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Abstract 
 Application of Artificial Neural Network (ANN) to study the effects palm kernel shells (PKS) as 
partial replacement for normal weight aggregates on the flexural strength of concrete has been 
carried out. A mix ratio of 1: 1.5: 3 with cement content of 382 kN/m3, water-cement ratio of 
0.55 were used for the work, and cured for 90 days. The results showed that the distribution 
characteristic of PKS-concrete using ANN is adequate for the prediction of flexural strength. The 
predicted and experimental results are strongly correlated with a model equation of intercept 0.32 
and a slope of 0.91. The Minitab 17 software output has an intercept and slope of 0.37 and 0.91. 
This showed an agreement of 86 % and 100 % respectively. The characteristic distribution 
results of the predicted with the experimental showed that the parameter estimates (ANN and 
Statistics), are within the 95 % confidence limits (CI), and very significant (P < 0.05).  
 
Keywords: ANN, palm kernel shells (PKS) aggregate, flexural strength, statistical characteristics, PKS-concrete, age 

 
Introduction 

Extensive research works on the use of palm kernel shells as aggregate materials to 
replace conventional aggregates in concrete have been an interest of research recently. The 
reasons for such interest are the availability of this material as waste in the palm kernel oil 
industry. Other important reasons are the development and construction pressures on our 
conventional materials (normal aggregates), and the growing needs for sustainability. The 
suitability of palm kernel shell (PKS) as aggregate material has been confirmed by many 
researchers. Details of such work can be found in Elinwa [1]. A further deficiency was echoed on 
the qualitative knowledge approach of concrete mixes [2], for which Faraqui et al [3] postulated 
that it compromised the precision and accuracy of concrete properties. It is also stated that the 
statistical modeling techniques like the multiple linear regression analysis (MLRA) have failed to 
accurately predict the mechanical strengths of concrete because of highly nonlinear relationship 
between concrete proportions and its properties. 

As a result of all these deficiencies development works using optimization tools like 
Artificial Neural Network (ANN) have found important use in enhancing credibility and 
acceptability for concrete works with additives and non-conventional materials like palm kernel 
shells. It has been reported in the literature that there are three approaches that are commonly 
used to predict compressive strength [4]. Dao et al (2019) outlined these as computational 
modelling, parametric multi-variable regression, or the artificial intelligence approach, and that 
artificial neural network (ANN) approaches have been broadly used by researchers [4]. The 
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ANN ability to learn so quickly is what makes them so powerful and useful for a variety of tasks, 
and contains three main sections, classified as, input layer, hidden layer, and output layer. 

 The PKS is a waste from the palm oil industry, and majority of the reviewed works in 
the literature are on PKS cured for the period of 28 days which is the conventional curing period 
of concrete. This has been reported as a research gap [2], and hence the need to evaluate the 
performance of PKS beyond the 28 days curing period was stressed by them. They addressed this 
gap by curing for 3 days to 90 days in water before testing to failure. The second issue raised in 
their work was the deficiencies in accuracies and precisions inherent in the prescriptive 
approaches. This they addressed by using artificial neural network (ANN) to predict the 
compressive strength of PKS-concrete cured for 90 days [2] thus concluding that the predicted 
and experimental results were strongly correlated. The model equation has an intercept and slope 
of 1.5 and 0.93, respectively. The results of the characteristics distribution of the predicted 
compared with the experimental showed that the parameter estimates (ANN and statistics) were 
within the 95 % confidence limits (CI), and very significant (P < 0.05). They therefore, 
concluded that the distribution characteristics of PKS-concrete using ANN are adequate for the 
prediction of compressive strength [2]. 

