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SUMMARY 

This paper develops a new generalized geometrical model of failure by means of a cross fertilization of 

the classical reliability failure model with the elementary theory of the catastrophe discovered by René 

Thom. The purpose is to develop a generalized model of the failure physics in terms of evolution and 

process to approach the structure of the failure and consequent effects till the catastrophe.     

The classic fail process starts with some primary malfunction and becomes a defect that propagating 

transforms to itself to a real failure.   Not all the failures are or begin catastrophe in strict sense. Viceversa,   

all the catastrophes are or begin from critical failures. The application of the RTCT to the above concepts 

allow to  develop  (continuous) failure patterns to observe the dynamic of the failure mechanisms. 

Usually, it is possible to see and control this comparison along the failure pattern going from smooth 

degradation failures to "critical unsafe failures”. 
 

INTRODUCTION 

The physics of  failure (POF or failure physics) is  a part of the physics and/or engineering covering the: 

1. Processes and mechanisms that induce failure. 

2. Root cause failure mechanisms based on the specific physics laws. 

3. Modelling failure mechanisms based on science and engineering first principles. 

The aim of POF is the leveraging of knowledge and understanding of reliability and its prediction for 

improving product performance. The POF methodology uses modelling and simulations tools to 

understand and eliminate failures with and in Computer-Aided-Engineering environment. POF supports 

deterministic and probabilistic approach to reliability and provides a scientific basis for determining and 

improving performances. POF is part of the process of reducing costs by improving reliability upfront 

earlier implementing chipper design and product.    

The scope of this analysis is to develop a generalized geometrical model of failure by means of a cross 

fertilization of the classic reliability failure model by using the René Thom Catastrophe Theory (RTCT, 

Ref. 1, 2). The RT theory was developed in the late 1968 by the eminent mathematician Professor Rene 

Thom. Many studies and articles have been processed trying to show how RTCT may be related to 

peculiar mathematical or operations area. In those articles, the thrust of the catastrophe theory is 

characterized by considering a number of examples. This paper provides similar analysis for the failure 

model trying to be as much comprehensive as possible. 

The most difficult step found in this analysis is that of finding an easy, direct multidimensional space  

defining the ”failure” to which it could be very easy to apply the known R.T.C.T. geometry. Many 

computer program of the catastrophe theory have been developed for application to various fields of 

knowledge. 

In this analysis, it is not afforded the peculiar application of the many (or just one) above mentioned 

catastrophe theory computer programs but only and only the way to find the proper geometrical 

dimensions and space representing the failure itself. This is the main and unique step of this analysis. 

Due to the very generalized nature, the RTCT is born as a mathematical concept that has little if anything 

to do with ”failure" as it is used in the Reliability theory. 

The demonstration of the applicability of the RTCT to failure physics is developed, only and only, in 

terms of finding the proper and rigorous geometric dimensional space. The demonstration analysis is 

based upon the following assumptions. 

1. A primary malfunction of a material and/or of an elementary part component is a ”catastrophe” in 

the sense of RTCT. 

2. The status (good and/or fault) of a material and/or elementary part component is represented by 

means of a multidimensional point of the process trajectory in a proper multidimensional space. 
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3. The most part of material primary malfunction can be «mathematically modeled by means of the 

solutions of the seven elementary RTCT equations, whilst the remaining cases are dealt with 

proper multidimensional spaces. 

4. No need of applying proper catastrophe theory computer programs, because it is only question of 

changing variables and number of proper variables in the standard computer programs. 

 

Consequently, the confirmations of the applicability of the proposed geometrical failure model are based 

only and only upon a survey of very well-known and recognized applications of failure mechanisms in 

various fields of applied physics. New materials (i.e. lead-free solder, high-K dielectric and so on, 

software programs using algorithms for prognostic purposes, integrating physics of failure, corrosion 

patterns and so on) are new topics for geometrical failure model application. 

The overall analysis activities involve the modeling of failure mechanisms such as corrosion, relating 

material degradation as a function of:  

• operational and environmental stress on the effect that aging materials including Long-Term 

Aging of Systems (LAST) 

• nature of failure modes and mechanisms in existing designs   

• mitigation of failures with proper consideration of environmental severity, condition-based 

monitoring, and effective maintenance strategies. 

