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Abstract
In this paper, estimation of the incidence and susceptibility of colon cancer using frailty
models within a Bayesian framework is presented. In contrast to previous papers, the model
incorporates heterogeneity within individuals. A simulation study is carried out to evalu-
ate the properties of the Bayesian estimates of the associated parameters in the developed
model that incorporate; continuous lifetime distributions for survival data with a cured per-
centage, censored data, covariates, and heterogeneity within individuals. Since the previous
model did not account for heterogeneity, it was unable to determine the successful recur-
rent or metastatic rate and survival likelihood, neither of which could be determined. The
paper’s findings managed to increase awareness programs for timely detection, access to
care, and diagnostic accuracy. Furthermore, raising awareness of the incidence will allow
researchers to investigate screening success and develop new cancer screening recommen-
dations.

Keywords: Bayesian, frailty, heterogeneity, incidence, prevalence, screening, Survivor, sus-

ceptibility.

1 Introduction

Most developing countries are experiencing an increase in cancer burden that is still being

understated (Greenlee, Murray, Bolden, & Wingo, 2000). The prevalence of colon cancer out-

numbers all other cancer types, including non-melanoma skin cancer. The study’s goal is to
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create an underlying frailty hazard function for the mixture cure model. The statistical cure

occurs when a patient population has the same mortality rate as cancer-free people.

(Vaupel, Manton, & Stallard, 1979) concentrated on life table approaches on populations

whom the participants differ in their overall susceptibility to all fatalities. The methods used

to investigate the impact of frailty heterogeneity on the dynamics of mortality rates(Shepard

& Zeckhauser, 1984).(Shepard & Zeckhauser, 1980) Furthermore, (Vaupel et al., 1979), (Nam

& Okay, 1977)findings using mortality data overestimate current life expectancy and possible

gains in life expectancy from proper health and safety interventions whereas underestimating

an individual’s past progress in reducing mortality. In this paper, a frailty hazard mixture cure

model for lifetime survival data is developed, and the parameters of the new sample are es-

timated using a Bayesian approach. Section 2 Review of Frailty Hazard Function of Time to

Event(T) in the Mixture Cure Model, Section 3The study’s Monte Carlo simulation, and Section

4 simulation of Maximum likelihood estimations. Finally, in Section 5, there is a Conclusions

and future work.

2 Review of Frailty Hazard Function of Time to Event(T) in
the Mixture Cure Model

The paper defines a Cancer Hazards Functions for Mixture Cure Model for simulating survival

data in this section. The time until an event occurs is referred to as the survival time. For

example, survival time may be defined as a patient’s lifetime or the time until the recurrence

of some disease in the patient. First, we will assume that we will be observing the S lifetimes

of a number of patients from a potentially diversified population. As a result, we will model

the population distribution as a mixture of cure model.A decomposition of the event time in the

mixture modeling approach can be written as; T = νT ∗ + (1 − ν)∞. Let T ∗ < ∞ the event

never occurred, indicating the presence of a cure fraction. A finite survival time, on the other
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hand, corresponds to a susceptible subject who will experience the event at some point, if we

indicate ν, the uncured status, such that ν = I {T ∗ <∞} (Lu, 2008)

The proportional hazard model introduced by (Cox, 1972), is a popular semi parametric

model for the hazard function as shown below:

λ(tij | Zij) = λ(tij) exp (β
′Zij)

2.1 Frailty Hazard Model With Heterogeneity Between Individuals (σiuij)

The proportional hazards cure model (Cox, 1972) was proposed in this study, and the frailty

hazards regression were developed for modeling susceptible and un-susceptible individuals,

survival times, whereas the logistic regression models of the cure fraction specified by the two

terms shown;

λ(T | Zij|σuij) = lim
dtij→0+

P (tij ≤ T ∗ < tij + dtij | T ∗ ≥ tij, Zij) /dtij = λ(tij) exp (β
′Zij + σiuij)

(1)

P (νij = 1 | Xij) =
exp (γ′Xij)

1 + exp (γ′Xij)
(2)