In this investigation, five (5) flexural grades of PKS-concrete (M-00, M-10, M-20, M-30, 
and M-40 were designed in accordance to ACI 211-91 [5] and used to investigate the effects of 
PKS on the flexural strength of concrete. Five (5) constituent materials were used and named as 
simulation inputs X1, X2, X3, X4, and X5. These inputs are PKS, cement, fine aggregate, coarse 
aggregate, water content, and age, respectively, and are presumed to highly influence the final 
flexural strength of PKS-concrete which is taken as the output Y for the prediction study. The 
ANN architecture used has Six (6) Inputs with six (6) neurons, One (1) Hidden layer with twelve 
(12) neurons, and One (1) Output layer with one neuron [2], for predicting the flexural strength 
of PKS concrete samples, and to evaluate the prediction performance using statistical methods. 
The sensitivity analysis to evaluate the impact of input variable fluctuations on the output results 
are quantified using linear regression. 
 

Material 

The materials used for this work are ‘Ashaka’ Portland cement conforming to BS EN 196 Part 3 
[6]. The fine, coarse and palm kernel shell aggregates also conforming to BS EN 1097-6 [7], and 
potable drinking water. The characteristics of these materials and their possible effects on the 
concrete have been dealt in details in the previous publications and would not be repeated in this 
work [1, 2]. 
Experimental Programme 

Flexural testing is used to determine the bending properties of a material and sometimes 
referred as a transverse beam test involving the placement of a sample between two points or 
supports and initiating load using a third point or two points which are respectively called 3-
point bend and 4-point bending testing. For this work, a 4-point bending testing was chosen 
because of the advantage of producing peak stresses along an extended region of the specimen, 
hence exposing a larger length of the specimen with more potential for defects and flaws to be 
highlighted. 

Table 1 shows the mix proportions used for the investigation. A mix ratio of 1: 1.5: 3 
with a cement content of 382 kg/m3 and a water-cement ratio of 0.55 was used. In carrying out 
the experiment using this mix proportions, palm kernel shells were used as coarse aggregate to 
replace the normal weight aggregate (20 mm) in proportions of 0 %, 10 %, 20 %, and 30 % by 
weight, respectively, to produce palm kernel shell concrete. The beam specimen dimension used 
is 150 mm x 150 mm x 460 mm. The actual span of the beam chosen 310 mm. A total of sixty 
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specimens were cast using four mixes designated as M-00, M-10, M-20, and M-30 according to 
the specified replacement levels and cured for a period of 90 days in a water curing tank at 
laboratory temperature. At the end of each curing regime three specimens are tested to failure. 
The results are shown in Table 2. 
Discussion on the PKS Material/Flexural Strength of PKS-Concrete 
The flexural strength of PKS-concrete as shown in Table 2 decreased as the replacement with 
PKS increased, and the maximum strength was at 10 % replacement. The reductions in strength 
have been attributed to many factors such as the low strength of PKS compared to the crushed 
aggregate, the irregular shape of PKS which could prevent adequate compaction, and the 
bonding between PKS and cement paste because of the smooth surfaces of the PKS [1]. The 
physical characteristics of the PKS and coarse aggregate led credence to the attributable factors 
for low strength. At this replacement the strengths at 60 days and 90 days are above the strengths 
at 28 days by 3 % and 10 % respectively. Traore et al [8] in their work on PKS concrete recorded 
a flexural strength range of 2.8 to 3.6 MPa at 28 days of curing. Shafigh et al [9] registered in 
their work a flexural range of 4.42 to 6.99 MPa at 28 days of curing. Other studies on PKS as 
reported in [9] ranged from 2.13-4.93 MPa. Sulyman ]10] gave the flexural strength of three 
different mixes 2:3:6, 1:2:4, 1:3:6, cured to 28 days as 3.78-1.96, 2.20-1.48, and 2.02-0.37, 
respectively. The results of the present work showed agreement in the range of flexural strengths 
with works of past researchers. 
 