 

An Open Opportunity 

At the moment, the analysis is at the very beginning of the study of the potential correlation between the 

presented geometrical model and the class of models such as stress-strain failure model, Lode angle 

failure model and its set of tensor invariants for continuous damage and ductile failure plus fracture locus 

and so on. Other opportunities are given by comparing with micromechanics model use to predict the 

effective fully coupled time-dependent and non-linear multi-physics responses of smart composites.  

At the moment, many different model of failure physics have been developed. Some of them predict the 

responses of smart composites in terms of effective fully coupled time-dependent and non-linear multi-

physics.  

Other models are developed on the basis of the variation asymptotic method and implemented by using 

the finite element method. Taking into account  the time-dependent and non-linear characteristics of smart 

composites, some other procedures have been implemented  unifying  the instantaneous tangential 

electromagnetomechanical matrix of composites was established. At the present time, it is not possible to 

present numerical example  to demonstrate the capability of those models.   

 

            

NOTATIONS AND DEFINITIONS 

RT Renè Thom 

RTCT René Thom Catastrophe Theory 

Morphogenesis Creation or destruction of form. 

Catastrophe Any technical performance of any morphogenesis discontinuity 

(gap) of medium. 

Primary Malfunction  (Primal) Any malfunction occurring during the specified life of a material 

and/or elementary component which is attributable to itself 

(material and/or personnel factors, failure of related components or 

foreign object damage. 

Defect Any primary malfunction in a material, component (and/or 

equipment, system) which requires a correction by unscheduled 

maintenance work. 

Failure Any defect of the material and/or elementary part component which 

creates an inability of a previously acceptable material (etc.) to 

perform its required function within the limits established in the 

contractual specification. 
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Topology  A collection R of sets closed respect to the formation of arbitrary 

number of unions and of a finite number of intersections which 

include the null set Φ and the overall space Ω. 

Topological space (Ω,τ) is a space in which a topology τ has been selected. 

Ω  Event Space (space of failure and not failure). 

Ek k-th event. 

TF Total failure subset 

NF Not-failure subset 

Ωi 
i-th failure space subset 

K Catastrophe set 

W=(ω1,ω4) Failure status = failure subset coordinates 

K= g(x, y, z,)=g(ω,t)=g(ω1,ω2,t) Analytic function 

K = Ω4 Projection subset of catastrophe set  K 

F Attractor 

(M,K) Dynamic system Σ 

S(A,B,C,D) Linear system model Σ (state space) 

x(t) System failure vector status 

u(t) System input vector 

y(t) System output vector  = output probability or reliability 

A(t) System status matrix 

B(t) Real matrix 

C(t) Real matrix 

D(t) Real matrix 

P(t) Vector status (transition status) probability at instant t 

Z(t) Transition rate matrix 

C Structure vector 

C
T 

Transport of a vector C whose components are “1” or “0” according 

to which it is true that relative status is “good” or “fault”. 

Г Activation energy 

Δ Potential performance 

Δi Initial value of performance 

Δf Final value of performance 

K Constant 

Te Temperature 

Sts, f1, f2 Applied stress function in Arrhenius Law 

nv(ν) Transformed random variable 

Vk Cut off value of transformed  random variable   

Vo Initial value of transformed  random variable   

a, b, c, d Control parameter coefficients 

T Arrhenius device life length 

JA Jonic flow 

MTTF Mean time to failure 

dNv/dt Hole concentration  rate 

ΔJA Flow divergence 

O.P. Order Parameter 

p.m. Primary malfunction (primal) 

c.l. Component life 

i.c. Inherent  cause of p.m. 
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Classical failure set classification 

Classical reliability theory classification pattern of failure set can be simply and very briefly described as 

follows according to Fig.1. 
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Fig. N° 1 Classical Partition of FAILURE SET 
 

The classical failure set theory partition can be simply represented by the overall space Ω of failures of 