Where λ(T | Zij|σuij) is the hazard function for a susceptible subject with p dimension

covariates Z and q−dimension covariates X , and λ(tij) is the completely unknown underlying

hazard function, and β and γ are the unknown regression parameter vectors of primary interest,

u is normal distributed random effects such as N(0,1) with and σi the corresponding covariates

. Z and X may have some common components, and that X contains 1 so that σi contains the

intercept term. (Lu, 2008) (Lázaro, Armero, & Gómez-Rubio, 2020)
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2.2 The Mixture Cure Frailty Hazard Function for Metastatic Event

This paper represent the proportion of uncured patients P (Xij) = P (νij = 1 | Xij), which

may depend on the covariate vector X = (X1, . . . , Xq) related to the incidence by the logistic

form P (Xij) = exp (γ′Xij) / (1 + exp (γ′)) . (Lázaro et al., 2020)

Let T be the occasion to event, defined just when ν = 1 using the provisional survival

function S(t | νij = 1) = P (T > t | νij = 1) and Zij being the covariate vector linked with

latency (Rondeau, Schaffner, Corbiere, Gonzalez, & Mathoulin-Pélissier, 2013). As a result,

the comparatively small survival function seems to be:

S(tij) = 1− P (Xij) + P (Xij)S(tij | νij = 1) (3)

The paper, suggest using frailty mixture cure model; to model the hidden distribution. By

substituting the susceptible subject’s survival function by the frailty model equation yields the

frailty mixture cure model shown below.


S (tij | σiuij) = 1− P (Xij) + P (Xij) exp (−Λ (tij | νij = 1) exp (β′Zij + σiuij))

P (Xij) = P (νij = 1 | Xij) =
exp(γ′X)

(1+exp(γ′Xij))

u ∼ i.i.dN (0;σ2)

.

Where, S (tij | νij = 1, σiuij) = exp (−Λ (tij | ν = 1) exp (β′Z + σiuij)) and λ (tij | νij = 1, σiuij) =

λ0 (tij | νij = 1) exp (β′Zij + σiuij).


S (tij | σiuij) = 1− P (Xij | σiuij) + P (Xij | σiuij) exp (−Λ (tij | ηij = 1) exp (β′Zij + σiuij))

P (Xij | σiuij) = P (νij = 1 | Xij) =
exp(γ′X+ψσiuij)

(1+exp(γ′Xij+ψσiuij))

u ∼ i.i.dN (0;σ2
1)

.

(4)

from whichψ allows for the relationship of the cured percentage and the frailty-related metastatic

rate. When ψ = 0, the cured percentage and metastatic incidents are distinct of covariates, as
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are the distinct cured fractions for the same patient. The consequence of frailty on the metas-

tases rate and the chance of designing a new event is comparable when ψ = 1. The metastatic

rate as well as cured fraction are inextricably linked when ψ > 0. Significantly greater frailty

raises the risk of metastatic cancer and the occurrence of a new event.Higher frailty, on the

other hand, leads to greater survival between at patients but a low probability of designing a

new incident when ψ < 0. (Rondeau et al., 2013).


S (tij | σ1u1i, σ2u2i) =
1− Pij (X | σ1u1i, σ2u2i) + Pij (X | σ2u2i) exp (−Λ (tij | νij = 1) exp (β′Zij + σ1u1i + σ2u2i))

Pij (X | σ2u2i) = P (νij = 1 | X) = exp(γ′X+ασ2u2i)
(1+exp(γ′X+ασ2u2i))

u1i ∼ N (0;σ2
1) , u1i ⊥ u2i

u2i ∼ N (0;σ2
2)

.

(5)

The two outcomes, u1i and u2i, are unrelated. The variability of the random effect u2i

σ2 reflects well-known heterogeneity in cancer progression rate and cured fraction, which are

correlated via a mutual random effect u2i in equation 5. Furthermore, there is a random effect

term u1i that is independent of u2i and identifies heterogeneity in event that happens times

caused by random effects that are not shared with the cured percentage. (Rondeau et al., 2013).

