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Abstract

Water is one of the most important resources for all life on Earth. However, with
industrialization, urbanization, and climate change, water bodies around the world
are in danger. An important component of water is the amount of oxygen present
in it (also known as Dissolved Oxygen). Predicting DO levels can be difficult, espe-
cially due to the non-linear nature of its factors, ranging from photosynthesis and
respiration to temperature-dependent solubility. Previous models span mechanistic
DO–BOD formulations and data-driven methods (SVR, tree ensembles, LSTM),
yet inconsistent datasets, non-temporal splits, and missing persistence baselines
hinder fair comparison. Thus, this paper explores how various Traditional and Ma-
chine Learning Models (Ridge Regression, Random Forest, HistGradientBoosting
Regressor, LSTM, GRU and TCN) compare in predicting Dissolved Oxygen.

Keywords: Dissolved Oxygen, Machine Learning, Deep Learning, Water Quality Pre-
diction

1. Introduction

Water is essential to all life on Earth. However, water quality is complex, impacted by
pollution, weather tides, human activities, and many other factors [1]. Several threats
to the state of water exist, including, pollution, over-extraction, climate change, and
habitat destruction. These threats can lead to the deterioration of water quality and
quantity, negatively impacting human health, wildlife and the environment [2]. Due to
rapid urbanization, industrialization and inefficient agricultural practices, water sources
are being contaminated, rendering them unsafe for consumption. The World Health
Organization reports that approximately 2.2 Billion People (22% of the global population)
lack access to safely managed drinking water services, underscoring the gravity of the
global water crisis. [3][4]

1.1. Role of Dissolved Oxygen in Water Bodies

An important component of water quality is Dissolved Oxygen. Dissolved Oxygen (DO)
is the amount of oxygen that is present in water. Sources of DO include atmospheric
oxygen, aquatic plants, and running water. DO is considered an important measure of
water quality as it is a direct indicator of an aquatic resource’s ability to support aquatic
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life. This is because all animals need Oxygen to breathe, which they get from the DO
present in water. If DO levels drop, some sensitive animals may move away, decline in
health or even die. [5]

1.2. Dissolved Oxygen Dynamics and Prediction Challenges

Dissolved Oxygen levels are influenced by various physical, biological and chemical pro-
cesses, including photosynthesis, respiration, atmospheric re-aeration, temperature-dependent
solubility, etc. Thus, accurately predicting DO taking into account all the various factors
that affects it can be difficult. [6]

1.3. Modeling Paradigms

There are two main types of dissolved oxygen concentration prediction models: 1. Tradi-
tional models based on physics, and 2. Data-drive models based on artificial intelligence.
Traditional prediction models simulate the physical mechanisms in rivers and describe
the transfer process of pollutants in water. In recent years, with the development of
machine learning algorithms, the application of AI-based data-driven models in dissolved
oxygen prediction has gradually attracted attention. Compared with models based on
physical mechanisms, data-driven models have a simple modeling process and do not
require complex mathematical formulas and parameter settings. [7]

1.4. Traditional Machine Learning vs Deep Learning Models

When considering machine learning models, a key distinction lies between traditional and
deep learning approaches. Traditional machine learning, such as regression models, and
decision trees, excels with smaller datasets, and rely on manually engineered features,
while deep learning methods use multi-layered neural networks to automatically extract
patterns directly from the data. [8] The difference is especially significant in predicting
DO in water quality, which involves complex, non-linear, and time-dependent interactions.

This paper compares 6 different machine learning models: Ridge Regression, Random
Forest, HistGradient-Boosting Regressor, Long Short-Term Memory (LSTM), Gated Re-
current Unit (GRU), Temporal Convolutional Network (TCN)

1.5. Research Topic

This paper will delve into A comprehensive comparison between traditional ML
and Deep Learning Models on predictive Dissolved Oxygen in Water Quality.