Fig. 1 that is self-evident. Actually, test result event Ek can belong to any one of the subset Ω1, Ω2, Ω3, Ω4, 

Ω5, Ω6 that constitute the overall space: 

[1]    Ω=TF   NF 

 

The analysis of the definition of primary malfunction (primal), defect and failure are given in the 

reliability analysis. In the reliability real life, the processing reliability analisys starts from the primal 

patterns producing defect and failure linked to the above failure set basic classification. In the meantime, 

failure data base collections are built up. So the analysis of the propagation of the effects of the failure i.e. 

the FTA, FMEA and FMECA is processed to infer the effect to the higher level of assembly. The 

hierarchical and indenture level classification of the effect of a failure is also worked up by using the 

classical the partition of failures reported in Fig. 2 in a very simplified way.  

With bottom-up approach an elementary failure, i.e. a hard or soft primal, produces effects to higher 

indenture level diversifying among unsafe, and safe failures then in safe or unsafe critical failure to 

summing up the total failures set.    
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Fig. 2 Failure pattern 

 

Deeper analysis reliability allows to define the following correlations: 

 

   a) Component life. 

1. Primary Malfunction (x1):  

b) Inherent cause of primal. 

 

a) Not-scheduled-maintenance. 

 2. Defect (x2):  

b) Primary malfunction. 

 

a) Specification limits. 

3. Failure (x3):  

b) Defect. 

 

By properly overlapping the three ideal curves of primary malfunction, defect and failure in only one 

space by applying twice the 90 degrees rotation to each single variable, it is obtained the curves of Fig. 3. 

This allows to demonstrate how primary malfunction, defect and failure do match each other building a 

very general behavior against performance limits of materials and elementary part components. 

The interception of the three tridimensional curves give a bidemensional curve whose projection in the 

plan of the Ω that can be easily correlated to the RTCT catastrophe set and system failure status process 

trajectory. 
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GEOMETRIC FAILURE MODEL 

The very general geometrical construction of the proper multidimensional space of failure mechanism is 

based upon: 

1. The revisit in the classical failure classification by means of the application of the set theory; 

2. To generalize the above failure set classification to a three dimension space by isolating in the 

definitions of primary malfunction, defect and failure three main variable for each one definition 

and then create with these three isolated variables a new failure tridimensional space Ω; 

3. To introduce in this Ω failure space the RTCT geometrical approach. 

The dynamical failure mechanisms are the following: 

1. Failures happen random at various instants ti; 

2. During the infinitesimal period Δti, before ti‟ the failure trajectory process across one of the seven 

elementary catastrophes or a more complicate pattern. 

The restriction of failure trajectory process duration to the infinitesimal Δti, left period before time ti of 

failure occurrence is a very limited to the real jump in the process trajectory itself. 

In principle, the duration of the overall failure process trajectory could last the entire failure free period to 

the first failure. 

Consequently, the Reliability to the first failure can be written: 

 

[2]    R(t1) =R(tf1, - Δti, t1) 

 

The concept of failure deducible from RTCT 

Let now apply the above classical system status failure model to the RTCT model of the system 

catastrophe. The concept of catastrophe is related to any technical performance of any form or any kind of  

morphogenesis that presents a discontinuity or a gap in the medium performances. The local states X of a 

system Σ (material) are parameterized in a space of observables Ω (or ν), in which it exists a closed set 

K∈ Ω, called catastrophe set (Ref. 1, 2, 4). 

Let us assume that the system Σ failure status X is defined by an analytical function: 

 

[3]   X = g(ω, t)  where ω = (x, y) or ω= (x1, x2, x3) 

 

From the RTCT structural stability point of View it is natural to assume that the function g(x, y, t) is a 

continuously differentiable function (in practice it is enough a second or third order derivative). 

Consequently, it is deducible that a point (x, y, t) in the Ω space is a catastrophic one if the function g(x, y, 

t) or its first or second derivative has a discontinuity or a gap at this point. 

Otherwise it could be written: 

[4]   if   (x, y) ∈ K≡ Ω4   the system Σ fails. 

[4‟]    if   (x, y) ¢ K≡ Ω4   the system Σ operates. 

