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set,equal, complement, AND,OR... and so on. We investigate some theorems

on picture Uncertainty soft Collection based on union and intersection with

counter examples. Also we proved a necessary and sufficent condition for the

dual laws of PFSS theory. Finaly, we then introduce an algorithum based on

relational picture Uncertainty soft matrix to solve decision making problems.

Key words: Uncertainty collection,soft collection,Uncertainty soft collec-

tion,picture Uncertainty soft collection,subset,equal,AND,OR,complement,dual

law and decision making.

1 Introduction

A Uncertainty collection was first introduced by Zadeh [23] and then the Un-

certainty collection have been used in there consideration of classical mathe-

matics. Yuan.et.al. [22] introduced the concept of Uncertainty subgroup with

thresholds. A Uncertainty subgroup with thresholds λ and µ is also called

a (λ, µ)-Uncertainty subgroup. A.Solairaju and R.Nagarajan introduced the

concept of structures of Q- Uncertainty groups [19]. A.Solairaju and R. Na-

garajan studied some structural properties of upper Q-Uncertainty index order,

with upper Q- Uncertainty subgroups [20]. Such in accuracies are associated

with the membership function that belongs to [0,1]. Through membership

function, we obtain information which makes possible for us to reach the con-

clusion. The Uncertainty collection theory becomes a strong area of making

observations in different areas like medical science, social sciences, engineer-

ing, management sciences, artificial intelligence, robotics, computer networks,

decision making and so on. Due to unassociated sorts of unpredictability oc-

curring in different areas of life like economics, engineering, medical sciences,

management sciences, psychology, sociology, decision making and Uncertainty

set as noted and often effective mathematical instruments have been offered to

make, be moving in and grip those unpredictability. Since the establishment of

Uncertainty collection, several extensions have been made such as Atanassov’s

([3], [4], [5], [6]) work on bifuzzy Uncertainty collection (IUSC) was quite re-
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markable as he extended the idea of USs by assigning non-membership degree

say ”N(x)” along with membership degree say ”P(x)” with condition that

0 ≤ P (x)+N(x) ≥ 1. Strengthening the idea IFS suggest pythagorean Uncer-

tainty sets which somehow enlarge the space of positive membership and nega-

tive membership by introducing some new condition that 0 ≤ P 2(x)+N2(x) ≥
1. Molodtsov [14] discussed the concept of soft collections that can be seen

as a new mathematical theory for dealing with probablity. The soft collection

theory has been cited to various different fields with great success. Maji.et.al.

([8],[9][10]) worked on theoretical study of soft collections in detail, and pre-

sented an application of soft collection in the decision making problem using

the reduction of rough sets. N -picture Uncertainty soft collections studied

in [12,13]. Recently, Cuong [7] proposed picture Uncertainty collection (PUC)

and investigated the some basic operations and properties of PUS. The pic-

ture Uncertainty collection is characterized by three functions expressing the

degree of membership, the degree of neutral membership and the degree of

non-membership. The only constraint is that the sum of the three degrees

must not exceed 1. Basically, PUS based models can be applied to situation

requiring human opinions involving more answers of types: yes, abstain, no,

refusal, which can’t be accurately expressed in the traditional UC and IUS.

Until now, some progress has been made in the research of the PUC theory.

Singh [17] investigated the correlation coefficients for picture Uncertainty col-

lection and apply the correlation coefficient for clustering analysis with picture

Uncertainty information. Son [18] introduce several novel Uncertainty cluster-

ing algorithms on the basis of picture Uncertainty sets and applications to time

series forecasting and weather forecasting. In this paper,we study picture Un-

certainty soft collections (PUSC) and discues some of their relevant operations

such as subset,equal, complement, AND,OR... and so on. We investigate some

theorems on picture Uncertainty soft collections based on union and intersec-

tion with counter examples. Also we proved a necessary and sufficent condition

for the dual laws of PUSC theory. Finaly, we then introduce an algorithum

based on relational picture Uncertainty soft matrix to solve problems aspected

withcertain conditions.
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2 Preliminaries and Basic Concepts

2.1 Definition

Let the universal collection be R 6= φ. Then A = {< r, PA(r) > /r ∈ R} is said

to be a Uncertainty collection of R, where PA : U → [0, 1]. is said to be the

membership degree of r in R.

2.2 Example

Let R = {r1, r2, r3, r4, r5} be the reference set of students. Let Ã be

the Uncertainty collection of ” smart students” where ’smart’ is Uncertainty

term. Ã = {< r1, 0.1 >,< r2, 0.4 >,< r3, 0.7 >,< r4, 1 >,< r5, 0.9 >}. Here

Ã indicates that the smartness of r1 is 0.1 and so on.