Table 1: Concrete Mix Proportions for the Experiments 

Mix 
type 

Cement 
(kg/m3) 

PKS 
(kg/m3) 

Sand 
(kg/m3) 

Cement 
(kg/m3) 

Water 
(kg/m3) 

W/C 

M-0 1265 ---- 543 382 210 0.55 
M-10 1138.5 126.5 543 382 210 0.55 
M-20 1012 253 543 382 210 0.55 
M-30 885.5 379.5 543 382 210 0.55 
 

Table 2: Flexural Strength Experimental Result 

Mix No 3 d 7 d 28 d 60 d 90 d 
M-00 
M-10 
M-20 
M-30 

3.7 
3.0 
2.6 
1.9 

4.3 
3.1 
2.9 
2.5 

4.9 
3.9 
3.6 
2.6 

5.1 
4.0 
3.7 
2.7 

5.5 
4.3 
3.8 
3.0 

 
.Characteristics of Distribution of PKS-Concrete 

Tables 3 and 4 show the distribution characteristics of the PKS-concrete used for the 
flexural strengths determination. The measurements that were made were on the mean, standard 
error of the mean (SE.Mean), standard deviation (St.Dev) and coefficient of variation (Coef.Var) 
and the confidence limits at α = 0.05 for the within and in-between (Batch to Batch) tests for 
PKS-concrete. The values achieved on the measurements showed good and uniform 
characteristics of PKS-concrete. Figure 1 (a & b) is the confidence intervals for both the in-
between and batch-to-batch test samples at 95 % CI, respectively. The figure shows that the in-
between test results increased as the age of the PKS-concrete increased, and decreased as the 
replacement levels increased.  
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Table 3: Distribution Characteristics (Within Test) 
Age 

(Days) 
 

Mean 
SE 

mean 
 

StDev 
 

Variance 
 

CoefVar 
CI (α = 0.05) 

Lower Upper 
3 
7 
28 
60 
90 

2.80 
3.20 
3.75 
3.88 
4.15 

0.38 
0.39 
0.47 
0.49 
0.52 

0.75 
0.78 
0.95 
0.99 
1.05 

0.57 
0.60 
0.90 
0.98 
1.10 

26.88 
24.21 
25.25 
25.49 
25.23 

1.831 
2.231 
2.781 
2.906 
3.181 

3.769 
4.169 
4.719 
4.844 
5.119 

 
Table 4: Distribution Characteristics (In-Between) 

 
Mix 

 
Mean 

 
SE mean 

 
StDev 

 
Variance 

 
CoefVar 

CI (α = 0.05) 
Lower Upper 

M0 
M10 

     M20 
M30 

4.740 
3.660 
3.320 
2.540 

0.331 
0.258 
0.240 
0.181 

0.740 
0.577 
0.536 
0.404 

0.548 
0.333 
0.287 
0.163 

15.62 
15.77 
16.14 
15.89 

4.193 
3.113 
2.773 
1.993 

 

5.287 
4.207 
3.867 
3.087 

 

 
[a] 

 
[b] 

Figure  1: Confidence Intervals for In-Between and Batch-to-Batch Test Samples 
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ANOVA is a procedure that uses hypothesis testing to determine whether the factor effects of 
two or more factors are the same and a common technique for analysing the statistical 
significance of a number of factors in a model. This method was used for the sensitivity analysis 
of the test results  of this work. The two level factors of treatments considered for this work are 
the Mix and Age of the PKS-concrete. The generatic data for this is shown in Table 5. 

Table 5: Generatic Data Table for 2-Level Factor Experimeent 

 
Mix 

Age (Days)  
Total 

 
Average 3 7 28 60 90 

M-00 
M-10 
M-20 
M-30 

y11 
y21 
y31 
y41 

y12 
y22 
y32 
y42 

y13 
y23 
y33 
y43 

y14 
y24 
y34 
y44 

y15 
y25 
y35 
y45 

  

                                                                                                                          ∑y                  ӯ,, 

The Factor Level for the within test variance (SSE) is considered as the Age of the PKS-concrete 
for 3 days, 7 days, 28 days, 60 days and 90 days, respectively, and the ‘within’ factor variance is 
given as: 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2𝑟𝑟𝑖𝑖
𝑡𝑡=1

