obtained Eq0, the basic reproduction number was obtained 
(R0), stability analysis of the model was obtained, the existence of the endemic point and also 
numerical simulation of the model was done using MATLAB software with estimate values 
from table (2.1) using different values of sigma (σ) as in figure 1.1 above which shows that 
there was less number of infected population when there is no resistance and infection is 
increased as we increase the resistance from 25% to 75% which was also achieved by 
changing the value of sigma from 0 to 0.25 and then to 0.75.  The result shows that there 
is less number of infected population when there is no resistance to first line of treatment in 
the population. 
 
CONCLUSION 
Mathematical model is a useful technique for solving real life situations; a 
deterministic model to study the effect of immunity and drug resistance on the 
transmission dynamics of tuberculosis was modeled and analyzed in order to see the 
effect of resistance to first line of treatment in a population. The analysis and 
numerical simulation of the model reveal that the disease free equilibrium (Eq0) is 
locally stable since R0 < 1, which implies that TB disease will be gradually 
eliminated from the population. The numerical simulation of the model was carried 
out using MATLAB. 
 
RECOMMENDATION 
In line with this research findings the following recommendations are made; 
1. Encourage the use of mathematical models to model real life problems, which 
simplifies problems in the society. 
2. The government should integrate TB programmes into other existing health services such as 
outreach, maternal and child welfare programmes among others in order to increase its 
awareness. 
3. The government should intensify the education on TB in schools, community gathering, 
worship centers etc., to sensitize the individuals in the communities of its existence, free 
access to medical care and treatment duration. 
4. TB patients who migrate must be given referral to the clinics in such areas for 
continuation of treatment. 
5. Further research work is also recommended in order to help develop other suitable 
models to help public health professionals to adopt other strategies to control and eradicate 
the disease. 
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APPENDIX 

function vprime = tbmodel(t,y)  

vprime = zeros(6,1);  

pi = 5000;  

rho = 0.56;   

beta = 0.05  

varepsilon = 0.06;  

gamma = 0.65;   

alpha = 0.6;      

delta = 0.3;  

alpha1 = 0.04;  

% immunity and resistance parameters  
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eta = 0.088;  

sigma = 0; % Variables y(1) = M; y(2) = S; y(3) = E; y(4) = I; y(5) = RES ; y(6) = RH ; 

 yprime(1) = (1-p)*pi-(mu+eta)*y(1);  

yprime(2) = p*pi+eta*y(1)-beta*y(2)*y(4)-rho*y(6)-mu*y(1);  

yprime(3) = beta*y(2)*y(4)-(mu+varepsilon)*y(3);   

yprime(4) = varepsilon*y(3)-(mu+alpha+gamma+sigma)*y(4);   

yprime(5) = sigma*y(4)-(mu+alpha1+delta)*y(5); 

yprime(6) = gamma*y(4)-(mu+rho)*y(6)+delta*y(5); 

function vprime = tbmodel(t,y) 
vprime = zeros(6,1); 
pi = 5000; rho = 0.56;  
beta = 0.05  
varepsilon = 0.06;  
gamma = 0.65;  
alpha = 0.6;  
delta = 0.3;  
alpha1 = 0.04; 
% immunity and resistance parameters  
eta = 0.088;  
sigma = 0.25; 
% Variables y(1) = M; y(2) = S; y(3) = E; y(4) = I; y(5) = RES ; y(6) = RH;  
yprime(1) = (1-p)*pi-(mu+eta)*y(1); 
yprime(2) = p*pi+eta*y(1)-beta*y(2)*y(4)-rho*y(6) mu*y(1);  
yprime(3) = beta*y(2)*y(4)-(mu+varepsilon)*y(3);  
yprime(4) = varepsilon*y(3)-(mu+alpha+gamma+sigma)*y(4);  
yprime(5) = sigma*y(4)-(mu+alpha1+delta)*y(5);  
yprime(6) = gamma*y(4)-(mu+rho)*y(6)+delta*y(5); 
function vprime = tbmodel(t,y) 
vprime = zeros(6,1); 
pi = 5000; rho = 0.56;   
beta = 0.05  
varepsilon = 0.06;  
gamma = 0.65;  
alpha = 0.6;  
delta = 0.3;  
alpha1 = 0.04; 
% immunity and resistance parameters  
eta = 0.088; 
sigma = 0.75; 
% Variables y(1) = M; y(2) = S; y(3) = E; y(4) = I; y(5) = RES ; y(6) = RH ;  
yprime(1) = (1-p)*pi-(mu+eta)*y(1); 
yprime(2) = p*pi+eta*y(1)-beta*y(2)*y(4)-rho*y(6) mu*y(1);  
yprime(3) = beta*y(2)*y(4)-(mu+varepsilon)*y(3);  
yprime(4) = varepsilon*y(3)-(mu+alpha+gamma+sigma)*y(4);  
yprime(5) = sigma*y(4)-(mu+alpha1+delta)*y(5);  
yprime(6) = gamma*y(4)-(mu+rho)*y(6)+delta*y(5); 
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y0 = [102520, 12126, 2122, 4844, 1928, 6298];  
tspan = [0:0.5:15]; 
[T, Y ] = ode45(′tbmodel′, tspan, y0); 
[P, Q] = ode45(′tbmodel25imm′, tspan, y0);  
[R, S] = ode45(′tbmodel75imm′, tspan, y0);  
plot(T,Y(:,4),’-’) 
hold on  
plot(P,Q(:,4),’k’)  
hold on 
plot(R,S(:,4),’o’) 
xlabel(’Time(in years)’) 
ylabel(’Infected population’) 
legend(’No Resistance’, ’25% Resistance’, 75% Resistance’) 
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