2.3 Definition

A pair (δ, A) is said to soft collection over R, where F is a function given by

F : A→ P (R).

2.4 Example

Suppose R = {h1, h2, h3, h4, h5, h6} be the the collection of six houses and

E={Expensive(e1), Beautiful(e2), Wooden(e3), Cheap(e4)} then the soft set

(δ, E) is (δ, E) = {{h2, h4} {h1, h3}, {h3, h4, h5}, {h1, h3, h5}} where each ap-

proximation has two parts

(i) A predicate,P;

(ii) An approximate value collection V.

R Expensive(e1) Beautiful(e2) Wooden(e3) Cheap(e4)
h1 0 1 0 1
h2 1 0 0 0
h3 0 1 1 1
h4 1 0 1 0
h5 0 0 1 1
h6 0 0 0 0

thus, a sof set (δ, E) = {P1 = V1, P2 = V2, P3 = V3, . . . Pn = Vn}.
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2.5 Definition

Let IR denote the collection of all Uncertainty collections on X and A ⊂ E. A

pair (δ, A) is called Uncertainty soft collection over R, where δ : A→ IR. that

is, for each a ∈ A, δa : A→ IR is the Uncertainty collection on R.

2.6 Example

Let R = {r1, r2, r3, r4, r5} be a universial collection and E = {e1, e2, e3, e4, e5}
be a set of parameters.IfA = {e1, e2, e4} ⊆ E. PA(e1) = {0.2/r2, 0.3/r4, }, PA(e2) =

R PA(e4) = {0.5/r1, 0.7/r3, 0.9/r5} then the Uncertainty soft collection δA is

defined as δA = {r1, (0.2/r2, 0.3/r4), (r2, U), (r4, (0.5/r1, 0.7/r3, 0.9/r5)}.

2.7 Definition

Let the universe collection beR 6= φ. Then the collectionA = {< r, PA(r), IA(r), NA(r) >

/r ∈ R} is said to be a picture Uncertainty collection of R, where PA :

R −→ [0, 1], IA : R −→ [0, 1], NA : R −→ [0, 1] are said to be the de-

gree of r in R and the positive membership degree of r in R, and the neutral

membership degree of r in R, and the nagative membership degree of r in

R respectively. Also P(A), I(A), N(A) satisfy the following condition:(∀r ∈ R)

(0 ≤ PA(r)+IA(r)+NA(r) < 1). Then for r ∈ R, πA(r) = 1−{PA(r)+IA(r)+NA(r)}
could be called the degree of refusal membership of r in R. Clearly, if (r ∈ R),

πA(r) = 0, then A will be generated to be a standared bifuzzy Uncertainty

collection. If (∀r ∈ R), IA(r) = 0 and ΠA(r) = 0, then A will be generated

to be a classical Uncertainty collection. Let ΠA(r) denote the collection of all

Uncertainty collections of R. For the sake of simplicity picture Uncertainty

collection is denoted by PUC.

2.8 Example

Basically, the model picture Uncertainty collection may be adequate in situ-

ations when we face human opinions involving more answers of type:(i) Yes

(ii)abstain (iii) No (iv) Refusal.Voating can be a good example of such a sit-

uation as the human voters may be class into four groups of those who: (i)
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Vote for (ii) abstain (iii) Vote aganist (iv) Refusal of the voting.

2.9 Definition

For A,B ∈ PF (R), define

(i)A ⊆ B ⇐⇒ PA(r) ≤ PB(r), IA(r) ≤ IB(r)and NA(r) ≤ NB(r).

(ii) A = B ⇐⇒ A ⊆ B and B ⊆ A.

(iii)A∪B = {(r,max{(PA(r), PB(r))}, min{(IA(r), IB(r))},min{(NA(r), NB(r))}/r ∈
R}.
(iv)A∩B = {(r,min{(PA(r), PB(r))}, min{(IA(r), IB(r))},max{(NA(r), NB(r))}/r ∈
R}.
(v) AC = {(r,NA(r), IA(r), PA(r))/r ∈ R}.

2.10 Proposition

Let A,B,C ∈ PF (R).Then

(i) If A ⊆ B and B ⊆ C, then A ⊆ C

(ii)(AC)C = A

(iii) Operations ∩ and ∪ are commutatiive, associative and distributive.

(iv) Operations ∩ and ∪ satisfy demorgons Laws.