𝑣𝑣
𝑖𝑖=𝑡𝑡  ….  (1)  

 

    𝑦𝑦�𝑖𝑖  =  
∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖
𝑡𝑡=1
𝑟𝑟𝑖𝑖

 … . . (2)  

Where: 

y𝑖𝑖 = the 𝑡𝑡th observation at the 𝑖𝑖th level of the factor, 

 𝑟𝑟𝑖𝑖 = the number of observations in factor level i,   

𝑣𝑣 = the number of factor levels being tested. 
 The results of the analysis are shown in Table 6 
Table 6: Analysis of Variance (Within Test) 

Source DF Adj. SS Adj.MS F-Value P-Value 
Factor (Within) 
Error 
Total 

4 
15 
19 

4.762 
12.407 
17.169 

1.1905 
0.8272 

1.44 0.269 

 
The Factor Level for the in-between test variance (SSR) is the Mix of the PKS-concrete at M-00, 
M-10, M-20, M-30, respectively, and the ‘in-between’ factor is given as: 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝑟𝑟𝑖𝑖𝑣𝑣
𝑖𝑖=1  �𝑦𝑦�𝑖𝑖 −  𝑦𝑦�,,�

2…. (3) 

Where 

𝑦𝑦�,, =  
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖
𝑡𝑡=1  𝑣𝑣

𝑖𝑖=1

𝑛𝑛
=  𝑦𝑦

𝑛𝑛
  …. (4) 

The results are shown in Table 7. The residual plots for these considerations are shown in 
Figures 3 and 4 respectively. 
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Table 7: Analysis of Variance (In-Between Test) 

Source DF Adj. SS Adj.MS F-Value P-Value 
Factor (Within) 
Error 
Total 

3 
16 
19 

12.501 
5.32 

17.8254 

4.1672 
0.3327 

12.52 0.000 

 

 

 

Figure 3: 

 

Figure 4: 

Artifical Neural Network PKS-Concrete 

The second phase of the analysis is the application of artificial neural network to optimize the 
mix parameters for PKS-concrete. The same ANN architecture is used [2] and the characteristics 
is shown in Table 8.It is a  6-2-1 configuration defined as six (6) in-put parameters, two (2) 
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hidden layers comprising of  eighteen (18) neurons in the first hidden layer, twelve (12) neurons 
in the second layer and one (1) output layer with one (1) neuron, corresponding to the flexural 
strength of the beam. The feed forward neural network was chosen based on the accuracy of 
strength validation, and mean square error (MSE). The activation function was the sigmodal 
function with the epoch number set to 10000 to avoid overfitting and training. The process is 
defined as a non-linear input-output relation between the influencing factors (Cement content, 
FA content, CA content, PKS content, Water content, and Age of concrete), and the flexural 
strength cured for 3 to 90 days. 

Table 8: Characteristics of ANN Architecture for the Flexural Strength Test 

Input Parameter Hidden Layer Output Parameter 
!st Hidden  2nd Hidden 

Cement 
Fine aggregate 
Coarse aggregate 
Potable water 
Palm kernel shell 
Age 

 
 

18 neurons 

 
 

12 neurons 

 
 

1 (Flexural strength) 

 

Mix Proportions used for ANN Training and Test/Validation 
The mix proportions used for both the training and validation for the ANN are shown in 

Tables 9 and 10, respectively. A total of 60 data sets were used and they formed both the input 
and output data sets. Eighty (80) percent of the data sets were used for the training, and twenty 
(20) percent for testing and validation. The experiments were divided into two sets, one for the 
network learning, called learning set, and the other for validating the network, called testing set. 
Each set consisted of six components, cement (kg/m3), FA and CA (kg/m3), PKS (kg/m3), Age 
and water (kg/m3). The output vector had only one strength component, which is the Flexural 
strength. There were fifty (50) pairs of vectors in the learning set, and ten (10) in the testing set.  
Table 9: Mix Proportions for Network Training 
 
