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Abstract: 
The primary objective of this paper is to introduce the class of integer-valued 
autoregressive (INAR) models for the time series analysis of traffic accidents. Different 
types of time series count data are considered: aggregated time series data where both 
the spatial and temporal units of observation are relatively large and disaggregated time 
series data where both the spatial and temporal units are relatively small (e.g., congestion 
charging zone and month). The performance of the INAR models is compared with the 
class of Box and Jenkins real-valued models (such as ARIMA models) and Poisson and 
Negative Binomial (NB) models. The results suggest that the performance of the ARIMA 
model and the INAR Poisson model is quite similar in terms of model goodness of fit for 
the case of aggregated time series traffic accident data. This is because the mean of the 
counts is high in which case the normal approximations and the ARIMA model may be 
satisfactory. However, the performance of INAR Poisson model is found to be much better 
than that of the ARIMA model for the case of the disaggregated time series traffic accident 
data where the counts is relatively low. The paper ends with a discussion on the 
limitations of INAR models to deal with the seasonality and unobserved heterogeneity. 
 
Keywords: Traffic accidents, Time series count data, Integer-valued autoregressive, 
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INTRODUCTION 
 
Road transport brings huge benefits to society, but it also has both direct and indirect 
costs. Direct costs include the costs of providing road transport services such as 
infrastructure, equipments, and personnel. Indirect costs include road transport accidents, 
travel delay due to road traffic congestion, and air pollution from road traffic. Among all of 
these costs, the cost associated with road traffic accidents is very high. Based on the 
outcomes of accident prediction models, different countermeasures are implemented to 
reduce the frequency of road traffic accidents. Accident forecasting models are used to 
monitor the effectiveness of various road safety policies that have been introduced to 
minimise accident occurrences. For example, Houston and Richardson (2002) developed 
an accident forecasting model and concluded that the change of an existing seat belt law 
from secondary to primary enforcement enhances road traffic safety. However, the 
performance and validity of these accident models largely depend on the selection of 
appropriate econometric models. In order to identify an appropriate econometric model, 
the understanding of different count variables is essential as road traffic accidents are 
non-negative, discrete, and sporadic event count.  
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A random variable that indicates the number of times that some event has occurred is 
known as a count variable such as the annual number of road traffic accidents occurred 
on a specific geographic entity such as country, county etc. Similar to other type of 
empirical data, count data also have three categories: (1) cross-sectional, (2) time-series, 
and (3) panel. Cross-section count data are a set of observations on the values that a 
count variable takes for several sample units (e.g., wards, counties, boroughs, states, 
countries, etc.) at the same point in time. Cross-section data have only a space 
dimension.  
Since road traffic accidents are non-negative, integer, and random event count, the 
distribution of such events follow a Poisson distribution. The methodology to model 
accident count data are well developed. For instance, cross-sectional count data are 
modelled using a Poisson regression model (Kulmala, 1995). Since accident count data 
are normally over-dispersed (i.e., variance is greater than mean), a Negative Binomial 
(NB) regression model which is a Poisson-gamma mixture is more appropriate to apply 
(Abdel-Aty and Radwan, 2000). If such cross-sectional count data contain a lot of zero 
observations (i.e., excess zero-count data), then a zero-inflated Poisson (or NB) model or 
the Hurdle count data model is more appropriate (Land at al., 1996). If cross-sectional 
accident count data are truncated or censored, such as the number of fatalities per fatal 
accident in which the count data are truncated at one as there should be at least one 
fatality in a fatal accident, these data are modelled using either a truncated Poisson or a 
truncated NB model. If cross-sectional count data are under-reported such as the 
occurrence of slight injury or property-damage accidents, then an under-reported Poisson 
model is used. If accident count data are panel data, fixed effects (FE) Poisson (or NB) 
model or random effects (RE) Poisson (or NB) model is used (Chin and Quddus, 2003). 
For clustered panel count data, the generalised estimating equations (GEE) technique is 
employed.  
 