Here are some fundamental properties of S(t) and hazard fumction(λt):

• S(0) equals 1 and S(∞) equals 0.

• S(t) is a function that does not increase.

• N(t) the number of events that occurred in (0, t) ∼ Pois(λt)

2.3 Bayesian survival mixture cure frailty hazard model

For the underlying hazard function λ(t), we will make the assumption a piecewise weibul dis-

tribution. The piecewise weibul model is useful and straightforward for modeling survival
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data, and it serves as a baseline for similarities with other semi-parametric and fully paramet-

ric models. The likelihood function is constructed in the following manner. Consider J to be

the countable number of time axis pieces such that 0 < r1 < · · · < rJ , with rJ > yil for

i = 1, . . . , n; l = 1, . . . , Li. Thus, we have J intervals, (0, r1] (r1, r2] , . . . , (rJ−1, rJ ], In which

each interval contains at least one failure and a satisfactory method of assigning the data is to

weigh the number of events among intervals. The piecewise weibul model is based on the as-

sumption that, λ(y) = λj for y ∈ (rj−1, rj] j = 1, . . . , J. If the lth subject in theith cluster fails

or is censored in the jth interval, define δiljas 1, as either 0. WhenJ = 1, that is, when there is

no sections, the underlying hazard is lowered to that of a weibull distribution with λ(t) ≡ λ1.

By continuing to increase J , we can achieve finer sections of the time scale, permitting us to

use a more adaptable structure of the underlying hazard. D also represents the demonstrated

data, W = (W1, . . . ,Wn)
′ and λ = (λ1, . . . , λJ)

′ . The random effects Wi(i = 1, . . . , n) are

generally believed to have a gamma distribution, Wi ∼ Ga(ψ, ψ), with mean 1 and variance

ψ−1. First, we suggest a promotion time cure rate frailty model with population hazard;

λ (t | Zil,Wi) = γpWi(γt)
p−1 exp ((−β′Zil)p + σu) (6)

Thus, the conditional likelihood function concerning model, (3.1.5) is given by

L(β,λ |W, D) =
∏n

i=1 Li (β,λ | Wi, D), where
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Li (β,λ,p,σ,α | Wi, D)

=

Li∏
l=1

[
γpWi(γt)

p−1 exp ((−β′Zil)p + σu)
]νil

× exp {− [1− exp {−Λ (yil)Wi}] exp ((−β′Zil)p + σu)}

=

Li∏
l=1

J∏
j=1

{
λpjWi exp [−{λj (rj − rj−1)

+
∑j−1

q=1 λ
p
q (rq − rq−1)

}
Wi

]
exp ((−β′Zil)p + σu)

}νilδilj
+

j−1∑
q=1

λpq (rq − rq−1)

}
Wi

])
exp ((−β′Zil)p + σu)

}
(7)

We will take non-informative priors for all the parameters where by, the likelihood functions

dominate the posterior distributions. Also we will assume that β and λ are independent, and

their components are independent (Yin & Ibrahim, 2005). (Don’t interrogate the entire issue,

we can assume that the prior distributions are independent of each other.) Specifically, we take

βk ∼ N (µ, σ2) for k = 0, 1, . . . , p, and λj ∼ Ga(α, γ) for j = 1, . . . , J. Furthermore, we take

Wi ∼Ga(ψ, ψ) and assume that η ∼ Ga(a, b), where the hyperparameters a and b are chosen to

yield a large prior variance for Wi. Prior parameters βk and λj according to their range, Normal

and Gamma distributions are used respectively and for ψ parameters, Gamma distribution is

used.(Yin & Ibrahim, 2005)

Let [U | V ] stand for the posterior distribution of U given V . For k = 0, 1, . . . , p; j =

1, . . . , J ; and i = 1, . . . , n the full conditional distributions of the parameters are given as

follows:[
βk | β(−k),λ,W, D

]
∝ L(β,λ |W, D)π (βk)[

λj | β,λ(−j),W, D
]
∝ L(β,λ |W, D)π (λj)[

Wi | β,λ,W(−i), η,D
]
∝ Li (β,λ | Wi, D)Wψ−1

i exp (−ηWi)