 
Runs 

 
 
Mix no 

Mix for the Training Input 
Cement 
(kg/m3) 

Fine Agg 
(kg/m3} 

Coarse Agg 
(kg/m3) 

PKS 
(kg/m3) 

Water 
(kg/m3) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

M-00 
M-00 
M-10 
M-10 
M-10 
M-20 
M-20 
M-20 
M-30 
M-30 

382 
382 
382 
382 
382 
382 
382 
382 
382 
382 

543 
543 
543 
543 
543 
543 
543 
543 
543 
543 

1265 
1265 

1138.5 
1138.5 
1138.5 
1012 
1012 
1012 
885.5 
885.5 

0 
0 

126.5 
126.5 
126.5 
253 
253 
253 

379.5 
379.5 

210 
210 
210 
210 
210 
210 
210 
210 
210 
210 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

M-00 
M-00 
M-00 
M-10 
M-10 
M-20 
M-20 
M-30 
M-30 
M-30 

382 
382 
382 
382 
382 
382 
382 
382 
382 
382 

543 
543 
543 
543 
543 
543 
543 
543 
543 
543 

1265 
1265 
1265 

1138.5 
1138.5 
1012 
1012 
885.5 
885.5 
885.5 

0 
0 
0 

126.5 
126.5 
253 
253 

379.5 
379.5 
379.5 

210 
210 
210 
210 
210 
210 
210 
210 
210 
210 

21 M-00 382 543 1265 0 210 
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22 
23 
24 
25 
26 
27 
28 
29 
30 

M-00 
M-10 
M-10 
M-10 
M-20 
M-20 
M-20 
M-30 
M-30 

382 
382 
382 
382 
382 
382 
382 
382 
382 

543 
543 
543 
543 
543 
543 
543 
543 
543 

1265 
1138.5 
1138.5 
1138.5 
1012 
1012 
1012 
885.5 
885.5 

0 
126.5 
126.5 
126.5 
253 
253 
253 

379.5 
379.5 

210 
210 
210 
210 
210 
210 
210 
210 
210 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

M-00 
M-00 
M-00 
M-10 
M-10 
M-20 
M-20 
M-30 
M-30 
M-30 

382 
382 
382 
382 
382 
382 
382 
382 
382 
382 

543 
543 
543 
543 
543 
543 
543 
543 
543 
543 

1265 
1265 
1265 

1138.5 
1138.5 
1012 
1012 
885.5 
885.5 
885.5 

0 
0 
0 

126.5 
126.5 
253 
253 

379.5 
379.5 
379.5 

210 
210 
210 
210 
210 
210 
210 
210 
210 
210 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

M-00 
M-00 
M-10 
M-10 
M-10 
M-20 
M-20 
M-20 
M-30 
M-30 

382 
382 
382 
382 
382 
382 
382 
382 
382 
382 

543 
543 
543 
543 
543 
543 
543 
543 
543 
543 

1265 
1265 

1138.5 
1138.5 
1138.5 
1012 
1012 
1012 
885.5 
885.5 

0 
0 

126.5 
126.5 
126.5 
253 
253 
253 

379.5 
379.5 

210 
210 
210 
210 
210 
210 
210 
210 
210 
210 

 

Table 10: Mix Proportions for the Validation 
 
 
Runs 

 
 
Mix No 

Mix Proportion  for the Validation 
Cement 
(kg/m3) 

Fine Agg 
(kg/m3} 

Coarse Agg 
(kg/m3) 

PKS 
(kg/m3) 