However, there is a lack of suitable econometric models within the accident modelling 
literature to model time series accident count data. Normally, this type of accident data is 
modelled using a Poisson regression model or a NB regression model that has a 
prevailing assumption that observations should be independent to each other. This  
suggests that these models are more suitable for cross-sectional count data. Modelling 
time series count data using these models may result inefficient estimates of the 
parameters as time series data are normally serially correlated. One simple solution would 
be to introduce a time trend variable as an explanatory variable in the model to control for 
serial correlation. For example, Noland et al. (2006) used a NB model with a trend variable 
to study the effect of the congestion charge on traffic safety. However, there is no 
guarantee that this will explicitly account for the effect of serial correlation, specifically for 
the case of a long time series count data.  
 
Time series models for continuous data are very well developed. Real-valued time series 
models, such as the autoregressive integrated moving average (ARIMA) model, 
introduced by Box and Jenkins (1970) have been used to model time series count data in 
many applications over the last few decades (e.g., Zimring 1975, Sharma and Khare, 
1999, Houston and Richardson, 2002, Goh, 2005). However, when modelling non-
negative integer-valued count data such as traffic accidents within a geographic entity 
over time, Box and Jenkins models may be inappropriate. This is mainly due to the 
normality assumption of errors in the ARIMA model. This largely suggests that a model is 
required which can take into account both the non-negative discrete property and 
autocorrelation of time series count data. 
 
Over the last few years, a new class of such time series models known as integer-valued 
autoregressive (INAR) Poisson models, has been studied by many authors in the fields of 
finance, public health surveillance, travel and tourism, and forest sector etc. This class of 
models is particularly applicable to the analysis of time series count data as these models 
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hold the properties of the distribution of count data and are able to deal with serial 
correlation, and therefore offers an alternative to the real-valued time series models and 
general Poisson or NB models.  
 
 
This paper is organised as follows. The next section describes the class of INAR models 
used in this study. This is followed by a description of data sources used for the analysis. 
A presentation and interpretation of the results are then discussed in some detail. This 
paper ends with conclusions and limitations of this study.  
 
METHODOLOGY 
 
The model for continuous autoregressive pure time series data was introduced by Box 
and Jenkins (1970 ) and are now very well developed. The Box and Jenkins model such 
as the seasonal autoregressive integrated moving average (SARIMA) model is capable of 
taking into account the trend and seasonality (and hence the serial correlation) normally 
present in time series data. An extension of this model was proposed by (Box and Tiao, 
1975) which has the ability to examine the effects of various regressors and intervention 
variables as explanatory variables along with the usual trend and seasonal components. 
This model can be expressed as follows: 
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in which t is the discrete time (e.g., week, month, quarter, or year),  yt is the appropriate 
Box-Cox transformation of Yt, say lnYt, Yt

2, or Yt itself (Box and Cox, 1964), Yt is the 
dependent variable for a particular time t, It is the intervention component, X is the 
deterministic effects of independent variables known as control variables (X), d is the 
order of the non-seasonal difference, D is the order of the seasonal difference, the 
subscript s is the length of seasonality (for example s=12 in case of monthly time series 

data),   and   are the regular and seasonal autoregressive (AR) operators,   and   

are the regular and seasonal MA operators, B and 
sB  are the backward shift operators, 

and te is an uncorrelated random error term with zero mean and constant variance (
2 ).   

 
However, the model as shown in equation (1) is suitable for real-valued time series data 
as the error has to be normally distributed with zero mean and constant variance. Despite 
this assumption, this model are being used to investigate non-negative variate time series 
related to a number of applications including road traffic accidents (e.g., Houston and 
Richardson, 2002 ; Noland et al., 2006).   
 
There are a few major problems with the application of ARIMA models to non-negative 
integer-valued variables such as monthly accident count data. The first problem is the 
definition of the model. A real-valued autoregressive process of order 1 can be expressed 
as follows: 
 

                                                           ttt eYY  1                                                    (2) 

 
In order to obtain an integer valued Yt  the following constraints have to be imposed on 

equation (2) such as (i) te is integer valued and (ii)  =-1, 0 , or 1. Such constraints limit 

the practical use of real-valued autoregression time series process in the framework of 
count variables. The second problem concerns the commonly made assumption of 
normality. For a count variable in which the mean of the counts is relatively high such as 
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yearly road traffic accidents, the distribution is usually found to be an approximate normal 
and hence, the use of SARIMA model may be satisfactory as the normality assumption is 
less questionable. However, for a count variable in which the mean of the count is close to 
zero such as monthly fatal road traffic accidents within a small geographic unit, the 
distribution is normally skewed to the right. Therefore, the assumption of normality, or of 
any other symmetric distribution, is unjustified.  
 