3 Propertices of Picture Uncertainty Soft Col-

lections

In this part, we study the idea of PUSC and definition some relvant operation

on a PUSC, namely subset, equal, complement, AND, OR and so on. Now we

propose the definition of a PUSC and we will see illustrative example it.

3.1 Definition

Let R be an initial universe collection and E a collection of parameters. By a

picture Uncertainty soft collection (PUSC) over R we mean a pair (δ, A) where

A ⊆ E and δ is a mapping given by δ : A→ PF (R).
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3.2 Example

Consider a PUSC (δ, A) over R, where R = {h1, h2, h3, h4} is the collection

of four cases under consideration of a decision making to purchase, and A =

{e1, e2, e3} is the collection of paramaters where e1 students for the parameter

”Cheap” e2 students for the parameter ”Beautiful” and e3 students for the

parameter ”Good location” the PUSC (δ, A) describes the ”attractivencss of

the house” to this decision maker. Suppose that

R Cheap(e1) Beautiful(e2) Goodlocation(e3)
h1 (0.6, 0.3, 0.1) (0.3, 0.5, 0.2) (0.7, 0.5, 0.4)
h2 (0.1, 0.4, 0.6) (0.3, 0.4, 0.5) (0.1, 0.7, 0.9)
h3 (0.3, 0.7, 0.9) (0.4, 0.6, 0.7) (0.2, 0.5, 0.7)
h4 (0.2, 0.5, 0.8) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7)

For convence of explanation, we can also represent PUSC (δ, A) which is de-

scribed the above matrix form as follows:

(δ, A)=



e1 e2 e3

h1 (0.6, 0.3, 0.1) (0.3, 0.5, 0.2) (0.7, 0.5, 0.4)

h2 (0.1, 0.4, 0.6) (0.3, 0.4, 0.5) (0.1, 0.7, 0.9)

h3 (0.3, 0.7, 0.9) (0.4, 0.6, 0.7) (0.2, 0.5, 0.7)

h4 (0.2, 0.5, 0.8) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7)



3.3 Definition

Let(δ, A) and (∆, B) be two Picture Uncertainty soft collection’s (PUSC’s)

over U . Then (δ, A) is said to picture Uncertainty soft subset of (∆, B), denoted

by (δ, A) ⊆ (∆, B) if

(i) A ⊆ B and

(ii) F (e) ⊆ G(e) for all e ∈ A.

3.4 Example

Let U = {C1, C2, C3, C4, C5} and E = {e1, e2, e3, e4, e5, e6}. Suppose (δ, A)

and (∆, B) are two Picture Uncertainty soft set’s (PUSC’s) over U given by

A = {e1, e2, e3} and B = {e1, e2, e4, e5}.
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(δ, A)=



e1 e2 e3

C1 (0.3, 0.2, 0.1) (0.2, 0.7, 0.3) (0.1, 0.5, 0.1)

C2 (0.2, 0.2, 0.3) (0.8, 0.6, 0.1) (0.1, 0.6, 0.7)

C3 (0.1, 0.3, 0.6) (0.7, 0.3, 0.2) (0.2, 0.3, 0.1)

C4 (0.3, 0.1, 0.2) (0.3, 0.1, 0.5) (0.3, 0.7, 0.4)

C5 (0.2, 0.1, 0.6) (0.2, 0.3, 0.7) (0.5, 0.6, 0.2)



(∆, B)=



e1 e2 e4 e5

C1 (0.6, 0.2, 0.1) (0.1, 0.2, 0.4) (0.1, 0.7, 0.6) (0.7, 0.5, 0.2)

C2 (0.5, 0.3, 0.2) (0.2, 0.4, 0.6) (0.2, 0.7, 0.5) (0.1, 0.2, 0.3)

C3 (0.1, 0.3, 0.2) (0.3, 0.0, 0.7) (0.3, 0.2, 0.1) (0.3, 0.5, 0.2)

C4 (0.1, 0.0, 0.7) (0.3, 0.7, 0.6) (0.1, 0.6, 0.2) (0.7, 0.3, 0.8)

C5 (0.0, 0.3, 0.1) (0.1, 0.2, 0.3) (0.5, 0.7, 0.2) (0.1, 0.3, 0.5)


then δA is picture Uncertainty soft subset of ∆B.

3.5 Definition

Two PUS collections δA and ∆B over U are called to be picture Uncertainty

softset equal,if and only if δA is a picture Uncertainty soft subset of ∆B and

∆B is a picture Uncertainty soft subset of δA. That is if (δ, A) ⊆ (∆, B) and

(δ, B) ⊆ (∆, A) then δA = ∆B.