Water 
(kg/m3) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

M-00 
M-30 
M-10 
M-20 
M-00 
M-30 
M-10 
M-20 
M-00 
M-30 

382 
382 
382 
382 
382 
382 
382 
382 
382 
382 

543 
543 
543 
543 
543 
543 
543 
543 
543 
543 

1265 
88.5 

1138.5 
1012 
1265 
885.5 

1138.5 
1012 
1265 
885.5 

0 
379.5 
126.5 
253 

0 
379.5 
126.5 
253 

0 
379.5 

210 
210 
210 
210 
210 
210 
210 
210 
210 
210 

 
The Levenberg Marquardt algorithm was chosen as the most efficient one for the training 

of the ANN. Approximately; eighty (80) percent of the data in Table 11 was used for the 
training, and was stopped when the network prediction closely matched the experimental results 
to avoid over fitting of the network. Figure 5 is the MSE/Epoch results for the training output 
with a minimum final mean square error of 0.0239 (2.39 %). This stabilized at an epoch value of 
253. Twenty (20) percent of the total data as shown in Table 12 were used for validation and 
testing. Figure 6 showed the test and validation of the MSE/Epoch results. The minimum final 
mean square error for the validation and test was 0.0230 or 2.30 %, and stabilizes at 85. After the 
testing and validation the predicted results were compared with the experimental data. Table 13 
shows the predicted output with respect to the experimental results and the error is approximately 
-0.40 to + 0.43. This shows a very strong correlation between the two results. The output against 
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target model generated for the predicted and experimental results of the flexural strength is 
shown Figure 7, and the model equation is given as: 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.32 + 0.91𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 
…(5), with a correlation coefficient (r2) of 95.1 %. This shows a very high correlation between 
the experiment and the predicted. 
Table 11: Output Result (Training) 

 
 
Runs 

 
 
Mix 
No 

Training  
 

Runs 

 
 

Mix 
No 

Training 
 

Age (Days) 
Comp. Str. 

(kN/m3) 
Age  

(Days) 
Comp. Str. 

(kN/m3) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

M-00 
M-00 
M-10 
M-10 
M-10 
M-20 
M-20 
M-20 
M-30 
M-30 
M-00 
M-00 
M-00 
M-10 
M-10 
M-20 
M-20 
M-30 
M-30 
M-30 
M-00 
M-00 
M-10 
M-10 
M-10 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
28 
28 
28 
28 
28 

3.77 
3.73 
2.94 
3.01 
2.96 
2.66 
2.59 
2.63 
2.00 
1.83 
4.23 
4.32 
4.23 
3.12 
3.09 
2.85 
2.99 
2.48 
2.42 
2.44 
4.96 
4.96 
3.80 
3.95 
3.91 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

M-20 
M-20 
M-20 
M-30 
M-30 
M-00 
M-00 
M-00 
M-10 
M-10 
M-20 
M-20 
M-30 
M-30 
M-30 
M-00 
M-00 
M-10 
M-10 
M-10 
M-20 
M-20 
M-20 
M-30 
M-30 

28 
28 
28 
28 
28 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
90 
90 
90 
90 
90 
90 
90 
90 
90 
90 

3.64 
3.58 
3.57 
2.61 
2.57 
5.05 
5.05 
5.14 
4.13 
3.95 
3.67 
3.64 
2.66 
2.65 
2.70 
5.57 
5.51 
4.41 
4.50 
3.86 
3.82 
3.77 
3.86 
2.96 
2.99 

 

 

 Figure 5: Training Epoch (Square Error versus Epochc) for Flexural Strength 
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Table 12: Output Result (Testing and Validation) 

 
Runs 

 
Mix No 

Validation Output Results 
Age (days) Flexural Strength 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

M-00 
M-30 
M-10 
M-20 
M-00 
M-30 
M-10 
M-20 
M-00 
M-30 

3 
3 
7 
7 

28 
28 
60 
60 
90 
90 

3.67 
1.95 
3.14 
2.99 
4.86 
2.57 
4.00 
3.73 
5.27 
2.92 

 