 

Until the system state (x, y) ≡ ω does not meet the closed set K≡ Ω4 the local system phenomenology 

does not change. If the state (x, y) ≡ ω meets the K≡ Ω set just moving along a trajectory, then a 

discontinuity in the system form will happen. 

Rene Thom interprets this as a change of the previous form, i.e., a morphogenesis. In other words, the 

space Ω, associated to the system Σ, is a topological space with the convention. that, if the state (failure 

state) (x, y) ≡ ω of the system Σ is out K ≡ Ω4 then the phenomenological form of the status does not 

change against a small deformation (perturbation) of the Status itself. 

So, any trajectory, any kind of process corresponds to a set of points in Ω-K. Let Ω be a space having 

differentiable structure (Euclidian R
m 

space or a differentiable variety), the failure pattern dynamics is 

identified by means of the vector field X on Ω. The theory of existence and unicity of the solution of a 

system of differential equations with differentiable equation is the base upon which this deterministic 

failure model is constructed. 
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Fig. 4 - Elementary Catastrophe 

 

 

 
Fig. 4b - Cusp Failure Behavior 
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The tridimensional failure trajectory goes from a regular point (whose projection is ω in the Ω space) to 

another regular point in Fig. 4 without meeting "catastrophic set K" (projection Ω). This corresponds to 

failure pattern going from a degradation point to another degradation point. In the open set Ω-K (Ω ≡ Ω4) 

the overall (projected) process X is a regular process.  

By definition, the regular points form an open set in Ω, the closed set complementary to the regular points 

is the above K set of "catastrophic points". Quite close to each point of the closed set K of catastrophic 

points, the process presents a "discontinuity" (a gap). In each elementary neighborhood of any 

int c of the closed set K "it happens something". So, to know the closed set K≡Ω, describing each 

singularity, it is just the morphology of the process. It is possible to define catastrophic any failure if the 

failure detection and analysis usually is made up by means of very sophisticated and very sensible and 

accurate measurement equipments. Furthermore, as a little digression, let remember that the lack of a 

comprehensive understanding of the failure process in structural materials has resulted in catastrophic 

failure of a variety of engineering structures. Many kinds of structural mechanical failures (fracture, 

cracks, flaws, brittle fracture, cleavage, extrusions, forgings, stress concentration such as cut-outs, bolt, 

rivet holes, evidence of fitting from flaws and from imperfections in welding and so on) could be and are 

usually interpreted in term of the R.T.C.T. application. 

In the real life application, many equipments and systems have been and are developed for detecting 

mechanical structural failure, i.e. ultrasonic equipments, industrial (infrared tomography, gamma 

tomography or positron tomography and so on) tomography (Ref. 11) for detailed inspection complex and 

critical parts as jet engine, turbine parts, blades and disks, fuel rods for nuclear reactors. 

So really, the distinction between catastrophic and just degradation failure is only a matter of the level of 

precision in the mathematical model. In other words, it is just the hierarchical and indenture level in the 

system analysis that defines precisely the level of severity and criticality of the "catastrophicity" of the 

failure. So, a part from the fault tree effect and propagation law the failure pattern is the best quantum of 

information. 

 

The qualitative dynamic notion (system failure status space) 

Without recalling all the R.T.C.T., let us summarize some very basic notions such as qualitative dynamic, 

attractor, and ordinary and essential catastrophic point definition, and later the notion of generalized 

catastrophe. 

Let (M, X) be a dynamical system Σ defined by the vector field X upon the variety M (≡Ω). In the usual 

system theory, the dynamical system Σ is represented by means of a couple equations (R. Somma, V. 

Amoia Ref. 10): 

 

5)    
dx

dt
(t) = A (t) x (t) + B (t) u (t) 

6)      y (t) =  C (t) x (t) + D (t) u (t) 

 

assumed that the system Σ is linear time variable or not stationary (coefficient matrix depend upon time) 

and not homogenous (u(t)≠0). In the reliability theory, these equations are specialized as follows (Ref.10): 

 

7)    
dp

dt
(t) =  Z(t) p(t)   

   

8)       y(t) = c
t 
 p(t)  

 

They represent the model in differentiable form of a dynamic system Σ linear and homogenous with state 

probability ps(t) and output probability po(t).  