[ψ |W, D] ∝ ψnψ+a−1(
∏n
i=1Wi)

ψ−1
exp{−ψ(∑n

i=1Wi+b)}
{Γ (ψ)}n

where β(−k) is the rest of β after deleting the k th component, λ(−j) and W(−i) are defined

similarly, and π (βk) and π (λj) are the prior densities. The complete posterior distribution Wi,

7

GSJ: Volume 10, Issue 6, June 2022 
ISSN 2320-9186 242

GSJ© 2022 
www.globalscientificjournal.com



has the closed form of

Ga

(
ψ +

Li∑
l=1

νil, ψ +

Li∑
l=1

J∑
j=1

δilj
[
1− exp

{
−λpj (rj − sj−1)

−
j−1∑
q=1

λpq (rq − rq−1)

}
exp ((−β′Zil)p + σu)

)

3 The study’s Monte Carlo simulation

In this paper the properties from (Diao & Yin, 2012) for the parameters of the mixture cure

model as well as hazard frailty distributions were determined using simulation in this category.

The convergence and normality of the parameters were noticed. The simulation results in the

study are operate to assess the performance of proposed mixture cure model but also hazard

frailty.

3.1 Trace and Density plots of the regression coefficients and distribution
parameters for the PH model

The visualization tool, such as Kernel density-based methods, suggested that when the distance

between the two chains’ kernel density estimation method or two parts of a single chain is close

to zero, the MCMC diagnostics conclude convergence ??. For MCMC convergence diagnosis,

there are a few widely used graphical methods.

The trace plot is the most commonly used graphical convergence method of diagnosis. The

trace plot is a time series graph that relates the Markov chain classifications to the iterative pro-

cess numbers for each iterative process.This technique is used to show how well the Markov

chain traverses the state space or how it really mixes. The trace plots show a flat bit whenever

the MCMC chain has become stuck in one region of the state space, implying slow convergence.

A trace plot of this category is noticed for a Metropolis-Hasting chain whenever a huge number
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of proposals are denied repetitively.

Trace plots, on the other hand, may move very slowly if many proposals are approved repeti-

tively in a Metropolis-Hasting chain, not going to explore the rest of the state space. Whether

there are noticeable trends or modifications in the dispersion of the trace plot, normality of the

data has still not been accomplished. A useful trace plot, it has been said, should represent a

hairy caterpillar. If the value obtained is not in high-density region, the trace plots begin with

back-to-back steps in one manner, indicating an efficient MCMC algorithm. Or else, trying to

throw burn-in samples is meaningless if the trace plot shows a regular trend throughout. As

shown in Figures3.1.1 below, all plots and patterns are similar.

3.1.1 Trace and Density Plots

Trace of Diagnosed years Density plots of diagnosed year

Trace of Age Density plots of age
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Trace of stage4 Density plots of stage4

Trace of stage 3 Density plots of stage3

Trace of stage 2 Density plots of stage2

3.1.2 The Effective Sample Size.

To investigate the mixing of a Markov chain, autocorrelation and trace plots can be used.

Whereby is an estimate of the difference between the sampled values’ mean, which is our

estimated posterior mean, and the true posterior mean. As a result, the Markov chain error can

be compared to the Bayesian inference concept of a standard error. The general rule of thumb

is that the Markov chain error should be less than 5% of the sample standard deviation.
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Table 1: A summary of some commonly used statistical tests for convergence diagnostics is
provided.

Para Geweke Raftery Heidelberger Dependence
diagnostic - Lewisl - Welch

meter Pr >|z| Total No.of Sample P-value Test for Stationarity Test for Halfwidth
Stages2 -0.05275 1272706 0.0519 Passed Passed
Stages 3 -0.74432 871200 0.6339 Passed Failed
Stages 4 1.46866 10580 0.1000 Passed Passed

Age 1.74905 10498 0.6587 Passed Passed
Diagnosed year -0.71776 61992 0.2644 Passed Passed

3.2 Kaplan-Meier method

Kaplan-Meier is a statistical method used in simulation and time to event data analysis. The

time from enrollment in a study to a specific event, such as the onset of illness, is referred to as

the time to the event. The figures, 3.4, simulate survival data and fit variables such as sex, stage

2, stage 3, and stage 4. At the very top left corner, it indicates that at time "0," the beginning of

our study, 100% of the patients had not experienced an event of interest.