3.6 Definition

Let δA be a Picture Uncertainty soft collection PUSC over U . The complement

of δA, denoted by δCA , where δCA : A → PFS(U) is mapping given by δC(e) =

{δ(e)}C for all e ∈ A.

3.7 Example

Consider the PUS collection δA then the complement of δA is represented as

(δA)C=



e1 e2 e3

h1 (0.1, 0.3, 0.6) (0.2, 0.5, 0.3) (0.4, 0.5, 0.7)

h2 (0.6, 0.4, 0.9) (0.5, 0.4, 0.3) (0.9, 0.7, 0.1)

h3 (0.9, 0.7, 0.3) (0.7, 0.6, 0.4) (0.7, 0.5, 0.2)

h4 (0.8, 0.5, 0.2) (0.9, 0.7, 0.5) (0.7, 0.5, 0.3)


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By using the privious idea by Molodtsov, [14] we discuss the AND and OR

operation on two PUS collections as proved.

3.8 Definition

Let δA and ∆B are PUS collections over U . Then δA AND δB, denoted by

δA ∩ δB.

3.9 Example

Let U = {C1, C2, C3, C4} and E = {e1, e2, e3, e4, e5}. Take A = {e1, e2} and

B = {e1, e3, e5}, define

δA=



e1 e2

C1 (0.2, 0.3, 0.4) (0.1, 0.3, 0.4)

C2 (0.1, 0.4, 0.6) (0.3, 0.2, 0.1)

C3 (0.2, 0.0, 0.8) (0.1, 0.3, 0.6)

C4 (0.1, 0.2, 0.4) (0.2, 0.4, 0.1)

 and

∆B=



e1 e3 e5

h1 (0.1, 0.7, 0.6) (0.2, 0.4, 0.7) (0.1, 0.3, 0.6)

h2 (0.2, 0.4, 0.3) (0.1, 0.3, 0.8) (0.2, 0.6, 0.7)

h3 (0.1, 0.3, 0.6) (0.4, 0.6, 0.2) (0.1, 0.4, 0.6)

h4 (0.7, 0.1, 0.8) (0.7, 0.6, 0.3) (0.1, 0.0, 0.2)


Here δA ∩∆B = (H,C), where C = A ∩B and ∀e ∈ C

H(e) =


δ(e), if x e ∈ A−B
∆(e), if x e ∈ B − A

δ(e) ∩∆(e), if e ∈ A ∩B

in this example

δA ∩∆B = (H,C) =



e1

h1 (0.2, 0.3, 0.4)

h2 (0.1, 0.4, 0.6)

h3 (0.2, 0.0, 0.8)

h4 (0.1, 0.2, 0.4)


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3.10 Definition

Let δA and ∆B are PUS collections over U . Then δA OR ∆B, denoted by

δA ∪∆B.

δA ∪∆B =

(e1, e1) (e1, e3) (e1, e5) (e2, e1) (e2, e3) (e2, e5)

C1 (0.2, 0.3, 0.4) (0.2, 0.3, 0.7) (0.1, 0.3, 0.6) (0.1, 0.3, 0.6) (0.1, 0.3, 0.7) (0.1, 0.3, 0.6)

C2 (0.1, 0.4, 0.6) (0.1, 0.3, 0.8) (0.1, 0.4, 0.7) (0.2, 0.2, 0.3) (0.1, 0.2, 0.8) (0.2, 0.2, 0.7)

C3 (0.1, 0.0, 0.8) (0.2, 0.0, 0.8) (0.1, 0.0, 0.8) (0.1, 0.3, 0.6) (0.1, 0.3, 0.6) (0.1, 0.3, 0.6)

C4 (0.1, 0.1, 0.8) (0.1, 0.2, 0.4) (0.1, 0.0, 0.4) (0.2, 0.1, 0.8) (0.2, 0.4, 0.3) (0.1, 0.0, 0.2)


Here δA ∪∆B = (H,C), where C=(A ∪B) and for all e ∈ C.

K(e) =


δ(e), if x e ∈ A−B
∆(e), if x e ∈ B − A

δ(e) ∪∆(e), if e ∈ A ∩B

(δA ∪∆B) = (H,C)=

e1 e2 e3 e5

C1 (0.2, 0.3, 0.4) (0.1, 0.3, 0.4) (0.2, 0.4, 0.7) (0.1, 0.3, 0.6)

C2 (0.1, 0.4, 0.6) (0.4, 0.2, 0.1) (0.1, 0.3, 0.8) (0.2, 0.6, 0.7)

C3 (0.0, 0.0, 0.8) (0.1, 0.3, 0.6) (0.4, 0.3, 0.2) (0.1, 0.4, 0.6)

C4 (0.1, 0.2, 0.4) (0.2, 0.4, 0.1) (0.7, 0.6, 0.3) (0.1, 0.0, 0.2)



3.11 Theorem[Demorgon’s Law]

Let δA and ∆B be two PUS collections over U. Then (i) (δA∩∆B)C = δA
C∪∆B

C

(ii) (δA ∪∆B)C = δA
C ∩∆B

C .