Cross fertilization of the two models gives that the vector field X upon the variety M is just the status 

vector of the system theory. In the R.T.C.T. the status X (x, y) in study is the system failed status itself 

which is analyzed from the structural stability point of view. So, to the dynamic system defined as (M, X) 

(where M=A(t)) is associated an "attractor F" that is a closed set invariant against X, having peculiar 

properties (Ref. 1). 
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The attractor F of a field X constitutes the basic entity defining the structural stability. In the failure 

behavior surface usually the attractors can be considered isolated points or just ordinary closed 

trajectories, for which the structural stability is just straight forward. Losing structural stability brings 

failure in the system status. Let remember that the ordinary catastrophic points in X, projected in K ≡ Ω4, 

form an open set in the K set of catastrophic failure points. Moreover, a not-ordinary catastrophic (failure) 

points are said an essential catastrophic points. They form a closed subset of the set K of the catastrophes. 

By definition, an essential catastrophic point cannot be isolated. If the number of elementary and very 

small catastrophes is very high and quite closed each other, then a field reduction is applied usually by the 

observer to process an average of all those little catastrophes building up a static model instead of a 

metabolic (dynamic) model. So, essential catastrophic points can be of two kinds: the ones that are all 

inside the round of ordinary catastrophic points and the others having a round that includes only essential 

catastrophic points. Then, there is a demarcation line between points that are inside ordinary catastrophes 

and points belonging to essential catastrophe round. 

For analogy, being the R.T.C.T. the most important step improvement to the analogy theory from the time 

of Aristotle, the R.T. essential catastrophe set of joints could be made to correspond 

to the usual "cut set" or "tie set" of the fault tree theory. 

 

Improves, verifications and validations   

Any experimental fact reproving the R.T.C.T. approach of this generalized failure physics can be reported 

in support of this generalized failure model. As above mentioned, many kinds of structural mechanical 

failures could be theoretically interpreted by means of this generalized failure model and concept. 

The proposed approach is basically a phenomenological description of the generalized failure physics 

model. Let us limit the analysis to the most important topics: 

1. Arrhenius law extensible to other known models (Eyring, Peck, Reick-Hokm and so on). 

2. Electromigration in R.F. devices, and semiconductors [later enlargeable to failure mechanisms 

like Negative Bias Temperature Instability (NBTI), Hot Carrier Injection (HCI) and Time 

Dependent Dielectric Breakdown (TDDB) etc.].  

3. Order-disorder phenomenon including idealized endurance curve during vibration tests. 

 

Arrhenius law applications 

The usual failure model employed in reliability physics assumes that a failure occurs after that the 

performance value of a device varies from an initial value V0 to a critical value VF. At this instant tF a gap 

threshold is reached and the device fails. The length of this period is the device life. The relation between 

the rate of degradation of V and the applied stress is given by the empirical Arrhenius mode1, borrowed 

from the chemical physics and statistical dynamics (Ref. 6). 

The classical Arrhenius failure model is: 

 

   
dV

dt
 = K exp [

 
Te

f x

k

 
 + f (x)] 

 

Integrated with respect to t, it is: 

 

t ( Te) =
F OV V

K


K exp [

 
Te

f x

k

 
 + f (x)]  

  

 

 

where: V = Vo  when t = 0. Defined   
F OV V

K


= Ū, it is: 

t (Te) =  Ū  -exp (-f) =  Ū F      Ū  >0          

 

  ln F = S                                  F> 0 
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Let now suppose that the applied stress function f (s) = Sts is not a random variable, but it has one of the 

standard seven elementary catastrophic forms developed by Rene Thom for his Theory of the Catastrophe. 

So, from reliability  point of view  the system Σ is described by the failure behavior surface, 

corresponding to each of the seven very well-known  elementary catastrophes, given in Fig. A 

(classification theorem). 