The class of integer-valued autoregressive processes denoted by INAR have been 
studied by many authors (e.g., Al-Osh and Alzaid, 1987; McKenzie, E., 1988, Brännäs, 
Hellström, 2001, Karlis, 2006). A natural idea of such models is to replace the 
deterministic effect of lagged Yt’s by a stochastic one. The approach developed replaces 
the scalar multiplication between   and Yt-1 by binomial thinning which is defined as 

follows. If 1tY is a non-negative integer and   [0, 1] then 
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where  iu  is a sequence of independently and identically distributed Bernoulli random 

variables, independent of N , and for which  )0Pr(1)1Pr( ii uu . It is noticeable 

that conditional on 1tY , 1tY  is a binomial random variable, the number of successes in 

1tY  independent trials in each of which the probability of success is  . Thus, the original 

real-valued AR(1) model of equation (2) is replaced by 
 

ttt eYY  1                                                                   (4) 

 

The thinning operation of  on 1tY  is independent of te . The second part of equation (4) 

consists of the elements which entered the system during the interval  tt ,1  known as 

innovations. The basic derivation of the INAR process is based on the assumption that the 

innovations, te has an independently and identically Poisson distribution i.e., 

)(~ tt Poissone  where t is the Poisson mean denoted by 

 

                                             )exp( 0 ttt IX                                                              (5) 

 
The properties of the model in equation (3) can be found in Al-Osh and Alzaid (1987) and 

MaKenzie (1988). The mean and variance of the process  tY are equal to )1/(   . 

Equation (4) is termed as the Poisson INAR(1).  
 
Extensions of this model includes the Poisson INMA(1), the Poisson INARMA(1,1), the NB 
INAR(1) model, and INARMA(1,1,) NB model which has the ability to deal with both under-
dispersed and over-dispersed count data (Al-Osh and Alzaid, 1988; Brännäs and Hall, 
2001, Karlis, 2006) . Equation (3) can be estimated using the programmable Exact 
Maximum (EM) algorithm (Karlis, 2006). 
 
DATA 
Two datasets are used to investigate the appropriateness of different types of accident 
prediction models discussed above. One of these is a highly aggregated time series 
accident count and the other is a relatively disaggregated time series accident count.  
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The highly aggregated time series data considered in this study is the annual road traffic 
fatalities in Nigeria between 1950 to 2005. The total number of observations is 55 and the 
mean and standard deviation of this time series process are 5,769 and 1,352 respectively. 
It is very well known that an accident model should contain an exposure to accident 
variable to control for total road traffic movements within the road network. The literature 
suggests that a good exposure to accident variable is vehicle kilometres travelled (VKT).  
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Figure 1: Annual road traffic fatalities and vehicle km travelled 

 

The disaggregated time series data considered in this study is the monthly car KSI (Killed 
and seriously injured) within the congestion charging zone between January 1991 to 
October 2005. The time series plot of the data is shown in Figure 2. The introduction of 
the congestion charge (17th February 2003) is also highlighted within the plot. It is 
noticeable that the data exhibit both trend and seasonality. The total number of 
observations is 178 and the mean and standard deviation of this time series process is 
6.07 and 3.54. The total number of monthly road traffic accidents within greater is taken as 
an exposure to risk of accidents for this dataset.  
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RESULTS 
Different accident prediction models are developed using the econometric models  such 
as ARIMA, NB, NB with a time trend, and INAR Poisson models as described in the 
methodology section for both aggregated and disaggregated time series datasets. Our 
main objective is to identify the best accident model for each type of time series datasets. 
For this purpose, each of the datasets is divided into two parts. One part is used to fit a 
model and the other part is used to validate the corresponding model. The results for each 
of the datasets are presented below. 
 
Annual Road Traffic Fatalities in Nigeria (Aggregated Time Series Process) 
 
It is worthwhile to note that the other models considered in this study such as NB, NB with 
a time trend, and INAR Poisson models assume that the underlying time series process is 
a stationary process and therefore, there is no need to manipulate the response variable 
of the process.  
 
