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Abstract 

The paper studies the effect of exponential diffusion parameter and decaying advection parameter on the 
quality of water in aquifer. Taylor series expansion is used to generate the finite difference scheme of 
Alternating Direction Explicit (ADE) scheme and Alternating Direction Implicit (ADI) scheme. The two 
schemes are found to be consistent and stable with the model equations.  
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Introduction 

Use of Advection – Diffusion equation in various fields of science like transport of heat, 
sediment, ground water and surface flow pollutants are fully sufficient for researchers to show 
interest in solving this equation. Many researchers like Bear [1] tried to propose analytical 
solutions for these type of equations, but in recent years researchers like Beny [2] have shown 
more interest thereby introducing numerical solutions to these kind of equations. As noted 
earlier, most of the researchers showed interest to present numerical solutions for Advection – 
Diffusion Equation instead of analytical solutions. 

Brief review of work done by attention to the data was done by Young and et al [66] who 
developed an algorithm to solve fully conservative, high resolution Advection – Diffusion 
Equation in irregular geometries. In this algorithm they developed Finite Volume Method to 
solve this equation.Bobenko [3] in order to numerically integrate the semi – discrete equation 
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arising arising after the spatial discretization of Advection – Reaction – Diffusion Equation 
applied two variable step linearly implicit Runge – Kutta methods of order 3 amd 4 equations. 

Chapra [5] used the Euclerian – Lagrangian localized adjoin method on non – uniform time 
steps and unstructured meshes to solve the Advection – Diffusion Equation. Doyo [9] tried to 
develop an algorithm by second and third order accuracy with finite with finite – difference 
method to solve the convection – diffusion equation. In this algorithm they used to counter 
error mechanism to reduce numerical dispersion. One of the researchers that tried to solve 
Advection – Diffusion Equation in implicit condition is Douglas [8]. He solved the equation with 
Finite Difference Method by using the upwind and Crank – Nicolson schemes. 

First,we derive the finite difference forms of ADE and ADI methods for the given model 
equation and then present an algorithm for each method. 

The model equation 

The research examines the  Alternating Direction Explicit (ADE) scheme and Alternating 
Direction Implicit (ADI) scheme for solving the (3+1) Dimensional Advection-Diffusion equation 

𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕
2𝐶𝐶
𝜕𝜕𝜕𝜕 2 + 𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕

2𝐶𝐶
𝜕𝜕𝜕𝜕 2 + 𝑓𝑓3(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕

2𝐶𝐶
𝜕𝜕𝜕𝜕 2 + 𝑓𝑓4(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕2𝐶𝐶

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝑓𝑓5(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝑓𝑓6(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐶𝐶𝑡𝑡                                                                                                                    (1) 

which is used to model physical process of Advection-Diffusion in a (3+1) Dimensional system 
such as one involving contaminant concentration in aquifer. The 
coefficients𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡),𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡),𝑓𝑓3(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)𝑓𝑓4(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) represent the diffusion 
parameters (diffusivity) and 𝑓𝑓5(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓6(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) are the advection parameters 
(velocity). The equation is parabolic and is derived from the principle of conservation of mass 
using Fick’s law of conservation in fluid flow problems as presented by (Morton 1971).The 
Alternating Direction Explicit(ADE) scheme developed for the equation is given by:- 

4𝑞𝑞𝑞𝑞𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1 = 4𝐶𝐶𝑖𝑖+1,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 − 24𝐶𝐶𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 + 4𝐶𝐶𝑖𝑖−1,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 + 4𝐶𝐶𝑖𝑖 ,𝑗𝑗+1,𝑘𝑘
𝑛𝑛 + 4𝐶𝐶𝑖𝑖 ,𝑗𝑗−1,𝑘𝑘

𝑛𝑛 + 4𝐶𝐶𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+1
𝑛𝑛 4𝐶𝐶𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘−1

𝑛𝑛 +
𝐶𝐶𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘
𝑛𝑛 − 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘

𝑛𝑛 − 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘
𝑛𝑛 + 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘

𝑛𝑛 + 2𝑞𝑞𝑞𝑞𝑖𝑖+1,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 + 2𝑞𝑞𝑞𝑞𝑖𝑖 ,𝑗𝑗+1,𝑘𝑘

𝑛𝑛                        (2) 

and the Alternating Direction Implicit (ADI) scheme developed for the equation is given by:- 