 
Figure 6: Training Epoch (Square Error versus Epochs) for Test and Validation 

Table 13: Experimental Versus Predicted Results 

Property  
Mix No 

Experimental versus Predicted 
Age (days) Experiment Predicted Error 

Compressive 
Strength 

M-00 
M-30 
M-10 
M-20 
M-00 
M-30 
M-10 
M-20 
M-00 
M-30 

3 
3 
7 
7 
28 
28 
60 
60 
90 
90 

3.67 
1.95 
3.14 
2.99 
4.86 
2.57 
4.00 
3.73 
5.27 
2.92 

4.07 
2.28 
3.42 
2.82 
4.43 
2.50 
4,10 
3.39 
5.42 
3.11 

-0.40 
-0.33 
-0.28 
+0.17 
+0.43 
+0.07 
-0.10 
+0.34 
-0.15 
-0.19 
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Figure 7: Neural Network Output against Target 

i. Sensitivity analysis on the experimental and predicted results using the Minitab 17 
Statistical Software is given as: 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.37 + 0.91𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 …..  (3). The 
regression model is significant with a p-value of 0.001, a standard deviation (s) of 0.2856, 
and a correlation coefficient (r2) of 92.2 %, The constant has a p-value of 0.314 (not 
significant) and the experimental, 0.001 (significant), respectively. The agreement of the 
ANN application and Minitab 17 software on the intercept and slope for the predicted and 
experimental are 86 % and 100 % respectively.  Figures 8 and 9 are the fitted line plot 
and residual plots.  

 

 
Figure 8: Fitted line plot of the Predicted versus Experimental 
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Figure 9: Residual Plot of the Predicted versus Experimental 

 

Figures 10 and 11 are the 3D surface plots of the experimental, predicted and age of PKS-
concrete on one hand and the experimental, predicted and the error. The errors are within – 0.40 
and + 0.43.  

 

 
Figure 10: 3D Diagram for the Age, Predicted and Experimental 
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Figure 11:  3D Diagram for the Error, Predicted and Experimental 

The distribution characteristics of the experiment and the predicted results (Table 14) are within 
the 95 % CI, and very significant (p < 0.05). The narrower the CI the better it is [11]. If the CI is 
narrow, we can be quite confident that any effects far from this range had been ruled out by the 
study [12, 13]. 

 

Table 14: Characteristics of Distribution for the Experimental and Predicted Results 
 
 
Parameter 

Goodness of fit. 
[Anderson-Darling Adj] 

 
 
Basic Statistics 

 
 

Estimates 

 
Standard 

Error 

95 % Normal CI 
 

Lower 
 

Upper 
 
Experiment 
Result 

 
1.461 

Mean (MTTF) 
StD Deviation 
Median 

3.51 
0.99 
3.53 

0.32 
0.19 
0.33 

2.94 
0.68 
2.94 

4.12 
1.46 
4.25 

 
Predicted 
Result 

 
1.437 

Mean (MTTF) 
StD Deviation 
Median 

3.55 
0.96 
3.58 

0.31 
0.18 
0.32 

3.00 
0.66 
3.01 

4.20 
1.40 
4.27 

 

Conclusion 

The results of the flexural strength of PKS-concrete and the characteristics of PKS mixes using 
ANN method and Minitab 17 Software have been presented and some of the conclusions are as 
stated below. They are as follows, that: 

ii. The use of ANN for flexural strength evaluation of PKS-concrete gave reliable results. 
iii. The comparison of the predicted and experimental results showed very strong correlation, 

and the model equation has an intercept (β0) of 0.32, and a slope of (β1) 0.91. The 
correlation coefficient for this is 95.0 %. 

iv. The Minitab 17 Statistical Software values for the predicted and experimental has an 
intercept of 0.37 and a slope of 0.91, with a correlation coefficient of 92 %.  
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v. The agreement of the ANN application and Minitab 17 software on the intercept and 
slope for the predicted and experimental are 86 % and 100 % respectively. 

vi. The characteristic distribution results of the PKS-concrete showed that the estimates are 
within the 95 % confidence limits (CI), and very significant (P < 0.05).  

vii. The estimated values are within the specified lower and upper limits of CI. 
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