2. Related Work

Recent works show that classical, tabular ML, especially tree ensembles and margin
methods remain a very competitive option for predicting Dissolved Oxygen. This is also
strengthened by the research carried out in this paper. A Mississippi River study that
Bayesian-optimized SVR, a regression tree, and a boosting ensemble reported BO-SVR as
best, and used SHAP to show temperatures, discharge, and gage height as the dominant
drivers. Although, performance did degrade with longer horizons, it remained acceptable
out to around 30 days. This paper sets a strong benchmark because it couples accuracy
with interpretability and principled tuning.
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At the same time, deep learning models are also being increasingly used for DO.
LSTM usecases range from continental-scale applications to graphs and transformer ar-
chitectures. These models are especially useful when high-frequency, multi-source data is
available and when the goal is multi-step forecasting that exploits temporal dependencies.
But the evidence is mixed across sites: several studies still report Traditional Models to
be better than the Deep Learning Models.

Evidence from smaller systems points the same way. For an urban lake, a simple ANN
outperformed multilinear regression, but this was on a narrow predictor set (temp, pH,
conductivity and ORP), reinforcing that even shallow nets can help once nonlinearity
enters but also that results don’t automatically transfer to riverine settings or longer
horizons.

Across the papers reviewd, the recurring limitation is comparability and generaliza-
tion: many papers are single-sit, optimize different metrics/horizons, and rarely report
skill versus naive persistence. The Mississippi study explicitly warns that cross-paper
comparisons are brittle because of dataset differences, which could potentially also affect
the comparison carried out in this research paper.

3. Theoretical Framework

Machine Learning is a subfield of Artificial Intelligence (AI), which is broadly defined as
the capability of a machine to imitate intelligent human behaviour. Artificial Intelligence
systems are used to perform complex tasks in a way that is similar to how humans solve
problems. [11]
There are three subcategories of Machine Learning, each with its own use case: Supervised
Learning, Unsupervised Learning, and Reinforcement Learning.

The prediction of dissolved oxygen falls into the category of Supervised Machine
Learning. This is because for DO, the dataset consists of historical, time-stamped
examples where both the inputs and the desired outputs (DO) are known. Each training
case consists of an input window (Recent DO, temperature, depth, salinity, etc., plus
seasonal indicators) and a label: the measured DO H weeks later (yt+H in mg/L). The
goal is to minimize the error prediction in the hand-out data.

Furthermore, this setup supports clear objective functions (e.g., MSE), straighforward
evaluation (RMSE, MAE, NSE), and fair baselines (persistence). Additionally, alterna-
tives do not fit as well: unsupervisedmethods do not have target labels and they answer
different questions (eg: regime discovery, or anomaly detection), while reinforcement
learning is appropriate only when choosing control actions (e.g., aeration) that influence
future DO. Given labeled weekly records and an operational need for numeric forecasts,
supervised time-series regression is the appropriate formulation

3.1. Ridge Regression Model

A ridge regression, also known as L2 regularization, is one of the several types of regu-
larization for linear regression models. Regularization is a statistical method to reduce
errors caused by overfitting on training data. Ridge regression specifically corrects for
multicollinearity in regression analysis. [10]

The problem of multicollinearity arises when in a regression model, two or more in-
dependent variables are highly correlated to each other. This is an issue because linear
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regression models rely on the assumption that independent variables are truly indepen-
dent. If they are not, it becomes difficult for the model to accurately estimate the
individual effect of each variable on the dependent variable. [12] For instance, in the
case of predicting DO, several key independent variables like water temperature, salinity
and conductivity, are naturally and highly correlated. Hence, Linear Regression could
potentially cause high levels of inaccuracies.

The Ridge Regression Model adds a penalty term to the model’s cost function. This
penalty, which is proportional to the square of the magnitude of the coefficients, shrinks
the coefficients towards zero. [13] Hence, the use of Ridge Regression Models is especially
useful when dealing with large amounts of highly related data such as Water Quality and
Dissolved Oxygen.

3.2. Random Forest

Random Forest is a commonly-used machine learning algorithm, trademarked by leo
Breiman and Adele Cutler, that combines the output of multiple decision trees to reach
a single result. Its easy to use, and flexible, which is why it handles both classification
and regression problems.