These seven elementary catastrophes describe all the possible gaps that can be verified in the phenomena 

controlled by four-factor-parameters. To each elementary catastrophe it is associated a function that 

includes the control parameters represented by means of four coefficients (a, b, c, d). 

Those are the failure controlling properties. The failure behavioral surface is such that each point the first 

derivative is zero. If the first two derivatives exist, then the behavioral surface is the point "1oci" in which 

the couple of derivatives is nullified. The table N. 1 gives the Arrhenius failure behavior and life length T 

in correspondence to each of the seven elementary catastrophes. 

 

Tab. N° l 

 
 

Electromigration in RF Devices (In Thick and So On) 

By using the Huntington and Grone theory (Ref. 21) it is possible to link the jonic flow JA to the electric 

field E (or current density): 

 

   J = 
ND

KD
 z e    

 

So the mean time to failure against the stress is„ 

 

 

MTTF = c exp (
KT


)  (

0



 MnJ
n
) 

     

 

The process of electro-migration degradation fault is usually described by means of: 

dNv

dt
= - ΔJɅ 

   

i.e. the hole concentration rate (in time) depends upon the flow divergence. In any point of the film where 

there is a flow divergence  (thermal gradient, structural not-homogeneities, defects and so on) it is also 

possible to find a starting point of failure due to electromigration. The overcoming the activation energy ε 

figure a failure mechanisms can initiate (A1: ε=0.6 ± 0.2 V). By reasoning in similar way of Arrhenius 

theory it is possible to build up a new table corresponding to the seven elementary catastrophes. 

 

Order-disorder 

White and Ceballe (Ref. 3) had treated very deeply the disorder to order phenomena, classifying the so 

called "dirty physics” in: 

a) ordering with no transition; 
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b) ordering via first-order transition, i.e. a first derivative of the Gibbs free energy is discontinuous; 

c) ordering via a second order transition, a discontinuity in a second derivative of the Gibbs free 

energy G. 

 

Physically, the most phase transitions are characterized by the appearance of some not zero quantity in the 

ordered state (lowering the Σ symmetry). 

Such a quantity is called the "order parameter". Two orders of transitions are possible: 

1) first: the order parameter vanishes discontinuously; 

2) second: the order parameter vanishes continuously. 

 

Table 2 gives the most important order parameters (O.P.) in solid state. The proposed generalized "order 

parameter" behavior, reported in Fig. 5, is the generalized phenomenological description of the physics 

model of O.P. 

PARAMETERS CLASSIFICATION (dirty physics) 

 

TIPE OF ORDER ORDER PARAMETER 

Magnetic Order Generalized susceptibility (ferromagnetic) 

(spontaneous magnetization) 

Staggered magnetization (antiferromagnetic) 

Magnetization  Mx+My  = M (exp ιθ) 

q = 𝗅< >𝗅2  (spin glass)   

Crystallization  Electronic charge density ρ(r) (diffraction patterns) 

Scattering amplitude or periodic potential V (G) 

Superconductivity The fraction of electrons condensed  below Tc in a superconducting  state  
with a fraction   (1- ns/n) remaining normal is: 

𝗅ε 𝗅4= ns/n = (
–c

c

T T

T
)

4 

Pair wave function (BCS), a quantity that in special case, is the energy gap:  

 
The gap equation: 

   

Structural transitions 

 

 

 

 

 

 

 

 

 

DOF (Degree OF Freedom): splitting the electronic state for cooperative Jahn-Teller 

transitions. 

ELECTRONIC INSTABILITIES: Spin Peierls distortion amplitude of  charge density Δk 

VIBRATIONAL  

INSTABILITIES 

Dissipative transition amplitude of distortion 

Twist  ϕ  (soft made)  

Amplitude of distortion flow rate: 

 interstitial and substitution impurity atoms 

 dislocation  lines 

 color defects and flow defects  

 grand edge 

 ρliq – ρglas = density difference. 

Liquid cristals  

(molecular ordining) 

θ = angle between long axis of molecule and preferred axis 

s = <3/2 cos
2
θ -1/2>  = 

( )

Xz Xx

N Xii Xi




 in diamagnetic parameter density in the direction of 

the preferred axis. 