4𝑞𝑞𝑞𝑞𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1 + 4𝐶𝐶𝑖𝑖−1,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 − 8𝐶𝐶𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1 − 4𝐶𝐶𝑖𝑖+1,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 = 4𝑞𝑞𝑞𝑞𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 − 16𝐶𝐶𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 + 4𝐶𝐶𝑖𝑖 ,𝑗𝑗+1,𝑘𝑘
𝑛𝑛 + 4𝐶𝐶𝑖𝑖 ,𝑗𝑗−1,𝑘𝑘

𝑛𝑛 +
4𝐶𝐶𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+1

𝑛𝑛 + 4𝐶𝐶𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘−1
𝑛𝑛 + 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘

𝑛𝑛 − 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘
𝑛𝑛 − 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘

𝑛𝑛 + 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘
𝑛𝑛 + 2𝑞𝑞𝑞𝑞𝑖𝑖+1,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 −
2𝑞𝑞𝑞𝑞𝑖𝑖−1,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 + 2𝑞𝑞𝐶𝐶𝑖𝑖 ,𝑗𝑗+1,𝑘𝑘
𝑛𝑛 − 2𝑞𝑞𝑞𝑞𝑖𝑖 ,𝑗𝑗−1,𝑘𝑘

𝑛𝑛                                                                                      (3) 

 

Properties of numerical schemes 

Many techniques are available for numerical simulation work and in order to quantify how well 
a particular numerical technique performs in generating a solution to a problem, there are four 
fundamental criteria that can be applied to compare and contrast different methods. The 
concepts are accuracy, consistency, stability and convergence. The method of Finite Difference 
Method is one of the most valuable methods of approximating numerical solution of Partial 
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Differential Equations (PDEs). Before numerical computations are made, these four important 
properties of finite difference equations must be considered. 

(a) Accuracy: Is a measure of how well the discrete solution represents the exact solution of 
the problem. Two quantities exist to measure this, the local or truncation error, which 
measures how well the difference equations match the differential equations, and the 
global error which reacts to the overall error in the solution. This is not possible to find 
unless the exact solution is known.  

(b) Stability: A finite difference scheme is stable if the error made at one time step of the 
calculation do not cause the errors to be magnified as the computations are continued. 
A neutrally stable scheme is one in which errors remain constant as the computation are 
carried forward. If the errors decay are eventually damp out, the numerical scheme is 
said to be stable. If on the contrary, the errors grow with time the numerical scheme is 
said to be unstable. 

(c) Consistency: When a truncation error goes to zero, a finite difference equation is said to 
be consistent or compatible with a partial differential equation. Consistency requires 
that the original equations can be recovered from the algebraic equations. Obviously 
this is a minimum requirement for any discretization.  

(d) Convergence: A solution of a set of algebraic equations is convergent if the approximate 
solution approaches the exact solution of the Partial Differential Equations (PDEs) for 
each value of the independent variable. For example, as the mesh sizes approaches 
zero, the grid spacing and time step also goes to zero.  

Lax had proved that under appropriate conditions a consistent scheme is convergent if and only 
if it is stable. According to 𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 which states that “given a 
properly posed linear initial value problem and a finite difference approximation to it that 
satisfies the consistency condition, stability is the necessary and sufficient condition for 
convergence” 

Initial and Boundary condition 

Limit conditions are important in solving the (3+1) dimension advection-diffusion contaminant 
concentration equation. They are decided by actual geographical information and initial contaminant 
concentration of the boundaries. There are mainly two approaches to obtain the initial conditions, Griths 
and Mitchel[27]. One is to set the real approximate pollutant concentration as initial condition and the 
other is to set zero concentration as initial condition. The latter is viewed as the ideal circumstance. The 
expression for initial conditions of the equation can therefore be given as: 

𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡0) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)                                                                                                (4) 

𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡0) = 0                                                                                                                       (5) 

In general, there are three boundary conditions for Advection-Diffusion equations, Griths and 
Mitchel[27]: Dirichlet condition (the concentration boundary), Neuman condition (the concentration 
gradient boundary) and Cauchy condition (the concentration boundary and the concentration gradient 
boundary specified at the same time). Considering the calculation efficiency we will choose the ideal 
boundary condition ie the Dirichlet condition, giving the boundary condition as: 

𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝐶𝐶(10,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 0,0 ≤ 𝑥𝑥 ≤ 10                                                                          (6) 
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𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝐶𝐶(𝑥𝑥, 2, 𝑧𝑧, 𝑡𝑡) = 0,0 ≤ 𝑦𝑦 ≤ 2                                                                               (7) 

𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝐶𝐶(𝑥𝑥, 𝑦𝑦, 2, 𝑡𝑡) = 0,0 ≤ 𝑥𝑥 ≤ 2                                                                               (8) 

Substituting 𝒆𝒆𝒙𝒙 for 𝒇𝒇𝟏𝟏(𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝒕𝒕),𝒇𝒇𝟐𝟐(𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝒕𝒕),𝒇𝒇𝟑𝟑(𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝒕𝒕) and 𝒇𝒇𝟒𝟒(𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝒕𝒕) and 𝒆𝒆−𝒙𝒙 for 
𝒇𝒇𝟓𝟓(𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝒕𝒕)and 𝒇𝒇𝟔𝟔(𝒙𝒙,𝒚𝒚, 𝒛𝒛, 𝒕𝒕) while we let 𝒙𝒙 = 𝟏𝟏 on 𝒆𝒆 superscript in equation (1) would yield: 

When 𝑛𝑛 = 0, the system of linear algebraic equations will be written as: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶𝐶1,1,1

1

𝐶𝐶2,1,1
1

𝐶𝐶3,1,1
1

𝐶𝐶4,1,1
1

𝐶𝐶5,1,1
1

𝐶𝐶6,1,1
1

𝐶𝐶7,1,1
1

𝐶𝐶8,1,1
1

𝐶𝐶9,1,1
1

𝐶𝐶10,1,1
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
−1.64 0.450 ⋯ 0 ⋯ 0
0.450 −1.64 0.450 ⋮ 0 ⋮
⋮ 0.450 ⋱ ⋱ ⋮ 0
0 ⋯ ⋱ ⋱ 0.450 ⋮
⋮ ⋯ 0 0.450 −1.64 0.450
0 ⋯ 0 ⋯ 0.450 −1.64⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.567000
−0.3690000
0.8730000
0.3310000
−0.751000
−1.152000
0.0752000
0.2699000
1.1620000
0.2450000 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

        (9) 

When 𝑛𝑛 = 1, the systems of linear algebraic equations will be written as:  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶𝐶1,1,1

2

𝐶𝐶2,1,1
2

𝐶𝐶3,1,1
2

𝐶𝐶4,1,1
2

𝐶𝐶5,1,1
2

𝐶𝐶6,1,1
2

𝐶𝐶7,1,1
2

𝐶𝐶8,1,1
2

𝐶𝐶9,1,1
2

𝐶𝐶10,1,1
2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
−1.64 0.450 ⋯ 0 ⋯ 0
0.450 −1.64 0.450 ⋮ 0 ⋮
⋮ 0.450 ⋱ ⋱ ⋮ 0
0 ⋯ ⋱ ⋱ 0.450 ⋮
⋮ ⋯ 0 0.450 −1.64 0.450
0 ⋯ 0 ⋯ 0.450 −1.64⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.7600000
0.7500000
−1.282000
−0.500000
0.8600000
1.5936000
−0.502470
0.1128050
−1.676869
0.1042360⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

           (10) 

When 𝑛𝑛 = 2, the systems of linear algebraic equations will be written as: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶𝐶1,1,1

3

𝐶𝐶2,1,1
3

𝐶𝐶3,1,1
3

𝐶𝐶4,1,1
3

𝐶𝐶5,1,1
3

𝐶𝐶6,1,1
3

𝐶𝐶7,1,1
3

𝐶𝐶8,1,1
3

𝐶𝐶9,1,1
3

𝐶𝐶10,1,1
3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
−1.64 0.450 ⋯ 0 ⋯ 0
0.450 −1.64 0.450 ⋮ 0 ⋮
⋮ 0.450 ⋱ ⋱ ⋮ 0
0 ⋯ ⋱ ⋱ 0.450 ⋮
⋮ ⋯ 0 0.450 −1.64 0.450
0 ⋯ 0 ⋯ 0.450 −1.64⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1.251120
−1.473680
2.2023000
0.6480240
−0.906256
−2.464947
1.4634800
−1.157320
2.8441400
−0.900102⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

            (11) 
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When 𝑛𝑛 = 3, the systems of linear algebraic equations will be written as: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶𝐶1,1,1