The sex figure shows that females last longer and are more likely to survive. They are

slightly higher than the male survival rate; then, in stages 2 and 3, the censored individuals

outnumber the uncensored individuals; and finally, in stage 4, the uncensored individuals out-

number the censored individuals.
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3.3 To visualize the distribution of sex and status within each individual,
using ggplot2.

Sex Status

Figure 3.3: The posterior mean of the individual’s sex and status, survival functions from

the frailty mixture cure model.

3.4 To fit the sex, stage2, stage3 and stage4 survival data using the Kaplan-
Meier method

Sex Stage2
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Stage3 Stage 4

Figure 3.4: Survival of the fittest

The Kaplan-Meier survival function is a decreasing step function with a jump at each dis-

crete event time and no censoring; the Kaplan-Meier estimator is simply the information’s ex-

perimental distribution. In contrast to non-parametric estimation, independent variables can be

included in parametric models.

Semiparametric models’ coefficients and hazard ratios are presented in the table2 When we

have a positive coefficient, this indicates that as the predictor variables rises, so the number of

time to event increases. A positive coefficient indicates a shorter time or that the incident is

much more likely to happen; a negative coefficient indicates a longer time and reduced hazard

rates, making the experience less likely to happen.(Atuna & Adusei, 2022)

Whenever it happens to come to hazard rates, a hazard ratio significantly larger than one
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Table 2: Cox proportion hazard rate Coefficients.

Covariate Coef exp(coef) exp(-coef) lower 0.95 upper 0.95 se(coef) z Pr(>|z|)
Intercept 0.2021 1.2240 0.8170 0.052 0.3565 0.0793 2.5495 2e-16

diagy -1.5640 0.2092 4.7780 0.1063 0.4121 0.3457 -4.524 6.07e-06
Age 0.0013 1.0013 4.7780 0.9758 1.074 0.0136 0.096 0.924
Frail 0.0138 1.0139 0.9863 0.5978 1.7196 0.2696 0.051 0.959

Stage2 -0.2938 0.7454 1.3416 0.2547 2.1815 0.5479 -0.536 0.592
Stage3 0.0103 1.0104 0.9897 0.4142 2.4650 0.4550 0.023 0.982
Stage4 -0.3137 0.7307 1.3685 0.1683 3.1723 0.7491 -0.419 0.675

concordance = 1 (se = 0)
Likelihood ratio test =351.2 on 6df, p=<2e-16

Wild test = 20.94 0n df, =< 0.002
Score (log-rank) test = 62.69 on 6 df, p=< 1e-11

clearly shows that for a one-unit increment in that specific variable, the hazard rate, which is

also the probability of the event occurring, is much more likely to occur. And when the hazard

rate is between0 and 1, it is assumed that there are lower hazard rates (as a result of which the

event becomes less likely to happen )(Atuna & Adusei, 2022).

According to our parameter estimation, a highest value of the frailty Wi, is associated both

with a relatively low cure likelihood and an increased risks of experiencing the incident.

The magnitude of coefficient points is the one to be interpreted in hazard rate coefficients,

which means that the unit increase in the variable, such as stage2, is associated with only 26%

increasing the hazard or 73% lower hazard rate where the event is less likely to occur.