Proof
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(i)Suppose that (δ, A) ∩ (∆, B) = (K,A×B)

(δ, A) ∩ (∆, B)C = (K,A×B)C

= (KC , A×B)

Now(δ, A)C ∪ (∆, B)C = (δC , A) ∪ (∆C , B)

= (H,A×B).

Take (α, β) ∈ A×B,Therefore

KC(α, β) = {K(α, β)}C

= {δ(α) ∩∆(β)}C

= δC(α) ∪∆C(β)

agian H(α, β) = δC(α) ∪∆C(β)

HC(α, β) = H(α, β)

The theorem is proved

(ii) The result can be proved in a similar way.

3.12 Theorem

Union of two PUS collections δA and ∆B is a PUS collection.

Proof

We know that, Let (δA) and (∆B) are PUS collections over U . Then δA OR ∆B,

denoted by δA∪∆B. and ∀e ∈ C, e ∈ A→ B, or e ∈ B → A ,then K(e) = δ(e)

or K(e)=∆(e). So, in either case,we have K(e) is a picture Uncertainty soft

collection. If e ∈ A ∩ B, for a fixed x ∈ U without loss of generality, suppose

λδ(e)(x) ≤ λ∆(e)(x),

we have λK(e)(x) + µK(e)(x) + γK(e)(x)=

max{λδ(e)(x), λ∆(e)(x)}+min{µδ(e)(x), µ∆(e)(x)} + min{γδ(e)(x), γ∆(e)(x)}
=λ∆(e)(x) + min{µδ(e)(x), µ∆(e)(x)} + min{γδ(e)(x), γ∆(e)(x)}
≤ λ∆(e)(x) + µ∆(e)(x) + γ∆(e)(x) ≤ 1

Therefore (K,C) is a picture Uncertainty soft collection (PUSC).

Hence the proof.
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3.13 Theorem

Intersection of two PUS collectionss δA and ∆B is a PFS set.

Proof

we know that, Let δA and ∆B are PUS collections over U . ThenδA OR ∆B,

denoted by δA∩∆B. and ∀e ∈ U , without loss of generality, suppose λδ(e)(x) ≤
λ∆(e)(x),

we have λK(e)(x) + µK(e)(x) + γK(e)(x)=

Min{λδ(e)(x);λ∆(e)(x)}+Max{µδ(e)(x), µ∆(e)(x)} + Max{γδ(e)(x), γ∆(e)(x)}
=λ∆(e)(x) + Min{µδ(e)(x), µ∆(e)(x)} + Max{γδ(e)(x), γ∆(e)(x)}
≤ λ∆(e)(x) + µ∆(e)(x) + γ∆(e)(x) ≤ 1

There fore (K,C) is a PUS collection. Hence the proof.

3.14 Theorem

Let δA, ∆B and KC be PUS collections over U .Then (i) δA ∩ δB = δA (ii)

δA ∪ δA = δA.

(iii) (δA ∩∆B) = (∆B ∪ δA) (iv) (δA ∪∆B) = (∆B ∩ δA).

(v) (δA ∪∆B) ∪KC = δ ∪ (∆B ∪KC) (vi) (δA ∩∆B) ∩KC = δ ∩ (∆B ∩KC).

Proof

The proofs are strightforward by using the definitions((3.5),(3.8),(3.10)) and

Theorem(3.11)

(i)Let δA and ∆B are PUS collections over U . Then δA AND δB, denoted by

δA ∩ δB.
(ii)Let δA and ∆B are PUS collections over U . Then δA OR δB, denoted by

δA ∪ δB
(iii) Let A,B,C ∈ PF (R),then (i) If A ⊆ B and B ⊆ C then A ⊆ C

(ii)(AC)C = A

(iii) Operations ∩ and ∪ are commutative, associative and distributive.

3.15 Theorem[Distributive Law]

Let δA, ∆B and KC be PUC collections over U .Then (i) δA ∩ (∆B ∪ KC) =

(δA ∩∆B) ∪ (δA ∩KC) (ii)δA ∪ (∆B ∩KC) = (δA ∪∆B) ∩ (δA ∪KC)
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Proof

The proofs are strightforward by using the definition((3.5),(3.8),(3.10)) and

Theorem(3.14).