Superfluid Helium In  4He→OP = √x0 e
jϕ 

ϕ(o) = ξ
0 + 1/√ν Σ/kt0 e

ik-r
 ak   wave function 

OP→  2 x 2  matrix in  spin space      

Δαβ (k) ≅  <Ckd Ckb > 
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Inside the order-disorder phenomena, it is peculiarly interesting to recall the idealized endurance curve 

due to its clear analogy to a dovetail failure behavior (Fig. 6). This further verification of R.T.C.T. 

application to the failure concept is very important because it could be the foundations for a new approach 

of the overall vibration failure behavior.  

From all the above mentioned R.T.C.T. application examples it could be infer red that instabilities are the 

malfunctions, defects and failures. In this contest, men is excluded as component and as system. Many 

other very important fields could be mentioned (i.e. Tunnel Diode performance, quarks and so on), but it 

convenient to limit this discussion to a very peculiar and important field: the MHD instabilities and beams 

(dispersive relations) instabilities inside  the R.T. C.T. 

 

 
Fig.5 Order Parameter failure behavior 

 

Those topics are very big to the extent they could cover a book, so they are' not really entered here neither 

tentatively.  However intuitively, eruditely and boldly (see Ref. 8 , 9 ), it can be said that the well know 

"sausage instability", the "toroid instability" cab be interpreted and descripted by means of the 

generalized R.T.C.T.  With a big effort the interpretation and description of "non-linear in stabilities" 

could be interpreted and descripted too.  

Deeper C.T. analysis should be able to describe also the beams instabilities (dispersion relations) and 

beams coupling physical behaviors (like beating, evanescence, convective instabilities, and absolute 

instabilities and so on). Actually, the tridimensional topologies of dispersion curves are still not available 

(at least to me in the open literature) but many projections give sound basis for deducing that they can 

belong to the standard seven elementary catastrophes or to the more generalized sketch. All those aspects 

need a very big and sound analysis for reducing them inside the generalized R.T.C.T. This would request 

almost a book effort. 
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Let remember the R.T. proposition (Ref. 1) that the every kind of catastrophe or morphogenesis could be 

treated and explained by means of his theory. Frequently new ideas are first introduced informally and, 

later, more rigorous and complete treatment is performed and presented. 

 

Two Models Coexistence  

Let the system Σ have an exponential failure distribution, i.e., defined only by the failure rate λ . Let λ  be 

a not constant function of type: 

λ= g (w1 w2, t) 

 

As usual, this function defines the failure (rate) behavior by means of the usual four coefficients (a, b, c, 

d). Let suppose that this function has first derivative zero in each behavior point. Again, if two derivatives 

exist then the failure rate surface behavior is the "loci" of points in which the couple of derivatives is 

nullified. Physically, in each of the seven standard elementary catastrophe surfaces failure rate gaps are 

identifiable.  According to the different failure rate trajectories, it can happen a smooth change always 

inside not-critical or detected critical areas. Otherwise if the failure rate trajectory goes through a gap, the 

projection across the “hard critical subset” (Ωk = k), producing a critical failure. 

So, the failure model based upon R.T.C.T. can be combined with the failure rate model based upon the 

R.T.C.T. in order to have a deeper knowledge of the overall failure behavior. This rediscovering of the 

deterministic approach should be consistent with the random one. A way to indicate the matching is to 

suppose that all the deterministic R.T.C.T. approach happens inside a small period Δt before the instant t 

in which the critical failure happens. 

 

CONCLUSIONS 

The conclusions of this research are open to many opportunities of continuing to develop this way of 

thinking for trying to rationalize better and deeper the proposed model. Since it is a not sponsored study, 

it should be intended as a tentative research having in mind the purpose of defining the bases for a more 

detailed analysis. This basic analysis is based on the R.T.R.T. but the effort is focused on the failure 

model in a very general way. So the applicability is very large and       

Reproves, verification and validations are and can be easily and mostly deduced from the open literature 

in the field of physics of Failure (POF). IN the future a lot of effort should be devoted to theexecution of 

specific tests and some peculiar experiment. 
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