4 Evaluating Maximum Likelihood Estimators Methods

The proposed frailty cure model’s posterior distribution stability was tested using the poste-

rior mean, standard deviation (SD), absolute bias, Naive standard error, root mean square error

(RMSE), coverage probability (CP), effective number of separate simulations draws, and po-

tential scale reduction factor (R).
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Table 3: Under non-informative priors, numerical summaries of the posterior properties for the
frailty hazard model, based on MCMC

Characteristicsa Parameters
alpha betac1 betac2 beta3 lambda psi

Mean 9.968 -34.02 1.168e-01 -2.913e-02 1.701e-15 142.52
Median 9.98045 -34.04724 0.04418 -0.02279 1.6901e-15 128.0881
Mode 9.99 -34.05 0.025 -0.025 0 75

Variance 8e-04 0.01445 0.01382 0.01314 0 8172.452
Skewness -1.95594 0.98221 -0.05962 -0.05718 2.07697 1.56377
Kurtosis 5.42496 2.21802 0.02451 0.00567 9.81136 3.42699

Minimum 9.71202 -34.41566 -0.49271 -0.55657 0 13.46436
Maximum 10 -33.12077 0.49705 0.49774 0 854.6372

SD 3.224e-02 1.304e-01 1.148e-01 2.389e-16 142.5 78.75
Naive SE 4.163e-04 1.683e-03 1.507e-03 1.482e-03 3.085e-18 1.017

Time series SE 0.001927 0.007159 0.002678 0.002739 0.000000 10.418417
2.5 percentile 9.876 -34.22 -1.898e-01 -2.598e-01 1.373e-15 36.29

Q1 9.957 -34.10 -3.413e-02 -1.039e-01 1.545e-15 81.06
Median / Q2 9.978 -34.03 4.408e-02 -2.736e-02 1.656e-15 125.3

Q1 9.991 -33.95 1.211e-01 4.567e-02 1.795e-15 190.6
97 percentile 9.999 -33.68 2.708e-01 1.971e-01 2.350e-15 324.4

4.1 Evaluating the estimators’ performance:

The bias of the estimators is calculated as follows:

Bias(θ̂) = 1
N

∑N
i=1(θ̂ − θ)

An overestimation is depicted by a positive sign, while an underestimation is demonstrated by a

negative bias (Adnan & Arasan, 2018). Accuracy of the estimators: The root mean square error

(RMSE) is a useful indication of overall correctness and is computed as follows:

RMSE(θ̂) =
1

N

N∑
i=1

(θ̂ − θ)2

This metric determines the accuracy of the estimates. When the RMSE is low, impact esti-

mates are more accurate. The Naive standard error is another accuracy statistic that is calculated

by dividing the posterior standard deviation by the square root of the sample size. As a result,

the smaller the standard error, the larger the sample size.The Nave SE employs simulation error

rather than posterior uncertainty (Naslina, Jayanthi, Syahida, & Bakri, 2020).
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NaiveSE =
PosteriorSD√

n

4.2 Coverage

The 95 percent coverage probability is the percentage of N simulated data sets in which the

genuine estimates were used in the 95 percent confidence interval (CP). The more accurate the

estimates, the closer the result is to a 95% confidence probability of coverage.The following is

an explanation of CP: (Naslina et al., 2020)

CP = θ̂ ∓ 1.96× SE(θ̂)

In the table 4, we demonstrated that different allocations for the number of chains affect the

estimation results slightly. Then, for all chains, we must confirm that the bias for fixed initials

appears to decrease as the chain number increases, while the bias for random effect estimates

increases as the number of chains increases, indicating a negative association with the survival

probability. Frailty heterogeneity may play a role in observed declines and reversals with age, as

well as mortality differences between populations. (Miquel, Economos, Fleming, & Johnson Jr,

1980)

4.2.1 The simulation technique described below was used.

• The initial values of the model parameters are specified.

• Create a random sample of size 500 and n chains using log-likelihood equation 7

• Using the maximum likelihood method, evaluate the estimates’ values.

• Determine the MSE, RMSE, BIAS, SE, and Coverage Probability for each parameter.
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Table 4: Simulation Results of Maximum likelihood estimation of the Frailty cure model distri-
bution with difference number of chains.