The results of ARIMA, NB, NB with a time trend variable and INAR Poisson models are 
presented in Table 1. In each of these models, two interventions and one control variables 
are used as the explanatory variables and the annual road traffic fatalities is used as a 
response variable. The first intervention variable is the introduction of the seat-belt law in 
1983 and the second intervention variable is the introduction of various safety legislations 
in 1989. Both of these intervention variables are dummy variables represented by the so-
called step functions. This suggests that these interventions cause an immediate and 
permanent effect on road traffic. 
It can be seen that both intervention variables are statistically significant in all models 
except in the ARIMA (1,1,1) model. However, both AR1 and MA1 components of this 
ARIMA model are statistically significant at the 100% confidence level. The control 
variable, VKT, is also statistically significant in all models expect in the NB with a time 
trend model. This is due to the fact that the trend variable (linear) and the control variable 
(i.e., VKT) are highly correlated showing a correlation coefficient of 0.99.  
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Table 1: Accident prediction models for annual road traffic fatalities.  

 
 

 
The performance of each of the models presented in Table 1 can be found from the 
different “measures of accuracy” of the fitted models. These are the mean absolute 
percentage error (MAPE), the mean absolute deviation (MAD), the mean squared 
deviation (MSD), and the root mean squared error (RMSE). For all four measures, the 
smaller the value, the better the fit of the model. It can be seen that the best fitted model is 
the ARIMA(1,1,1) model in terms of all “measures of accuracy”. The performance of the 
INAR(1) Poisson model is also good relative to the ARIMA model. The worst performance 
model is found to be the NB model with a trend model for this dataset.  
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The validation dataset that contains observations from 2001 to 2005 is used to estimate 
the relative forecast error, RFE, (%) of each models using the following equation: 
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where, iy is the observed annual road traffic fatalities and iŷ is the forecasted annual road 

traffic fatalities using the developed model. 
 
The results are shown in the last row of Table 1. The lowest RFE (2.79%) is also found in 
the ARIMA (1,1,1) model suggesting that the best performance model is the ARIMA 
(1,1,1) model both in terms of the forecasted values associated with the out of sample 
observations.  
 
In terms of the significant variables in the models, the two best performance models 
provide dissimilar results.  Both intervention variables are found to be insignificant in the 
ARIMA model but found to be significant in the INAR(1) model. Both the seat-belt wearing 
law in 1983 and the different safety legislations in 1989 have a negative impact on road 
traffic fatalities in the NIGERIA in the INAR(1) model. This finding is consistent with the 
finding of other studies on seat-belt safety law (e.g., Houston and Richardson, 2002).  
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Figure 4 shows the graph of observed fatalities and predicted fatalities for the ARIMA, NB 
with a trend, and INAR(1) Poisson models from 1985 to 2005. It can be seen that the 
predicted fatalities of the ARIMA and INAR(1) Poison models are in-line with the observed 
fatalities for both within sample and out of sample observations. As expected, NB model 
with a time trend variable provides the worst fit.  
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The results of SARIMA, NB, NB with a time trend, and INAR(1) Poisson models are 
presented in Table 2. Each of these models has an intervention variable and a control 
variable. The intervention variable is the introduction of the congestion charge in February 
2003 which is assumed as a step function. The control variable is the total monthly road 
traffic accidents which is a direct measure of exposure to risk. It can be seen that the 
intervention variable, the introduction of the congestion charge, is statistically significant in 
all models except in the SARIMA model. The coefficient value of this variable is found to 
be -0.41 in the INAR(1) model suggesting that the introduction of the congestion charging 
zone within central reduces car KSI by about 33% if all other factors remain constant. The 
control variable is statistically significant in the INAR(1) Poisson model only. Based on the 
various “Measures of Accuracy” and “Relative Forecast Error” of the developed models, it 
can be said that the best performance model is the INAR(1) Poisson model. The RFE for 
the INAR(1) Poisson model is only 2.21%. The worst performance model is the SARIMA 
model for which the RFE is 9.03%.  
 