Decision Trees help mapping out different choices and their possible outcomes. It’s
used in machine learning for tasks like classification, and prediction. The Tree consist of
one question. Each question helps an individual to arrive at a final decision, which would
be denoted by the leaf node. Through this, decision trees seek to find the best split to
subset the data, and they are typically trained through the Classification and Regreesion
Tree (CART) algorithm. [14]

This paper includes Random Forest because it offers a strong, sample-efficient base-
line for weekly dissolved oxygen regression. By averaging many CART trees built on
bootstrap samples and random feature subsets, it greatly reduces variance and over-
fitting while naturally capturing nonlinear relationships and interactions among drivers
(e.g. temperature, salinity, depth, seasonality). These properties make Random Forest a
practical and credible comparator alongside Ridge and the deep learning models in the
study.

3.3. HistGradient-Boosting Regressor

HGBR is a gradient-boosted decision tree model that builds an additive ensemble of shal-
low CART trees, each new tree correcting the residual errors of the current ensemble. The
scikit-learn implementation uses histogram binning to discretize continuous features into
a small number of bins, which makes training fast and memory-efficient while retaining
accuracy. Regularization is controlled through the learning rate, number/depth of trees,
and minimum leaf size, with optional early stopping on a validation set; it also handles
missing values (NaNs) natively.

We include HGBR because it is a strong tabular baseline for nonlinear regression with
limited, noisy, weekly data. Compared with a single tree, boosting reduces bias; com-
pared with Random Forest, boosting can achieve higher accuracy by iteratively fitting
residual structure rather than averaging independent trees. It captures thresholds and
interactions among drivers (e.g., temperature × salinity × seasonality) without heavy
feature engineering, requires minimal preprocessing, and remains sample-efficient relative
to deep sequence models. Finally, it provides straightforward feature importance diag-
nostics, giving interpretable insight into which lags/covariates matter across horizons.
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These properties make HGBR a natural complement to Ridge and Random Forest in our
traditional-ML baseline set. [15][16]

3.4. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are an extension of RNNs mainly introduced
to handle situations where RNNs fail. It was designed to model chronological sequences
and their long range dependencies more precisely than conventional RNNs. The basic
difference between the architectures of RNNs and LSTMs is that the hidden layer of
LSTM is a gated unit or gated cell. [17] At the core of an LSTM, there are three gates:
Forget Gate, Input Gate and Output Gate. This gating mechanism allows LSTMs to
retain important patterns over long horizons while ignoring noise, making them especially
effective for modeling nonlinear, time-dependent interactions in environmental data. [18]

For this study, LSTM is chosen as the deep learning model because of its:

1. Sequence learning ability - it can use raw sequences of water quality variables with-
out requiring manual lag feature engineering

2. Nonlinear modeling power - it can capture complex relationships between environ-
mental variables that linear models like Ridge cannot

3. Proven effectiveness - LSTMs are widely used in forecasting problems ranging from
weather and climate to air pollution, making them a natural choice for water quality
prediction.

3.5. Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) are a type of RNN introduced by Cho et al. in 2014.
The core idea behind GRUs is to use gating mechanisms to selectively update the hidden
state at each time step allowing them to remember important information while discarding
irrelevant details. GRUs aim to simplify the LSTM architecture by merging some of its
components and focusing on just two main gates: the update gate and the reset gate.
[19]

Compared to LSTM, GRU has fewer parameters (because there is no separate cell
state), which makes it easier to train and less data hungry. At the same time, it still
mitigates the vanishing gradient problem. The GRU Model is integrated to test whether
a leaner recurrent memory can capture DO dynamics better than LSTM under a modest
weekly dataset. Practically, GRU tends to converge faster, is stable with early stopping
and dropout, and offers a complementary recurrent baseline alongside LSTM in the deep-
learning set.

3.6. Temporal Convolutional Network (TCN)

Temporal Convolutional Networks (TCNs) are deep neural network architectures that
are used in trajectory prediction tasks. They are trained on historical trajectory data
and are capable of predicting the future trajectory of a vehicle or pedestrian. TCNs have
been shown to outperform recurrent networks in tasks such as handwritten recognition,
audio synthesis, and time-series data. One advantage of TCNs is their ability to handle
variable-length sequences without information leakage. They offer a powerful approach
for modeling temporal dependencies in trajectory prediction tasks, capturing short-term
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and long-term dynamics efficiently and with interpretable receptive fields. However, ad-
ditional considerations may be required for spatial relationships and long-term memory.
[20]

TCN was included in this paper to provide a different inductive bias from RNNs. It
is particularly good at learning local temporal motifs and seasonal patterns from fixed
windows without explicit feature engineering. With relatively few parameters, TCN offers
a parameter-efficient deep model that can fairly test whether convolutional temporal
patterns improvde DO forecasts over recurrent and traditional ML approaches.