Parameters Initial Estimates SE RMSE Bias coverage%
n=10

α 10 9.9716 2.7905e-04 2.8392e-02 2.8346e-02 90
β1 -34 -34.032 3.1604e-03 3.2698e-02 3.1892e-02 90
β2 0.045 4.2511e-02 1.4758e-03 4.2814e-03 2.4888e-03 100
β3 -0.25 -2.3234e-02 4.2777e-03 2.2678e-01 -2.2676e-01 100
λ 1.7 1.6735e-15 5.7735e-18 1.6736e-15 -1.6735e-15 90
φ 145 1.4593e+02 9.5776 12.5993 6.4406e-02 100

n=20
α 10 9.9722 2.7905e-04 2.7783e-02 2.7752e-02 90
β1 -34 -3.4032e+01 3.1604e-03 3.3327e-02 3.2928e-02 90
β2 0.045 4.1885e-02 1.4759e-03 3.6157e-03 3.1141e-03 95
β3 -0.25 -2.4299e-02 4.2777e-03 2.2571e-01 -2.2570e-01 95
λ 1.7 1.6705e-15 5.7735e-18 1.6705e-15 -1.6705e-15 90
φ 145 146.77 9.5776 -0.77522 0.8501 95

n=50
α 10 9.9721 2.7905e-04 2.7938e-02 2.7891e-02 96
β1 -34 -34.0339 3.1604e-03 3.4645e-02 3.3952e-02 94
β2 0.045 4.3837e-02 1.4758e-03 2.8755e-03 1.1624e-03 98
β3 -0.25 -2.3027e-02 4.2777e-03 2.2699e-01 -2.2697e-01 96
λ 1.7 1.6687e-15 5.7735e-18 1.6688e-15 -1.6688e-15 94
φ 145 144.6404 9.5776 13.2172 1.3596 96

n=200
α 10 9.9719 2.7906e-04 2.8054e-02 2.8003e-02 94
β1 -34 -34.033e 3.1604e-03 3.3537e-02 3.2809e-02 95.5
β2 0.045 4.3002e-02 1.4759e-03 3.6223e-03 1.9980e-03 96
β3 -0.25 -2.4188e-02 4.2777e-03 2.2583e-01 -2.2581e-01 95
λ 1.7 1.6709e-15 5.7735e-18 1.6709e-15 -1.6709e-15 95
φ 145 149.71e 9.5776e 14.117e -3.7069 94.5
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5 Conclusions

For cured and uncured data, we developed an underlying frailty hazard function for the mixture

cure model. This paper intends to estimate the incidence and susceptibility of colon cancer

using frailty models within a Bayesian framework. In contrast to previous work, our proposed

models include a proporional hazards cure model in which frailty hazards regression, random

covariate, and Individual heterogeneity in mixture cure models is a broader multilevel structure

with various random effect frameworks.One intriguing aspect of a models seems to be that they

offer cancer patients an opportunity of someone being cured.

Random effect cure models have a privilege over minimal cure models in that they can

provide understanding of the underlying similarity characteristics of the data and permit for

forecasting inference. To identify patients at risk for colon cancer, a survival set of data is

used. In furthermore, to predict the outcome for a particular patient. The percentage of spatial

mentioning varies according to colony location. Besides that, because of the high prevalence of

colon cancer in the population, these event time data are heavily censored in the early stages. As

a result, it is unlikely to fail and can be regarded as cured/remitted. In modeling such grouped

data sets, we make the assumption a proportion hazards model with just a surviving fraction and

evaluate for dependence among colon sites utilizing spatial frailties, which also are patterned as

linear combinations of positive steady random effects.

Future work

The frailty cure model can be expanded to include risk factors that compete with frailty. Two

opposing events are recurring or metastatic occurrences and specific target occurrences. In

colon cancer studies, the moment to repeat for colon cancer, for example, is the endpoint of

interest, but uncured patients are likely to die during the follow-up period. In this case, the
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moment to recurrent/metastatic exacerbation and the time to death on the same person coincide.

Even if a situation of competing risks exists, it is difficult to accommodate the thing causing

hazards; and their correlating log-likelihoods; in the prediction inference of such a hazard frailty

cure model; because it assumes independent, and evenly restricted competing for the specific

target event; as well as the presence of intersecting times to various competing different kinds.
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