 
 
 
 
 

Table 2: Accident prediction models for monthly car KSI within the congestion 
charging zone 

 

Explanatory Variables Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat

Congestion charge -1.4505 -1.12 -0.4251 -2.25 -0.3191 -1.63 -0.4081 -2.50

ln(Monthly Accidents) 1.5802 0.32 0.8363 1.59 0.5163 0.95 0.8372 1.95

Time trend (Linear) - - - - -0.0021 -1.9 - -

Constant - -4.8670 -1.15 -2.1394 -0.48 -4.9782 -1.44

Non-seasonal MA1 0.9928 3.87 - - - - - -

Seasonal MA1 0.8933 7.76 - - - - - -

Descriptive statistics

Overdispersion parameter 0.1397 4.02 0.1326 3.9

Thinning parameter 0.0973 2.03

Series of length 168 168

Number of residuals 155 168

Accuracy of the fitted models 

(within sample)

Mean Absolute % error (MAPE)

Mean Absolute Deviation (MAD)

Mean Squared Deviation (MSD)

Root Mean Sqaure Error (RMSE)

Relative forecast error (%)   (Out of 

sample, Jan 2005 to Oct 2005)
9.03 5.12 5.31 2.21

2.48 2.33 2.36 1.53

6.15 5.45 5.56 2.33

1.75 0.96 1.01 0.64

NB with a time trend INAR(1) Poisson

22.38 16.98 17.21 7.59

Disaggregate Time Series Accident Count Data (Monthly Car KSI within the Congestion Charging Zone 1991 - 2004)

SARIMA NB 

 
 
In summary, it can be said that for the case of the aggregated time series count data the 
best accident prediction model is obtained when the real-valued ARIMA model is used 
and for the case of the disaggregated time series count data the best accident prediction 
model is achieved when the INAR(1) Poisson model is employed. It should be noted that 
both time series count datasets used in this study exhibits serial correlation and hence it is 
not surprising that none of the NB models (with a trend and without a trend) is found to be 
a suitable model for serially correlated time series count data as these models are unable 
to take into account the effects of serial correlation. This suggests that the integer-valued 
discrete property of count data is not so important if the mean of the counts associated 
with a time series process are high. However, if the counts associated with a time series 
process exhibit low values, the distribution of count data follows a Poisson distribution and 
the properties of integer-valued count data becomes important. This is confirmed by the 
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results of the disaggregated time series data while the real-valued time series model 
provides the worst performance among all models. The INAR(1) Poisson model provides 
good results for both datasets.  
 
In terms of identifying the effects of interventions, the ARIMA model provides an 
unrealistic result for both time series datasets. The exact causes have not been identified. 
However, one of the reasons may be that the AR and MA components of this model 
weaken the impact of interventions.  
 
CONCLUSIONS 
 
Accident prediction models for time series count data were developed employing a range 
of econometric models such as ARIMA, NB, NB with a time trend, and INAR(1) Poisson 
models. Two time series accident count datasets were used to develop the accident 
models in this study. One of the datasets was a highly aggregated time series process of 
annual road traffic fatalities and the other dataset was a disaggregated time series 
process of monthly car KSI within the congestion charging zone. Both of the datasets had 
a problem of serial correlation. Each of these datasets was used to develop four accident 
prediction models based on the four econometric models while controlling for exposure to 
risk of accidents. The performance of the fitted models was investigated using various 
“Measures of Accuracy” for within sample observations and “Relative Forecast Error” for 
out of sample observations. The results implied that the best accident prediction model for 
the aggregated time series count data was achieved when the ARIMA model was used. 
The performance of INAR(1) Poisson model was also found to be good for this dataset. 
On the other hand, the best accident prediction model for the disaggregated time series 
count data was achieved when the INAR(1) Poisson model was used. This largely 
suggests that the controlling of both serial correlation and non-negative discrete property 
of count data are important when the mean of the counts is relatively high. The preserving 
of integer structure of the count data is more important than the controlling of serial 
correlation if the mean of the counts is relatively low. Since INAR(1) Poisson model is 
capable of controlling both properties of time series count data, one should consider to 
employ this model when analysing time series accident count data.  
 
The INAR(1) Poisson process is a stationary time series process that has a limitation to 
deal with the presence of over-dispersion commonly found in accident data. The 
extensions of this model are an INAR(1) NB model or an INARMA(1,1) NB model that 
could potentially control for both non-stationary time series process and over-dispersion. 
However, the methods of estimating parameters for such models are very complex and 
are not readily available to the author to investigate in this study.  
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