4

𝐶𝐶2,1,1
4

𝐶𝐶3,1,1
4

𝐶𝐶4,1,1
4

𝐶𝐶5,1,1
4

𝐶𝐶6,1,1
4

𝐶𝐶7,1,1
4

𝐶𝐶8,1,1
4

𝐶𝐶9,1,1
4

𝐶𝐶10,1,1
4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
−1.64 0.450 ⋯ 0 ⋯ 0
0.450 −1.64 0.450 ⋮ 0 ⋮
⋮ 0.450 ⋱ ⋱ ⋮ 0
0 ⋯ ⋱ ⋱ 0.450 ⋮
⋮ ⋯ 0 0.450 −1.64 0.450
0 ⋯ 0 ⋯ 0.450 −1.64⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1.3880000
2.8612210
−3.958900
−0.511719
0.6588490
4.3036600
−3.990834
3.8119250
−5.569266
2.7120940⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                (12) 

Solving the matrix-vector equations (9), (10), (11), (12) for 𝑛𝑛 = 0,𝑛𝑛 = 1,𝑛𝑛 = 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 = 3 respectively 
using MATLAB software, will yield the results given in the table (1.0) for ADE scheme where the 
diffusion parameters are exponential and the advection parameters are decaying. 

 

Table 1.0: Effect of Exponential Diffusion and Decaying Advection parameters on contaminant 
concentration in ADE Scheme 

Grid Point (i,j,k,n) n=0 n=1 n=2 n=3 
(1,1,1,n) 0.7694000 1.57260 1.4108000 -1.0317000 
(2,1,1,n) 0.7383000 -2.1183000 2.8305000 -5.8049000 
(3,1,1,n) -1.4898000 2.2112000 -3.9709000 -1.4995000 
(4,1,1,n) 0.8745000 0.6364000 -0.4989000 -0.5925000 
(5,1,1,n) 1.5953000 -0.9347000 0.6958000 0.5688000 
(6,1,1,n) -0.5070000 2.4579000 4.2848000 -8.5060000 
(7,1,1,n) 0.0955000 1.5662000 -3.9756000 10.073600 
(8,1,1,n) 0.0955000 -1.1326000 3.9756000 -10.409800 
(9,1,1,n) -1.6817000 2.8430000 -5.5591000 11.971400 
(10,1,1,n) 0.1037000 -0.9000000 2.7131000 -6.8703000 
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Figure 1.1: 2D Plot of (3+1) Advection-Diffusion Equation, ADE Scheme for varying n 

 
 

 

 

Comparison of Numerical Results 

The numerical computational of results obtained for solutions of (3+1) dimensional Advection-
Diffusion Equation for varying diffusion (Exponential) and Advection  (Decaying) parameters, 
compared between ADE and ADI. The comparison seen in these results between ADE and ADI 
are very close and that the error between the two schemes when compared is very small. 
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Comparison of (3+1) Dimensional Advection-Diffusion Equation for Exponential Diffusion and 
Decaying Advection parameter for ADE and ADI at n=3 

x 1 2 3 4 5 6 7 8 9 10 
ADE 1.0322 5.8049 1.4995 0.5900 0.5600 8.5000 10.0700 10.4090 11.9700 6.8700 
ADI 1.0321 5.8030 1.4970 0.5800 0.5700 8.5100 10.0600 10.419 11.961 6.8610 
Absolute Error 0.0001 0.0019 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

 

Conclusion 

In both Alternating Direction Explicit (ADE) Scheme and Alternating Direction Implicit (ADI) 
scheme, when the diffusion parameter is exponential and the Advection parameter is decaying, 
concentration in the entire length of the 𝑥𝑥- plane keep oscillating with respect to time showing 
low water quality in the aquifer (high contaminant concentration).   
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	Substituting ,𝒆-𝒙. for ,𝒇-𝟏.,𝒙,𝒚,𝒛,𝒕.,,𝒇-𝟐.,𝒙,𝒚,𝒛,𝒕.,,𝒇-𝟑.(𝒙,𝒚,𝒛,𝒕) and ,𝒇-𝟒.(𝒙,𝒚,𝒛,𝒕) and ,𝒆-−𝒙. for ,𝒇-𝟓.(𝒙,𝒚,𝒛,𝒕)and ,𝒇-𝟔.(𝒙,𝒚,𝒛,𝒕) while we let 𝒙=𝟏 on 𝒆 superscript in equation (1) would yield:
	/