(i)Let δA and ∆B are PFS sets over U . Then δA AND δB, denoted by ”δA∩δB”.

(ii)Let δA and ∆B are PUC collections over U . ThenδA OR δB, denoted by

”δA ∪ δB”

(iii) Let A,B,C ∈ PF (R),then (iv) If A ⊆ B and B ⊆ C then A ⊆ C

(v)(AC)C = A

(iii) Operations ∩ and ∪ are commutatiive, associative and distributive.

3.16 Theorem[Dual Law]

Let δA,∆B and KC be PUS collections over U .Then (i) (δA ∩∆B)C = δA
C ∪

∆B
C , if and only if A=B

(ii) (δA ∪∆B)C = δA
C ∩∆B

C . iff A=B

Proof

(i) If A=B, Then we have δA ∪∆B = δA ∪∆A = (K,A). Now for all e ∈ A,
K(e) = δ(e)∪∆(e) Hence (δA∩∆B)C = (δA∩∆A)C = (K,A)C = (KC , A) and

KC(e) = (δ(e) ∪ ∆(e))C = δC(e) ∩ ∆C(e)Ȧgain suppose that (δA ∩ ∆B)C =

(δA ∩∆A)C = (I, A)C = (IC , A) = (I, A) for all e ∈ A. I(e) = δC(e) ∪∆C(e)

we see that for all e ∈ A.I(e) = KC(e). Therefore this result is true.

Conversely, hypotheses A 6= B. Suppose that δA∪δB =(K,C) where C = A∪B
and for all e ∈ C.

K(e) =


δ(e), if x e ∈ A−B
∆(e), if x e ∈ B − A

δ(e) ∪∆(e), if e ∈ A ∩B

Thus (δA ∪∆B)C = KC
C and

KC(e) =


δC(e), if x e ∈ A−B
∆C(e), if x e ∈ B − A

δC(e) ∩∆C(e), if e ∈ A ∩B

Again suppose that δCA ∩∆C
B = (I, J).Where J = A∩B and ∀e ∈ J. I(e) =

δC(e) ∩∆C(e). obviously, where A 6= B, we have C = A ∪B 6= A ∩B = J , so

KC
C 6= IJ . This is controdiction of over condition. (δA ∩∆B)C = δA

C ∪∆B
C .
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Hence A=B.

(ii) This result can be proved in a similar way.

3.17 Remark

From the above theorem for dual theorem,we know that Demorgon’s laws are

invalied for PUS collections with the different parameters collections, but they

are true for PUS collections with the identical parameter set.

4 Picture Uncertainty Soft Relations and its

Decision Making

In this part,we construct picture Uncertainty soft operator and a decision mak-

ing method on relations.

Now we construct a decision making method on picture Uncertainty soft rela-

tion by the following algorithum:

step-1 Input the picture Uncertainty soft collections A and B

step-2 Obtain the picture Uncertainty soft matrix R corresponding to carte-

sion product of A and B respectively.

step-3 Compute the comparision table using the following formula PA(r) +

IA(r)−NA(r).

step-4 Select the hight numerical grades from comparison table for each row.

step-5 Find the solve table which having the following form

R (x1, y1) ... ... (xn, yn)
(Objects) h1

(Highestgrade)

where Xn denotes the parameter of A and yn denotes the parameter of B.

step-6 Compute the solve of each objects by taking the sum of these numerical

grades.

step-7 Find m, for which Sm = maxSj. then Sm is the hight score,if m has

most then one values,you can choose any one value Sj.

Now we use this algorithm to find the best choice in decision making system.
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4.1 Example

Let U = {u1, u2, u3, u4} be the set of four cars. Suppose that two friends

wont to buy a car for a muutal friend among these four cars according to their

choice parameters E1 = {x1, x2, x3}={Expensive, moderate, inexpensive} and

E2 = {y1, y2, y3}={Green,Black,Red} respectively, then we select a car on the

basis of the collections of friends parameters by using the picture Uncertainty

soft collection of relation decision making method.