3.7. Comparison between the 6 models

Model Inductive Bias Nonlinearity
& Interactions

Needs
Lag/Seasonality
Features

Works Well
with Small
Weekly Data

Ridge Additive,
smooth

X (linear) High (lags +
sin/cos)

✓

Random Forest Piecewise
rules

✓ Medium ✓

HistGradient Additive trees ✓✓ Medium ✓

LSTM State memory ✓✓ Low (uses raw
windows)

△ (needs
more data)

GRU State memory
(lean)

✓✓ Low △

TCN Local
temporal
patterns

✓✓ Low △−✓
(parameter-
efficient)

Table 1: Comparison of model properties for time series forecasting. Checkmarks (✓)
indicate strong suitability, triangles (△) indicate partial suitability, and X denotes limi-
tations.

4. Protocol Design & Research Method

4.1. Data

The dataset used, by Supriyo Ain, comprises detailed records of water quality param-
eters collected once every two weeks. These parameters include turbidity, pH, dis-
solved oxygen (DO), salinity, and temperature. According to the data source, the
sampling was conducted at designated locations within various water bodies such as
Bay, D-Pool (fishing pond), C-Pool, and A-Pool. [9] Here’s the link to the dataset:
https://www.kaggle.com/datasets/supriyoain/water-quality-data.
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4.2. Models Considered

This paper compares 6 different models: 3 Traditional Models and 3 Deep Learning Mod-
els. The traditional models include Ridge Regression, Random Forest, and HistGradient-
Boosting Regressor. Furthermore, the Deep Learning Models involve Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), and Temporal Convolutional Network
(TCN). The theory and reason behind choosing each of the models is explained in the
Theoretical Framework Section.

4.3. Evaluation Metrics

The models were evaluated using the RMSE and MAE (mg/L) for accuracy, and R2

and NSE for goodness-of-fit. To ground results operationally, we also report Skill vs
Persistence (improvement over a näıve next=last baselines; values 0 indicate the model
beats persistence).

• RMSE: Root Mean Square Error is the measure of how well a regression line fits the
data points. RMSE can also be construed as Standard Deviation in the residuals.
[21]

• MAE:Mean Absolute Error (MAE) is a simple yet powerful metric used to evaluate
the accuracy of regression models. It measures the average absolute difference
between the predicted values and the actual target values. [23]

• NSE: The NSE (Nash-Sutcliffe efficiency) is a widely used metric in hydrological
modeling to assess the performance of a model, it is a normalized statistic that
compares the residual variance of the model to the variance of the measured data.
[22]

Here’s the link to the code that was used to train all the models:
https://colab.research.google.com/drive/1KTQZQshghCJJiGo1pI5Hn7x0kR1r6Rc2?usp=sharing

5. Findings and Conclusion

(a) RMSE vs Horizon (b) Skill vs Persistence

According to the RMSE Evaluation Metrics, the higher the RMSE value, the worse the
model is. From Graph (a), generated by Python itself, it is visible that Ridge Regression
has the least RMSE value, and TCN has the highest. Furthermore, the Skill vs Persistence
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supports the theory, displaying the Ridge Regression models displaying the highest Skill
vs Persistence value. At the same time, the lowest values throughout are displayed by
the TCN Model. This corroborates the initial works studied further giving support to
the idea that classical, tabular ML models are great at predicting Dissolved Oxygen and
Water Quality.

However, a limitation to this study could be the limited dataset: Deep learning models
typically require large samples, and richer, higher-frequency covariates to learn long-
range dependencies and nonlinear interactions. With weekly sampling, we had to restrict
capacity which likely led to underfitting and shrinkage toward the mean. Thus showing
that Traditional Models Deep Learning Models. This could also be a potential for
future research, where heavier datasets with larger samples could be considered for model
comparisons.
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