step-1 We input the picture Uncertainty soft collection A and B as

A=


u1 u2 u3 u4

x1 (0.3, 0.6, 0.4) (0.2, 0.4, 0.5) (0.3, 0.6, 0.7) (0.3, 0.5, 0.7)

x2 (0.1, 0.3, 0.4) (0.1, 0.3, 0.3) (0.2, 0.4, 0.5) (0.1, 0.3, 0.9)

x3 (0.3, 0.3, 0.4) (0.4, 0.6, 0.7) (0.3, 0.4, 0.5) (0.3, 0.7, 0.9)



and B=


u1 u2 u3 u4

x1 (0.4, 0.6, 0.7) (0.2, 0.4, 0.5) (0.4, 0.4, 0.6) (0.3, 0.5, 0.9)

x2 (0.2, 0.3, 0.5) (0.3, 0.5, 0.6) (0.2, 0.4, 0.5) (0.1, 0.5, 0.9)

x3 (0.2, 0.3, 0.4) (0.2, 0.8, 0.8) (0.3, 0.6, 0.6) (0.1, 0.4, 0.7)


step-2 we obtain the picture Uncertainty soft matrix R corresponding to carte-

sion product of A and B respectively

R u1 u2 u3 u4

(x1, y1) (0.3, 0.6, 0.7) (0.2, 0.4, 0.5) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7)
(x1, y2) (0.1, 0.45, 0.4) (0.2, 0.45, 0.6) (0.2, 0.5, 0.7) (0.1, 0.45, 0.9)
(x1, y3) (0.2, 0.45, 0.7) (0.2, 0.6, 0.8) (0.3, 0.6, 0.7) (0.1, 0.45, 0.7)
(x2, y1) (0.1, 0.45, 0.7) (0.1, 0.4, 0.6) (0.2, 0.4, 0.6) (0.1, 0.4, 0.9)
(x2, y2) (0.1, 0.3, 0.5) (0.1, 0.4, 0.6) (0.2, 0.4, 0.5) (0.1, 0.4, 0.9)
(x2, y3) (0.1, 0.3, 0.4) (0.1, 0.055, 0.8) (0.2, 0.5, 0.6) (0.1, 0.35, 0.9)
(x3, y1) (0.3, 0.4, 0.7) (0.2, 0.5, 0.7) (0.3, 0.4, 0.6) (0.3, 0.06, 0.9)
(x3, y2) (0.2, 0.3, 0.5) (0.3, 0.055, 0.7) (0.2, 0.4, 0.5) (0.3, 0.6, 0.7)
(x3, y3) (0.2, 0.3, 0.4) (0.2, 0.7, 0.8) (0.3, 0.5, 0.6) (0.3, 0.6, 0.9)

Table -2 picture Uncertainty soft relational matrix R.

Step-3 By using table-1, we compute the comparison table as
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R u1 u2 u3 u4

(x1, y1) 0.2 0.1 0.1 0.1
(x1, y2) −0.15 0.05 0 −0.35
(x1, y3) −0.05 0.00 0.2 −0.15
(x2, y1) −0.15 −0.1 0.00 −0.4
(x2, y2) −0.1 −0.1 0.1 −0.4
(x2, y3) 0.00 −0.645 0.1 −0.45
(x3, y1) 0.05 0.00 0.1 −0.54
(x3, y2) 0.00 −0.345 0.1 0.2
(x3, y3) 0.1 0.1 0.2 0.2

Table -2 comparsion table (P+I-N).

step-4 we select the highest numerical grade from step-3 for each row

R u1 u2 u3 u4

(x1, y1) 0.2 0.1 0.1 0.1
(x1, y2) −0.15 0.05 0 −0.35
(x1, y3) −0.05 0.00 0.2 −0.15
(x2, y1) −0.15 −0.1 0.00 −0.4
(x2, y2) −0.1 −0.1 0.1 −0.4
(x2, y3) 0.00 −0.645 0.1 −0.45
(x3, y1) 0.05 0.00 0.1 −0.54
(x3, y2) 0.00 −0.345 0.1 0.2
(x3, y3) 0.1 0.1 0.2 −0.745

.

Table-3 Highest value of each row

step-5 we find the score table which have the following form

R u1 u2 u3 u4

(x1, y1) 0.2 − − −
(x1, y2) − 0.05 − −
(x1, y3) − − 0.2 −
(x2, y1) − − 0 −
(x2, y2) − − 0.1 −
(x2, y3) − − 0.1 −
(x3, y1) − − 0.1 −
(x3, y2) − − − 0.2
(x3, y3) − − 0.2 −

.
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Table -4 is score table.

step-6 we compute the score of each objects by taking the form of numerical

grades as;

u1 = 0.2,

u2 = 0.05,

u3 = 0.2 + 0 + 0.1 + 0.1 + 0.2 = 0.7,

u4 = 0.2

step-7 The maximum value of the score value is Sj = 0.7, so the two friends

will select the car with the highest score, hence they will choose car u3. with

parameter either expensive car with red or expensive car with red.

5 Conclusion

We have defined a picture Uncertainty soft collection with some special opera-

tions and proved various result based on the picture Uncertainty soft collection.

Finaily we study the decision making approach for solving picture Uncertainty

soft matrix under relational concepts. One can obtian the similar result in

fermatean Uncertainty soft collection and pythogoner Uncertainty soft collec-

tions.

17

GSJ: Volume 9, Issue 12, December 2021 
ISSN 2320-9186 106

GSJ© 2021 
www.globalscientificjournal.com



References

[1] S. Ashraf, T. Mahmood, S. Abdullah and Q. Khan, Different approaches

to multi-criteria group decision making problems for picture fuzzy en-

vironment, Bulletin of the Brazilian Mathematical Society, New Series,

2018.

[2] S. Ashraf, T. Mahmood and Q. Khan, Picture fuzzy linguistic sets and

their applications for multi-attribute group decision making problems,

The Nucleus 55(2), (2018),pp 66-73.

[3] K. Atanassov, New operations defined over the intuitionistic fuzzy sets,

fuzzy Sets and Systems, 61(2), (1994),pp 137-142.

[4] K. Atanassov, Intuitionistic fuzzy sets, fuzzy sets and systems, 20, (1986),

pp 87-96.

[5] K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets,fuzzy

sets and systems, 31,(1989), pp 343-349.

[6] K. Atanassov, Remark on intuitionistic fuzzy numbers, Notes on intu-

itionistic fuzzy sets, 13,(2007), pp 29-32.

[7] B. Cuong, Picture fuzzy sets- results. part 1, Seminar ”Neuro-fuzzy sys-

tems with applications”, Institute of mathematics, Hanoi, 2013.

[8] P. K. Maji, R. Biswas and A. R. Roy, fuzzy soft sets, J. fuzzy Math., 9(3)

(2001), pp 589-602.

[9] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a

decision making problem, Comput. Math. Appl., 44 (2002), pp 1077-1083.

[10] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math.

Appl., 45 (2003), pp 555-562.

[11] S. S. A.Pandian P.Puthiyanayagam, Process capability analyses based on

range with triangular fuzzy numbers.

18

GSJ: Volume 9, Issue 12, December 2021 
ISSN 2320-9186 107

GSJ© 2021 
www.globalscientificjournal.com



[12] S.V.Manemaran and R. Nagarajan, N-Picture fuzzy soft (1,2)-ideal struc-

tures, Journal of Applied Science and Computations, 5 (11) (2018, pp

971-988.

[13] S.V.Manemaran and R.Nagarajan, Temporal Generated N-Picture fuzzy

soft dimensions via algebraic structures, Int.jour. research and analytical

review, 5 (4) (2018), pp660-666.

[14] D.A. Molodtsov, Soft set theory-first results, comput. math. appl. 37

(1999), pp 19-31

[15] Z. Pawlak, Rough sets, Int. J. comput. inform. sci., 11 (1982), pp 341-356.

[16] A.Rosenfeld,fuzzy groups, J. math. anal. appl, 35. (1971), pp 512 - 517.

[17] P. Singh, Correlation coe-cients for picture fuzzy sets, Journal of intelli-

gent and fuzzy Systems, 27 (2014), pp.2857-2868.

[18] ] L. Son, DPFCM: A novel distributed picture fuzzy clustering method

on picture fuzzy sets,Expert system with applications, 2 (2015), 51-66.

[19] A.Solairaju and R, Nagarajan, A New structure and constructions of Q-

Uncertainty group, Advances in fuzzy mathematics, Vol.4, No.1 (2009),

pp 23-29.

[20] A.Solairaju and R. Nagarajan, Some structure properties of upper Q-

fuzzy index order with upper Q-fuzzy subgroups, International journal of

open problems and applications, Vol.3, No.1(2011), pp 21-29.

[21] C. J. S.Reddy, K. Hemavathi, Right reverse derivations on prime rings. In-

ternational journal of research in engineering and technology, 2(3),(2014)

pp 141-144.

[22] Yuan, X, Zhang, C, Ren, Y: Generalized fuzzy groups and many-valued

implications. fuzzy sets syst. 138, (2003),pp 205-211.

[23] L.A.Zadeh, fuzzy sets, Information and control(1965),8 pp 338-353.

19

GSJ: Volume 9, Issue 12, December 2021 
ISSN 2320-9186 108

GSJ© 2021 
www.globalscientificjournal.com




